]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - crypto/mcryptd.c
Merge tag 'v4.11-rc5' into next
[mirror_ubuntu-artful-kernel.git] / crypto / mcryptd.c
1 /*
2 * Software multibuffer async crypto daemon.
3 *
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5 *
6 * Adapted from crypto daemon.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 */
14
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
29 #include <linux/hardirq.h>
30
31 #define MCRYPTD_MAX_CPU_QLEN 100
32 #define MCRYPTD_BATCH 9
33
34 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
35 unsigned int tail);
36
37 struct mcryptd_flush_list {
38 struct list_head list;
39 struct mutex lock;
40 };
41
42 static struct mcryptd_flush_list __percpu *mcryptd_flist;
43
44 struct hashd_instance_ctx {
45 struct crypto_ahash_spawn spawn;
46 struct mcryptd_queue *queue;
47 };
48
49 static void mcryptd_queue_worker(struct work_struct *work);
50
51 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
52 {
53 struct mcryptd_flush_list *flist;
54
55 if (!cstate->flusher_engaged) {
56 /* put the flusher on the flush list */
57 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
58 mutex_lock(&flist->lock);
59 list_add_tail(&cstate->flush_list, &flist->list);
60 cstate->flusher_engaged = true;
61 cstate->next_flush = jiffies + delay;
62 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
63 &cstate->flush, delay);
64 mutex_unlock(&flist->lock);
65 }
66 }
67 EXPORT_SYMBOL(mcryptd_arm_flusher);
68
69 static int mcryptd_init_queue(struct mcryptd_queue *queue,
70 unsigned int max_cpu_qlen)
71 {
72 int cpu;
73 struct mcryptd_cpu_queue *cpu_queue;
74
75 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
76 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
77 if (!queue->cpu_queue)
78 return -ENOMEM;
79 for_each_possible_cpu(cpu) {
80 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
81 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
82 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
83 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
84 }
85 return 0;
86 }
87
88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
89 {
90 int cpu;
91 struct mcryptd_cpu_queue *cpu_queue;
92
93 for_each_possible_cpu(cpu) {
94 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
95 BUG_ON(cpu_queue->queue.qlen);
96 }
97 free_percpu(queue->cpu_queue);
98 }
99
100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101 struct crypto_async_request *request,
102 struct mcryptd_hash_request_ctx *rctx)
103 {
104 int cpu, err;
105 struct mcryptd_cpu_queue *cpu_queue;
106
107 cpu = get_cpu();
108 cpu_queue = this_cpu_ptr(queue->cpu_queue);
109 rctx->tag.cpu = cpu;
110
111 err = crypto_enqueue_request(&cpu_queue->queue, request);
112 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
113 cpu, cpu_queue, request);
114 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
115 put_cpu();
116
117 return err;
118 }
119
120 /*
121 * Try to opportunisticlly flush the partially completed jobs if
122 * crypto daemon is the only task running.
123 */
124 static void mcryptd_opportunistic_flush(void)
125 {
126 struct mcryptd_flush_list *flist;
127 struct mcryptd_alg_cstate *cstate;
128
129 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
130 while (single_task_running()) {
131 mutex_lock(&flist->lock);
132 cstate = list_first_entry_or_null(&flist->list,
133 struct mcryptd_alg_cstate, flush_list);
134 if (!cstate || !cstate->flusher_engaged) {
135 mutex_unlock(&flist->lock);
136 return;
137 }
138 list_del(&cstate->flush_list);
139 cstate->flusher_engaged = false;
140 mutex_unlock(&flist->lock);
141 cstate->alg_state->flusher(cstate);
142 }
143 }
144
145 /*
146 * Called in workqueue context, do one real cryption work (via
147 * req->complete) and reschedule itself if there are more work to
148 * do.
149 */
150 static void mcryptd_queue_worker(struct work_struct *work)
151 {
152 struct mcryptd_cpu_queue *cpu_queue;
153 struct crypto_async_request *req, *backlog;
154 int i;
155
156 /*
157 * Need to loop through more than once for multi-buffer to
158 * be effective.
159 */
160
161 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
162 i = 0;
163 while (i < MCRYPTD_BATCH || single_task_running()) {
164 /*
165 * preempt_disable/enable is used to prevent
166 * being preempted by mcryptd_enqueue_request()
167 */
168 local_bh_disable();
169 preempt_disable();
170 backlog = crypto_get_backlog(&cpu_queue->queue);
171 req = crypto_dequeue_request(&cpu_queue->queue);
172 preempt_enable();
173 local_bh_enable();
174
175 if (!req) {
176 mcryptd_opportunistic_flush();
177 return;
178 }
179
180 if (backlog)
181 backlog->complete(backlog, -EINPROGRESS);
182 req->complete(req, 0);
183 if (!cpu_queue->queue.qlen)
184 return;
185 ++i;
186 }
187 if (cpu_queue->queue.qlen)
188 queue_work(kcrypto_wq, &cpu_queue->work);
189 }
190
191 void mcryptd_flusher(struct work_struct *__work)
192 {
193 struct mcryptd_alg_cstate *alg_cpu_state;
194 struct mcryptd_alg_state *alg_state;
195 struct mcryptd_flush_list *flist;
196 int cpu;
197
198 cpu = smp_processor_id();
199 alg_cpu_state = container_of(to_delayed_work(__work),
200 struct mcryptd_alg_cstate, flush);
201 alg_state = alg_cpu_state->alg_state;
202 if (alg_cpu_state->cpu != cpu)
203 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
204 cpu, alg_cpu_state->cpu);
205
206 if (alg_cpu_state->flusher_engaged) {
207 flist = per_cpu_ptr(mcryptd_flist, cpu);
208 mutex_lock(&flist->lock);
209 list_del(&alg_cpu_state->flush_list);
210 alg_cpu_state->flusher_engaged = false;
211 mutex_unlock(&flist->lock);
212 alg_state->flusher(alg_cpu_state);
213 }
214 }
215 EXPORT_SYMBOL_GPL(mcryptd_flusher);
216
217 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
218 {
219 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
220 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
221
222 return ictx->queue;
223 }
224
225 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
226 unsigned int tail)
227 {
228 char *p;
229 struct crypto_instance *inst;
230 int err;
231
232 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
233 if (!p)
234 return ERR_PTR(-ENOMEM);
235
236 inst = (void *)(p + head);
237
238 err = -ENAMETOOLONG;
239 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
240 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
241 goto out_free_inst;
242
243 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
244
245 inst->alg.cra_priority = alg->cra_priority + 50;
246 inst->alg.cra_blocksize = alg->cra_blocksize;
247 inst->alg.cra_alignmask = alg->cra_alignmask;
248
249 out:
250 return p;
251
252 out_free_inst:
253 kfree(p);
254 p = ERR_PTR(err);
255 goto out;
256 }
257
258 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
259 u32 *mask)
260 {
261 struct crypto_attr_type *algt;
262
263 algt = crypto_get_attr_type(tb);
264 if (IS_ERR(algt))
265 return false;
266
267 *type |= algt->type & CRYPTO_ALG_INTERNAL;
268 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
269
270 if (*type & *mask & CRYPTO_ALG_INTERNAL)
271 return true;
272 else
273 return false;
274 }
275
276 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
277 {
278 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
279 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
280 struct crypto_ahash_spawn *spawn = &ictx->spawn;
281 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
282 struct crypto_ahash *hash;
283
284 hash = crypto_spawn_ahash(spawn);
285 if (IS_ERR(hash))
286 return PTR_ERR(hash);
287
288 ctx->child = hash;
289 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
290 sizeof(struct mcryptd_hash_request_ctx) +
291 crypto_ahash_reqsize(hash));
292 return 0;
293 }
294
295 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
296 {
297 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
298
299 crypto_free_ahash(ctx->child);
300 }
301
302 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
303 const u8 *key, unsigned int keylen)
304 {
305 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
306 struct crypto_ahash *child = ctx->child;
307 int err;
308
309 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
310 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
311 CRYPTO_TFM_REQ_MASK);
312 err = crypto_ahash_setkey(child, key, keylen);
313 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
314 CRYPTO_TFM_RES_MASK);
315 return err;
316 }
317
318 static int mcryptd_hash_enqueue(struct ahash_request *req,
319 crypto_completion_t complete)
320 {
321 int ret;
322
323 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
324 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 struct mcryptd_queue *queue =
326 mcryptd_get_queue(crypto_ahash_tfm(tfm));
327
328 rctx->complete = req->base.complete;
329 req->base.complete = complete;
330
331 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
332
333 return ret;
334 }
335
336 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
337 {
338 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
339 struct crypto_ahash *child = ctx->child;
340 struct ahash_request *req = ahash_request_cast(req_async);
341 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
342 struct ahash_request *desc = &rctx->areq;
343
344 if (unlikely(err == -EINPROGRESS))
345 goto out;
346
347 ahash_request_set_tfm(desc, child);
348 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
349 rctx->complete, req_async);
350
351 rctx->out = req->result;
352 err = crypto_ahash_init(desc);
353
354 out:
355 local_bh_disable();
356 rctx->complete(&req->base, err);
357 local_bh_enable();
358 }
359
360 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
361 {
362 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
363 }
364
365 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
366 {
367 struct ahash_request *req = ahash_request_cast(req_async);
368 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
369
370 if (unlikely(err == -EINPROGRESS))
371 goto out;
372
373 rctx->out = req->result;
374 err = ahash_mcryptd_update(&rctx->areq);
375 if (err) {
376 req->base.complete = rctx->complete;
377 goto out;
378 }
379
380 return;
381 out:
382 local_bh_disable();
383 rctx->complete(&req->base, err);
384 local_bh_enable();
385 }
386
387 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
388 {
389 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
390 }
391
392 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
393 {
394 struct ahash_request *req = ahash_request_cast(req_async);
395 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
396
397 if (unlikely(err == -EINPROGRESS))
398 goto out;
399
400 rctx->out = req->result;
401 err = ahash_mcryptd_final(&rctx->areq);
402 if (err) {
403 req->base.complete = rctx->complete;
404 goto out;
405 }
406
407 return;
408 out:
409 local_bh_disable();
410 rctx->complete(&req->base, err);
411 local_bh_enable();
412 }
413
414 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
415 {
416 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
417 }
418
419 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
420 {
421 struct ahash_request *req = ahash_request_cast(req_async);
422 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
423
424 if (unlikely(err == -EINPROGRESS))
425 goto out;
426 rctx->out = req->result;
427 err = ahash_mcryptd_finup(&rctx->areq);
428
429 if (err) {
430 req->base.complete = rctx->complete;
431 goto out;
432 }
433
434 return;
435 out:
436 local_bh_disable();
437 rctx->complete(&req->base, err);
438 local_bh_enable();
439 }
440
441 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
442 {
443 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
444 }
445
446 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
447 {
448 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
449 struct crypto_ahash *child = ctx->child;
450 struct ahash_request *req = ahash_request_cast(req_async);
451 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
452 struct ahash_request *desc = &rctx->areq;
453
454 if (unlikely(err == -EINPROGRESS))
455 goto out;
456
457 ahash_request_set_tfm(desc, child);
458 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
459 rctx->complete, req_async);
460
461 rctx->out = req->result;
462 err = ahash_mcryptd_digest(desc);
463
464 out:
465 local_bh_disable();
466 rctx->complete(&req->base, err);
467 local_bh_enable();
468 }
469
470 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
471 {
472 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
473 }
474
475 static int mcryptd_hash_export(struct ahash_request *req, void *out)
476 {
477 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
478
479 return crypto_ahash_export(&rctx->areq, out);
480 }
481
482 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
483 {
484 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
485
486 return crypto_ahash_import(&rctx->areq, in);
487 }
488
489 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
490 struct mcryptd_queue *queue)
491 {
492 struct hashd_instance_ctx *ctx;
493 struct ahash_instance *inst;
494 struct hash_alg_common *halg;
495 struct crypto_alg *alg;
496 u32 type = 0;
497 u32 mask = 0;
498 int err;
499
500 if (!mcryptd_check_internal(tb, &type, &mask))
501 return -EINVAL;
502
503 halg = ahash_attr_alg(tb[1], type, mask);
504 if (IS_ERR(halg))
505 return PTR_ERR(halg);
506
507 alg = &halg->base;
508 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
509 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
510 sizeof(*ctx));
511 err = PTR_ERR(inst);
512 if (IS_ERR(inst))
513 goto out_put_alg;
514
515 ctx = ahash_instance_ctx(inst);
516 ctx->queue = queue;
517
518 err = crypto_init_ahash_spawn(&ctx->spawn, halg,
519 ahash_crypto_instance(inst));
520 if (err)
521 goto out_free_inst;
522
523 type = CRYPTO_ALG_ASYNC;
524 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
525 type |= CRYPTO_ALG_INTERNAL;
526 inst->alg.halg.base.cra_flags = type;
527
528 inst->alg.halg.digestsize = halg->digestsize;
529 inst->alg.halg.statesize = halg->statesize;
530 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
531
532 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
533 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
534
535 inst->alg.init = mcryptd_hash_init_enqueue;
536 inst->alg.update = mcryptd_hash_update_enqueue;
537 inst->alg.final = mcryptd_hash_final_enqueue;
538 inst->alg.finup = mcryptd_hash_finup_enqueue;
539 inst->alg.export = mcryptd_hash_export;
540 inst->alg.import = mcryptd_hash_import;
541 inst->alg.setkey = mcryptd_hash_setkey;
542 inst->alg.digest = mcryptd_hash_digest_enqueue;
543
544 err = ahash_register_instance(tmpl, inst);
545 if (err) {
546 crypto_drop_ahash(&ctx->spawn);
547 out_free_inst:
548 kfree(inst);
549 }
550
551 out_put_alg:
552 crypto_mod_put(alg);
553 return err;
554 }
555
556 static struct mcryptd_queue mqueue;
557
558 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
559 {
560 struct crypto_attr_type *algt;
561
562 algt = crypto_get_attr_type(tb);
563 if (IS_ERR(algt))
564 return PTR_ERR(algt);
565
566 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
567 case CRYPTO_ALG_TYPE_DIGEST:
568 return mcryptd_create_hash(tmpl, tb, &mqueue);
569 break;
570 }
571
572 return -EINVAL;
573 }
574
575 static void mcryptd_free(struct crypto_instance *inst)
576 {
577 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
578 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
579
580 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
581 case CRYPTO_ALG_TYPE_AHASH:
582 crypto_drop_ahash(&hctx->spawn);
583 kfree(ahash_instance(inst));
584 return;
585 default:
586 crypto_drop_spawn(&ctx->spawn);
587 kfree(inst);
588 }
589 }
590
591 static struct crypto_template mcryptd_tmpl = {
592 .name = "mcryptd",
593 .create = mcryptd_create,
594 .free = mcryptd_free,
595 .module = THIS_MODULE,
596 };
597
598 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
599 u32 type, u32 mask)
600 {
601 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
602 struct crypto_ahash *tfm;
603
604 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
605 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
606 return ERR_PTR(-EINVAL);
607 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
608 if (IS_ERR(tfm))
609 return ERR_CAST(tfm);
610 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
611 crypto_free_ahash(tfm);
612 return ERR_PTR(-EINVAL);
613 }
614
615 return __mcryptd_ahash_cast(tfm);
616 }
617 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
618
619 int ahash_mcryptd_digest(struct ahash_request *desc)
620 {
621 return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
622 }
623
624 int ahash_mcryptd_update(struct ahash_request *desc)
625 {
626 /* alignment is to be done by multi-buffer crypto algorithm if needed */
627
628 return crypto_ahash_update(desc);
629 }
630
631 int ahash_mcryptd_finup(struct ahash_request *desc)
632 {
633 /* alignment is to be done by multi-buffer crypto algorithm if needed */
634
635 return crypto_ahash_finup(desc);
636 }
637
638 int ahash_mcryptd_final(struct ahash_request *desc)
639 {
640 /* alignment is to be done by multi-buffer crypto algorithm if needed */
641
642 return crypto_ahash_final(desc);
643 }
644
645 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
646 {
647 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
648
649 return ctx->child;
650 }
651 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
652
653 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
654 {
655 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
656 return &rctx->areq;
657 }
658 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
659
660 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
661 {
662 crypto_free_ahash(&tfm->base);
663 }
664 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
665
666 static int __init mcryptd_init(void)
667 {
668 int err, cpu;
669 struct mcryptd_flush_list *flist;
670
671 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
672 for_each_possible_cpu(cpu) {
673 flist = per_cpu_ptr(mcryptd_flist, cpu);
674 INIT_LIST_HEAD(&flist->list);
675 mutex_init(&flist->lock);
676 }
677
678 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
679 if (err) {
680 free_percpu(mcryptd_flist);
681 return err;
682 }
683
684 err = crypto_register_template(&mcryptd_tmpl);
685 if (err) {
686 mcryptd_fini_queue(&mqueue);
687 free_percpu(mcryptd_flist);
688 }
689
690 return err;
691 }
692
693 static void __exit mcryptd_exit(void)
694 {
695 mcryptd_fini_queue(&mqueue);
696 crypto_unregister_template(&mcryptd_tmpl);
697 free_percpu(mcryptd_flist);
698 }
699
700 subsys_initcall(mcryptd_init);
701 module_exit(mcryptd_exit);
702
703 MODULE_LICENSE("GPL");
704 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
705 MODULE_ALIAS_CRYPTO("mcryptd");