]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - crypto/rsa-pkcs1pad.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / crypto / rsa-pkcs1pad.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RSA padding templates.
4 *
5 * Copyright (c) 2015 Intel Corporation
6 */
7
8 #include <crypto/algapi.h>
9 #include <crypto/akcipher.h>
10 #include <crypto/internal/akcipher.h>
11 #include <crypto/internal/rsa.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18
19 /*
20 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
21 */
22 static const u8 rsa_digest_info_md5[] = {
23 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
24 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
25 0x05, 0x00, 0x04, 0x10
26 };
27
28 static const u8 rsa_digest_info_sha1[] = {
29 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
30 0x2b, 0x0e, 0x03, 0x02, 0x1a,
31 0x05, 0x00, 0x04, 0x14
32 };
33
34 static const u8 rsa_digest_info_rmd160[] = {
35 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
36 0x2b, 0x24, 0x03, 0x02, 0x01,
37 0x05, 0x00, 0x04, 0x14
38 };
39
40 static const u8 rsa_digest_info_sha224[] = {
41 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
42 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
43 0x05, 0x00, 0x04, 0x1c
44 };
45
46 static const u8 rsa_digest_info_sha256[] = {
47 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
48 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
49 0x05, 0x00, 0x04, 0x20
50 };
51
52 static const u8 rsa_digest_info_sha384[] = {
53 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
54 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
55 0x05, 0x00, 0x04, 0x30
56 };
57
58 static const u8 rsa_digest_info_sha512[] = {
59 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
60 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
61 0x05, 0x00, 0x04, 0x40
62 };
63
64 static const struct rsa_asn1_template {
65 const char *name;
66 const u8 *data;
67 size_t size;
68 } rsa_asn1_templates[] = {
69 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
70 _(md5),
71 _(sha1),
72 _(rmd160),
73 _(sha256),
74 _(sha384),
75 _(sha512),
76 _(sha224),
77 { NULL }
78 #undef _
79 };
80
81 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
82 {
83 const struct rsa_asn1_template *p;
84
85 for (p = rsa_asn1_templates; p->name; p++)
86 if (strcmp(name, p->name) == 0)
87 return p;
88 return NULL;
89 }
90
91 struct pkcs1pad_ctx {
92 struct crypto_akcipher *child;
93 unsigned int key_size;
94 };
95
96 struct pkcs1pad_inst_ctx {
97 struct crypto_akcipher_spawn spawn;
98 const struct rsa_asn1_template *digest_info;
99 };
100
101 struct pkcs1pad_request {
102 struct scatterlist in_sg[2], out_sg[1];
103 uint8_t *in_buf, *out_buf;
104 struct akcipher_request child_req;
105 };
106
107 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
108 unsigned int keylen)
109 {
110 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
111 int err;
112
113 ctx->key_size = 0;
114
115 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
116 if (err)
117 return err;
118
119 /* Find out new modulus size from rsa implementation */
120 err = crypto_akcipher_maxsize(ctx->child);
121 if (err > PAGE_SIZE)
122 return -ENOTSUPP;
123
124 ctx->key_size = err;
125 return 0;
126 }
127
128 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
129 unsigned int keylen)
130 {
131 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
132 int err;
133
134 ctx->key_size = 0;
135
136 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
137 if (err)
138 return err;
139
140 /* Find out new modulus size from rsa implementation */
141 err = crypto_akcipher_maxsize(ctx->child);
142 if (err > PAGE_SIZE)
143 return -ENOTSUPP;
144
145 ctx->key_size = err;
146 return 0;
147 }
148
149 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
150 {
151 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
152
153 /*
154 * The maximum destination buffer size for the encrypt/sign operations
155 * will be the same as for RSA, even though it's smaller for
156 * decrypt/verify.
157 */
158
159 return ctx->key_size;
160 }
161
162 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
163 struct scatterlist *next)
164 {
165 int nsegs = next ? 2 : 1;
166
167 sg_init_table(sg, nsegs);
168 sg_set_buf(sg, buf, len);
169
170 if (next)
171 sg_chain(sg, nsegs, next);
172 }
173
174 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
175 {
176 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
177 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
178 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
179 unsigned int pad_len;
180 unsigned int len;
181 u8 *out_buf;
182
183 if (err)
184 goto out;
185
186 len = req_ctx->child_req.dst_len;
187 pad_len = ctx->key_size - len;
188
189 /* Four billion to one */
190 if (likely(!pad_len))
191 goto out;
192
193 out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
194 err = -ENOMEM;
195 if (!out_buf)
196 goto out;
197
198 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
199 out_buf + pad_len, len);
200 sg_copy_from_buffer(req->dst,
201 sg_nents_for_len(req->dst, ctx->key_size),
202 out_buf, ctx->key_size);
203 kfree_sensitive(out_buf);
204
205 out:
206 req->dst_len = ctx->key_size;
207
208 kfree(req_ctx->in_buf);
209
210 return err;
211 }
212
213 static void pkcs1pad_encrypt_sign_complete_cb(
214 struct crypto_async_request *child_async_req, int err)
215 {
216 struct akcipher_request *req = child_async_req->data;
217 struct crypto_async_request async_req;
218
219 if (err == -EINPROGRESS)
220 return;
221
222 async_req.data = req->base.data;
223 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
224 async_req.flags = child_async_req->flags;
225 req->base.complete(&async_req,
226 pkcs1pad_encrypt_sign_complete(req, err));
227 }
228
229 static int pkcs1pad_encrypt(struct akcipher_request *req)
230 {
231 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
232 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
233 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
234 int err;
235 unsigned int i, ps_end;
236
237 if (!ctx->key_size)
238 return -EINVAL;
239
240 if (req->src_len > ctx->key_size - 11)
241 return -EOVERFLOW;
242
243 if (req->dst_len < ctx->key_size) {
244 req->dst_len = ctx->key_size;
245 return -EOVERFLOW;
246 }
247
248 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
249 GFP_KERNEL);
250 if (!req_ctx->in_buf)
251 return -ENOMEM;
252
253 ps_end = ctx->key_size - req->src_len - 2;
254 req_ctx->in_buf[0] = 0x02;
255 for (i = 1; i < ps_end; i++)
256 req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
257 req_ctx->in_buf[ps_end] = 0x00;
258
259 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
260 ctx->key_size - 1 - req->src_len, req->src);
261
262 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
263 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
264 pkcs1pad_encrypt_sign_complete_cb, req);
265
266 /* Reuse output buffer */
267 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
268 req->dst, ctx->key_size - 1, req->dst_len);
269
270 err = crypto_akcipher_encrypt(&req_ctx->child_req);
271 if (err != -EINPROGRESS && err != -EBUSY)
272 return pkcs1pad_encrypt_sign_complete(req, err);
273
274 return err;
275 }
276
277 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
278 {
279 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
280 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
281 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
282 unsigned int dst_len;
283 unsigned int pos;
284 u8 *out_buf;
285
286 if (err)
287 goto done;
288
289 err = -EINVAL;
290 dst_len = req_ctx->child_req.dst_len;
291 if (dst_len < ctx->key_size - 1)
292 goto done;
293
294 out_buf = req_ctx->out_buf;
295 if (dst_len == ctx->key_size) {
296 if (out_buf[0] != 0x00)
297 /* Decrypted value had no leading 0 byte */
298 goto done;
299
300 dst_len--;
301 out_buf++;
302 }
303
304 if (out_buf[0] != 0x02)
305 goto done;
306
307 for (pos = 1; pos < dst_len; pos++)
308 if (out_buf[pos] == 0x00)
309 break;
310 if (pos < 9 || pos == dst_len)
311 goto done;
312 pos++;
313
314 err = 0;
315
316 if (req->dst_len < dst_len - pos)
317 err = -EOVERFLOW;
318 req->dst_len = dst_len - pos;
319
320 if (!err)
321 sg_copy_from_buffer(req->dst,
322 sg_nents_for_len(req->dst, req->dst_len),
323 out_buf + pos, req->dst_len);
324
325 done:
326 kfree_sensitive(req_ctx->out_buf);
327
328 return err;
329 }
330
331 static void pkcs1pad_decrypt_complete_cb(
332 struct crypto_async_request *child_async_req, int err)
333 {
334 struct akcipher_request *req = child_async_req->data;
335 struct crypto_async_request async_req;
336
337 if (err == -EINPROGRESS)
338 return;
339
340 async_req.data = req->base.data;
341 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
342 async_req.flags = child_async_req->flags;
343 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
344 }
345
346 static int pkcs1pad_decrypt(struct akcipher_request *req)
347 {
348 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
349 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
350 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
351 int err;
352
353 if (!ctx->key_size || req->src_len != ctx->key_size)
354 return -EINVAL;
355
356 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
357 if (!req_ctx->out_buf)
358 return -ENOMEM;
359
360 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
361 ctx->key_size, NULL);
362
363 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
364 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
365 pkcs1pad_decrypt_complete_cb, req);
366
367 /* Reuse input buffer, output to a new buffer */
368 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
369 req_ctx->out_sg, req->src_len,
370 ctx->key_size);
371
372 err = crypto_akcipher_decrypt(&req_ctx->child_req);
373 if (err != -EINPROGRESS && err != -EBUSY)
374 return pkcs1pad_decrypt_complete(req, err);
375
376 return err;
377 }
378
379 static int pkcs1pad_sign(struct akcipher_request *req)
380 {
381 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
382 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
383 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
384 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
385 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
386 const struct rsa_asn1_template *digest_info = ictx->digest_info;
387 int err;
388 unsigned int ps_end, digest_size = 0;
389
390 if (!ctx->key_size)
391 return -EINVAL;
392
393 if (digest_info)
394 digest_size = digest_info->size;
395
396 if (req->src_len + digest_size > ctx->key_size - 11)
397 return -EOVERFLOW;
398
399 if (req->dst_len < ctx->key_size) {
400 req->dst_len = ctx->key_size;
401 return -EOVERFLOW;
402 }
403
404 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
405 GFP_KERNEL);
406 if (!req_ctx->in_buf)
407 return -ENOMEM;
408
409 ps_end = ctx->key_size - digest_size - req->src_len - 2;
410 req_ctx->in_buf[0] = 0x01;
411 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
412 req_ctx->in_buf[ps_end] = 0x00;
413
414 if (digest_info)
415 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
416 digest_info->size);
417
418 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
419 ctx->key_size - 1 - req->src_len, req->src);
420
421 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
422 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
423 pkcs1pad_encrypt_sign_complete_cb, req);
424
425 /* Reuse output buffer */
426 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
427 req->dst, ctx->key_size - 1, req->dst_len);
428
429 err = crypto_akcipher_decrypt(&req_ctx->child_req);
430 if (err != -EINPROGRESS && err != -EBUSY)
431 return pkcs1pad_encrypt_sign_complete(req, err);
432
433 return err;
434 }
435
436 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
437 {
438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
439 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
440 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
441 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
442 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
443 const struct rsa_asn1_template *digest_info = ictx->digest_info;
444 unsigned int dst_len;
445 unsigned int pos;
446 u8 *out_buf;
447
448 if (err)
449 goto done;
450
451 err = -EINVAL;
452 dst_len = req_ctx->child_req.dst_len;
453 if (dst_len < ctx->key_size - 1)
454 goto done;
455
456 out_buf = req_ctx->out_buf;
457 if (dst_len == ctx->key_size) {
458 if (out_buf[0] != 0x00)
459 /* Decrypted value had no leading 0 byte */
460 goto done;
461
462 dst_len--;
463 out_buf++;
464 }
465
466 err = -EBADMSG;
467 if (out_buf[0] != 0x01)
468 goto done;
469
470 for (pos = 1; pos < dst_len; pos++)
471 if (out_buf[pos] != 0xff)
472 break;
473
474 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
475 goto done;
476 pos++;
477
478 if (digest_info) {
479 if (digest_info->size > dst_len - pos)
480 goto done;
481 if (crypto_memneq(out_buf + pos, digest_info->data,
482 digest_info->size))
483 goto done;
484
485 pos += digest_info->size;
486 }
487
488 err = 0;
489
490 if (req->dst_len != dst_len - pos) {
491 err = -EKEYREJECTED;
492 req->dst_len = dst_len - pos;
493 goto done;
494 }
495 /* Extract appended digest. */
496 sg_pcopy_to_buffer(req->src,
497 sg_nents_for_len(req->src,
498 req->src_len + req->dst_len),
499 req_ctx->out_buf + ctx->key_size,
500 req->dst_len, req->src_len);
501 /* Do the actual verification step. */
502 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos,
503 req->dst_len) != 0)
504 err = -EKEYREJECTED;
505 done:
506 kfree_sensitive(req_ctx->out_buf);
507
508 return err;
509 }
510
511 static void pkcs1pad_verify_complete_cb(
512 struct crypto_async_request *child_async_req, int err)
513 {
514 struct akcipher_request *req = child_async_req->data;
515 struct crypto_async_request async_req;
516
517 if (err == -EINPROGRESS)
518 return;
519
520 async_req.data = req->base.data;
521 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
522 async_req.flags = child_async_req->flags;
523 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
524 }
525
526 /*
527 * The verify operation is here for completeness similar to the verification
528 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
529 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
530 * retrieve the DigestInfo from a signature, instead the user is expected
531 * to call the sign operation to generate the expected signature and compare
532 * signatures instead of the message-digests.
533 */
534 static int pkcs1pad_verify(struct akcipher_request *req)
535 {
536 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
537 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
538 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
539 int err;
540
541 if (WARN_ON(req->dst) ||
542 WARN_ON(!req->dst_len) ||
543 !ctx->key_size || req->src_len != ctx->key_size)
544 return -EINVAL;
545
546 req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL);
547 if (!req_ctx->out_buf)
548 return -ENOMEM;
549
550 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
551 ctx->key_size, NULL);
552
553 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
554 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
555 pkcs1pad_verify_complete_cb, req);
556
557 /* Reuse input buffer, output to a new buffer */
558 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
559 req_ctx->out_sg, req->src_len,
560 ctx->key_size);
561
562 err = crypto_akcipher_encrypt(&req_ctx->child_req);
563 if (err != -EINPROGRESS && err != -EBUSY)
564 return pkcs1pad_verify_complete(req, err);
565
566 return err;
567 }
568
569 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
570 {
571 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
572 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
573 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
574 struct crypto_akcipher *child_tfm;
575
576 child_tfm = crypto_spawn_akcipher(&ictx->spawn);
577 if (IS_ERR(child_tfm))
578 return PTR_ERR(child_tfm);
579
580 ctx->child = child_tfm;
581 return 0;
582 }
583
584 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
585 {
586 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
587
588 crypto_free_akcipher(ctx->child);
589 }
590
591 static void pkcs1pad_free(struct akcipher_instance *inst)
592 {
593 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
594 struct crypto_akcipher_spawn *spawn = &ctx->spawn;
595
596 crypto_drop_akcipher(spawn);
597 kfree(inst);
598 }
599
600 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
601 {
602 u32 mask;
603 struct akcipher_instance *inst;
604 struct pkcs1pad_inst_ctx *ctx;
605 struct akcipher_alg *rsa_alg;
606 const char *hash_name;
607 int err;
608
609 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
610 if (err)
611 return err;
612
613 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
614 if (!inst)
615 return -ENOMEM;
616
617 ctx = akcipher_instance_ctx(inst);
618
619 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst),
620 crypto_attr_alg_name(tb[1]), 0, mask);
621 if (err)
622 goto err_free_inst;
623
624 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
625
626 if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) {
627 err = -EINVAL;
628 goto err_free_inst;
629 }
630
631 err = -ENAMETOOLONG;
632 hash_name = crypto_attr_alg_name(tb[2]);
633 if (IS_ERR(hash_name)) {
634 if (snprintf(inst->alg.base.cra_name,
635 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
636 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
637 goto err_free_inst;
638
639 if (snprintf(inst->alg.base.cra_driver_name,
640 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
641 rsa_alg->base.cra_driver_name) >=
642 CRYPTO_MAX_ALG_NAME)
643 goto err_free_inst;
644 } else {
645 ctx->digest_info = rsa_lookup_asn1(hash_name);
646 if (!ctx->digest_info) {
647 err = -EINVAL;
648 goto err_free_inst;
649 }
650
651 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
652 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name,
653 hash_name) >= CRYPTO_MAX_ALG_NAME)
654 goto err_free_inst;
655
656 if (snprintf(inst->alg.base.cra_driver_name,
657 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)",
658 rsa_alg->base.cra_driver_name,
659 hash_name) >= CRYPTO_MAX_ALG_NAME)
660 goto err_free_inst;
661 }
662
663 inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
664 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
665
666 inst->alg.init = pkcs1pad_init_tfm;
667 inst->alg.exit = pkcs1pad_exit_tfm;
668
669 inst->alg.encrypt = pkcs1pad_encrypt;
670 inst->alg.decrypt = pkcs1pad_decrypt;
671 inst->alg.sign = pkcs1pad_sign;
672 inst->alg.verify = pkcs1pad_verify;
673 inst->alg.set_pub_key = pkcs1pad_set_pub_key;
674 inst->alg.set_priv_key = pkcs1pad_set_priv_key;
675 inst->alg.max_size = pkcs1pad_get_max_size;
676 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
677
678 inst->free = pkcs1pad_free;
679
680 err = akcipher_register_instance(tmpl, inst);
681 if (err) {
682 err_free_inst:
683 pkcs1pad_free(inst);
684 }
685 return err;
686 }
687
688 struct crypto_template rsa_pkcs1pad_tmpl = {
689 .name = "pkcs1pad",
690 .create = pkcs1pad_create,
691 .module = THIS_MODULE,
692 };