]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - crypto/skcipher.c
Merge tag 'arc-4.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-artful-kernel.git] / crypto / skcipher.c
1 /*
2 * Symmetric key cipher operations.
3 *
4 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5 * multiple page boundaries by using temporary blocks. In user context,
6 * the kernel is given a chance to schedule us once per page.
7 *
8 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 */
16
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/seq_file.h>
26 #include <net/netlink.h>
27
28 #include "internal.h"
29
30 enum {
31 SKCIPHER_WALK_PHYS = 1 << 0,
32 SKCIPHER_WALK_SLOW = 1 << 1,
33 SKCIPHER_WALK_COPY = 1 << 2,
34 SKCIPHER_WALK_DIFF = 1 << 3,
35 SKCIPHER_WALK_SLEEP = 1 << 4,
36 };
37
38 struct skcipher_walk_buffer {
39 struct list_head entry;
40 struct scatter_walk dst;
41 unsigned int len;
42 u8 *data;
43 u8 buffer[];
44 };
45
46 static int skcipher_walk_next(struct skcipher_walk *walk);
47
48 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
49 {
50 if (PageHighMem(scatterwalk_page(walk)))
51 kunmap_atomic(vaddr);
52 }
53
54 static inline void *skcipher_map(struct scatter_walk *walk)
55 {
56 struct page *page = scatterwalk_page(walk);
57
58 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
59 offset_in_page(walk->offset);
60 }
61
62 static inline void skcipher_map_src(struct skcipher_walk *walk)
63 {
64 walk->src.virt.addr = skcipher_map(&walk->in);
65 }
66
67 static inline void skcipher_map_dst(struct skcipher_walk *walk)
68 {
69 walk->dst.virt.addr = skcipher_map(&walk->out);
70 }
71
72 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
73 {
74 skcipher_unmap(&walk->in, walk->src.virt.addr);
75 }
76
77 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
78 {
79 skcipher_unmap(&walk->out, walk->dst.virt.addr);
80 }
81
82 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
83 {
84 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
85 }
86
87 /* Get a spot of the specified length that does not straddle a page.
88 * The caller needs to ensure that there is enough space for this operation.
89 */
90 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
91 {
92 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
93
94 return max(start, end_page);
95 }
96
97 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
98 {
99 u8 *addr;
100
101 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
102 addr = skcipher_get_spot(addr, bsize);
103 scatterwalk_copychunks(addr, &walk->out, bsize,
104 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
105 return 0;
106 }
107
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110 unsigned int n = walk->nbytes - err;
111 unsigned int nbytes;
112
113 nbytes = walk->total - n;
114
115 if (unlikely(err < 0)) {
116 nbytes = 0;
117 n = 0;
118 } else if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
119 SKCIPHER_WALK_SLOW |
120 SKCIPHER_WALK_COPY |
121 SKCIPHER_WALK_DIFF)))) {
122 unmap_src:
123 skcipher_unmap_src(walk);
124 } else if (walk->flags & SKCIPHER_WALK_DIFF) {
125 skcipher_unmap_dst(walk);
126 goto unmap_src;
127 } else if (walk->flags & SKCIPHER_WALK_COPY) {
128 skcipher_map_dst(walk);
129 memcpy(walk->dst.virt.addr, walk->page, n);
130 skcipher_unmap_dst(walk);
131 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
132 if (WARN_ON(err)) {
133 err = -EINVAL;
134 nbytes = 0;
135 } else
136 n = skcipher_done_slow(walk, n);
137 }
138
139 if (err > 0)
140 err = 0;
141
142 walk->total = nbytes;
143 walk->nbytes = nbytes;
144
145 scatterwalk_advance(&walk->in, n);
146 scatterwalk_advance(&walk->out, n);
147 scatterwalk_done(&walk->in, 0, nbytes);
148 scatterwalk_done(&walk->out, 1, nbytes);
149
150 if (nbytes) {
151 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
152 CRYPTO_TFM_REQ_MAY_SLEEP : 0);
153 return skcipher_walk_next(walk);
154 }
155
156 /* Short-circuit for the common/fast path. */
157 if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
158 goto out;
159
160 if (walk->flags & SKCIPHER_WALK_PHYS)
161 goto out;
162
163 if (walk->iv != walk->oiv)
164 memcpy(walk->oiv, walk->iv, walk->ivsize);
165 if (walk->buffer != walk->page)
166 kfree(walk->buffer);
167 if (walk->page)
168 free_page((unsigned long)walk->page);
169
170 out:
171 return err;
172 }
173 EXPORT_SYMBOL_GPL(skcipher_walk_done);
174
175 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
176 {
177 struct skcipher_walk_buffer *p, *tmp;
178
179 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
180 u8 *data;
181
182 if (err)
183 goto done;
184
185 data = p->data;
186 if (!data) {
187 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
188 data = skcipher_get_spot(data, walk->chunksize);
189 }
190
191 scatterwalk_copychunks(data, &p->dst, p->len, 1);
192
193 if (offset_in_page(p->data) + p->len + walk->chunksize >
194 PAGE_SIZE)
195 free_page((unsigned long)p->data);
196
197 done:
198 list_del(&p->entry);
199 kfree(p);
200 }
201
202 if (!err && walk->iv != walk->oiv)
203 memcpy(walk->oiv, walk->iv, walk->ivsize);
204 if (walk->buffer != walk->page)
205 kfree(walk->buffer);
206 if (walk->page)
207 free_page((unsigned long)walk->page);
208 }
209 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
210
211 static void skcipher_queue_write(struct skcipher_walk *walk,
212 struct skcipher_walk_buffer *p)
213 {
214 p->dst = walk->out;
215 list_add_tail(&p->entry, &walk->buffers);
216 }
217
218 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
219 {
220 bool phys = walk->flags & SKCIPHER_WALK_PHYS;
221 unsigned alignmask = walk->alignmask;
222 struct skcipher_walk_buffer *p;
223 unsigned a;
224 unsigned n;
225 u8 *buffer;
226 void *v;
227
228 if (!phys) {
229 if (!walk->buffer)
230 walk->buffer = walk->page;
231 buffer = walk->buffer;
232 if (buffer)
233 goto ok;
234 }
235
236 /* Start with the minimum alignment of kmalloc. */
237 a = crypto_tfm_ctx_alignment() - 1;
238 n = bsize;
239
240 if (phys) {
241 /* Calculate the minimum alignment of p->buffer. */
242 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
243 n += sizeof(*p);
244 }
245
246 /* Minimum size to align p->buffer by alignmask. */
247 n += alignmask & ~a;
248
249 /* Minimum size to ensure p->buffer does not straddle a page. */
250 n += (bsize - 1) & ~(alignmask | a);
251
252 v = kzalloc(n, skcipher_walk_gfp(walk));
253 if (!v)
254 return skcipher_walk_done(walk, -ENOMEM);
255
256 if (phys) {
257 p = v;
258 p->len = bsize;
259 skcipher_queue_write(walk, p);
260 buffer = p->buffer;
261 } else {
262 walk->buffer = v;
263 buffer = v;
264 }
265
266 ok:
267 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
268 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
269 walk->src.virt.addr = walk->dst.virt.addr;
270
271 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
272
273 walk->nbytes = bsize;
274 walk->flags |= SKCIPHER_WALK_SLOW;
275
276 return 0;
277 }
278
279 static int skcipher_next_copy(struct skcipher_walk *walk)
280 {
281 struct skcipher_walk_buffer *p;
282 u8 *tmp = walk->page;
283
284 skcipher_map_src(walk);
285 memcpy(tmp, walk->src.virt.addr, walk->nbytes);
286 skcipher_unmap_src(walk);
287
288 walk->src.virt.addr = tmp;
289 walk->dst.virt.addr = tmp;
290
291 if (!(walk->flags & SKCIPHER_WALK_PHYS))
292 return 0;
293
294 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
295 if (!p)
296 return -ENOMEM;
297
298 p->data = walk->page;
299 p->len = walk->nbytes;
300 skcipher_queue_write(walk, p);
301
302 if (offset_in_page(walk->page) + walk->nbytes + walk->chunksize >
303 PAGE_SIZE)
304 walk->page = NULL;
305 else
306 walk->page += walk->nbytes;
307
308 return 0;
309 }
310
311 static int skcipher_next_fast(struct skcipher_walk *walk)
312 {
313 unsigned long diff;
314
315 walk->src.phys.page = scatterwalk_page(&walk->in);
316 walk->src.phys.offset = offset_in_page(walk->in.offset);
317 walk->dst.phys.page = scatterwalk_page(&walk->out);
318 walk->dst.phys.offset = offset_in_page(walk->out.offset);
319
320 if (walk->flags & SKCIPHER_WALK_PHYS)
321 return 0;
322
323 diff = walk->src.phys.offset - walk->dst.phys.offset;
324 diff |= walk->src.virt.page - walk->dst.virt.page;
325
326 skcipher_map_src(walk);
327 walk->dst.virt.addr = walk->src.virt.addr;
328
329 if (diff) {
330 walk->flags |= SKCIPHER_WALK_DIFF;
331 skcipher_map_dst(walk);
332 }
333
334 return 0;
335 }
336
337 static int skcipher_walk_next(struct skcipher_walk *walk)
338 {
339 unsigned int bsize;
340 unsigned int n;
341 int err;
342
343 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
344 SKCIPHER_WALK_DIFF);
345
346 n = walk->total;
347 bsize = min(walk->chunksize, max(n, walk->blocksize));
348 n = scatterwalk_clamp(&walk->in, n);
349 n = scatterwalk_clamp(&walk->out, n);
350
351 if (unlikely(n < bsize)) {
352 if (unlikely(walk->total < walk->blocksize))
353 return skcipher_walk_done(walk, -EINVAL);
354
355 slow_path:
356 err = skcipher_next_slow(walk, bsize);
357 goto set_phys_lowmem;
358 }
359
360 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
361 if (!walk->page) {
362 gfp_t gfp = skcipher_walk_gfp(walk);
363
364 walk->page = (void *)__get_free_page(gfp);
365 if (!walk->page)
366 goto slow_path;
367 }
368
369 walk->nbytes = min_t(unsigned, n,
370 PAGE_SIZE - offset_in_page(walk->page));
371 walk->flags |= SKCIPHER_WALK_COPY;
372 err = skcipher_next_copy(walk);
373 goto set_phys_lowmem;
374 }
375
376 walk->nbytes = n;
377
378 return skcipher_next_fast(walk);
379
380 set_phys_lowmem:
381 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
382 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
383 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
384 walk->src.phys.offset &= PAGE_SIZE - 1;
385 walk->dst.phys.offset &= PAGE_SIZE - 1;
386 }
387 return err;
388 }
389 EXPORT_SYMBOL_GPL(skcipher_walk_next);
390
391 static int skcipher_copy_iv(struct skcipher_walk *walk)
392 {
393 unsigned a = crypto_tfm_ctx_alignment() - 1;
394 unsigned alignmask = walk->alignmask;
395 unsigned ivsize = walk->ivsize;
396 unsigned bs = walk->chunksize;
397 unsigned aligned_bs;
398 unsigned size;
399 u8 *iv;
400
401 aligned_bs = ALIGN(bs, alignmask);
402
403 /* Minimum size to align buffer by alignmask. */
404 size = alignmask & ~a;
405
406 if (walk->flags & SKCIPHER_WALK_PHYS)
407 size += ivsize;
408 else {
409 size += aligned_bs + ivsize;
410
411 /* Minimum size to ensure buffer does not straddle a page. */
412 size += (bs - 1) & ~(alignmask | a);
413 }
414
415 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
416 if (!walk->buffer)
417 return -ENOMEM;
418
419 iv = PTR_ALIGN(walk->buffer, alignmask + 1);
420 iv = skcipher_get_spot(iv, bs) + aligned_bs;
421
422 walk->iv = memcpy(iv, walk->iv, walk->ivsize);
423 return 0;
424 }
425
426 static int skcipher_walk_first(struct skcipher_walk *walk)
427 {
428 walk->nbytes = 0;
429
430 if (WARN_ON_ONCE(in_irq()))
431 return -EDEADLK;
432
433 if (unlikely(!walk->total))
434 return 0;
435
436 walk->buffer = NULL;
437 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
438 int err = skcipher_copy_iv(walk);
439 if (err)
440 return err;
441 }
442
443 walk->page = NULL;
444 walk->nbytes = walk->total;
445
446 return skcipher_walk_next(walk);
447 }
448
449 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450 struct skcipher_request *req)
451 {
452 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453
454 scatterwalk_start(&walk->in, req->src);
455 scatterwalk_start(&walk->out, req->dst);
456
457 walk->total = req->cryptlen;
458 walk->iv = req->iv;
459 walk->oiv = req->iv;
460
461 walk->flags &= ~SKCIPHER_WALK_SLEEP;
462 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
463 SKCIPHER_WALK_SLEEP : 0;
464
465 walk->blocksize = crypto_skcipher_blocksize(tfm);
466 walk->chunksize = crypto_skcipher_chunksize(tfm);
467 walk->ivsize = crypto_skcipher_ivsize(tfm);
468 walk->alignmask = crypto_skcipher_alignmask(tfm);
469
470 return skcipher_walk_first(walk);
471 }
472
473 int skcipher_walk_virt(struct skcipher_walk *walk,
474 struct skcipher_request *req, bool atomic)
475 {
476 int err;
477
478 walk->flags &= ~SKCIPHER_WALK_PHYS;
479
480 err = skcipher_walk_skcipher(walk, req);
481
482 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
483
484 return err;
485 }
486 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
487
488 void skcipher_walk_atomise(struct skcipher_walk *walk)
489 {
490 walk->flags &= ~SKCIPHER_WALK_SLEEP;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
493
494 int skcipher_walk_async(struct skcipher_walk *walk,
495 struct skcipher_request *req)
496 {
497 walk->flags |= SKCIPHER_WALK_PHYS;
498
499 INIT_LIST_HEAD(&walk->buffers);
500
501 return skcipher_walk_skcipher(walk, req);
502 }
503 EXPORT_SYMBOL_GPL(skcipher_walk_async);
504
505 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
506 struct aead_request *req, bool atomic)
507 {
508 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
509 int err;
510
511 walk->flags &= ~SKCIPHER_WALK_PHYS;
512
513 scatterwalk_start(&walk->in, req->src);
514 scatterwalk_start(&walk->out, req->dst);
515
516 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
517 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
518
519 walk->iv = req->iv;
520 walk->oiv = req->iv;
521
522 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
523 walk->flags |= SKCIPHER_WALK_SLEEP;
524 else
525 walk->flags &= ~SKCIPHER_WALK_SLEEP;
526
527 walk->blocksize = crypto_aead_blocksize(tfm);
528 walk->chunksize = crypto_aead_chunksize(tfm);
529 walk->ivsize = crypto_aead_ivsize(tfm);
530 walk->alignmask = crypto_aead_alignmask(tfm);
531
532 err = skcipher_walk_first(walk);
533
534 if (atomic)
535 walk->flags &= ~SKCIPHER_WALK_SLEEP;
536
537 return err;
538 }
539
540 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
541 bool atomic)
542 {
543 walk->total = req->cryptlen;
544
545 return skcipher_walk_aead_common(walk, req, atomic);
546 }
547 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
548
549 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
550 struct aead_request *req, bool atomic)
551 {
552 walk->total = req->cryptlen;
553
554 return skcipher_walk_aead_common(walk, req, atomic);
555 }
556 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
557
558 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
559 struct aead_request *req, bool atomic)
560 {
561 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
562
563 walk->total = req->cryptlen - crypto_aead_authsize(tfm);
564
565 return skcipher_walk_aead_common(walk, req, atomic);
566 }
567 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
568
569 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
570 {
571 if (alg->cra_type == &crypto_blkcipher_type)
572 return sizeof(struct crypto_blkcipher *);
573
574 if (alg->cra_type == &crypto_ablkcipher_type ||
575 alg->cra_type == &crypto_givcipher_type)
576 return sizeof(struct crypto_ablkcipher *);
577
578 return crypto_alg_extsize(alg);
579 }
580
581 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
582 const u8 *key, unsigned int keylen)
583 {
584 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
585 struct crypto_blkcipher *blkcipher = *ctx;
586 int err;
587
588 crypto_blkcipher_clear_flags(blkcipher, ~0);
589 crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
590 CRYPTO_TFM_REQ_MASK);
591 err = crypto_blkcipher_setkey(blkcipher, key, keylen);
592 crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
593 CRYPTO_TFM_RES_MASK);
594
595 return err;
596 }
597
598 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
599 int (*crypt)(struct blkcipher_desc *,
600 struct scatterlist *,
601 struct scatterlist *,
602 unsigned int))
603 {
604 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
605 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
606 struct blkcipher_desc desc = {
607 .tfm = *ctx,
608 .info = req->iv,
609 .flags = req->base.flags,
610 };
611
612
613 return crypt(&desc, req->dst, req->src, req->cryptlen);
614 }
615
616 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
617 {
618 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
619 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
620 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
621
622 return skcipher_crypt_blkcipher(req, alg->encrypt);
623 }
624
625 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
626 {
627 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
628 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
629 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
630
631 return skcipher_crypt_blkcipher(req, alg->decrypt);
632 }
633
634 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
635 {
636 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
637
638 crypto_free_blkcipher(*ctx);
639 }
640
641 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
642 {
643 struct crypto_alg *calg = tfm->__crt_alg;
644 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
645 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
646 struct crypto_blkcipher *blkcipher;
647 struct crypto_tfm *btfm;
648
649 if (!crypto_mod_get(calg))
650 return -EAGAIN;
651
652 btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
653 CRYPTO_ALG_TYPE_MASK);
654 if (IS_ERR(btfm)) {
655 crypto_mod_put(calg);
656 return PTR_ERR(btfm);
657 }
658
659 blkcipher = __crypto_blkcipher_cast(btfm);
660 *ctx = blkcipher;
661 tfm->exit = crypto_exit_skcipher_ops_blkcipher;
662
663 skcipher->setkey = skcipher_setkey_blkcipher;
664 skcipher->encrypt = skcipher_encrypt_blkcipher;
665 skcipher->decrypt = skcipher_decrypt_blkcipher;
666
667 skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
668 skcipher->keysize = calg->cra_blkcipher.max_keysize;
669
670 return 0;
671 }
672
673 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
674 const u8 *key, unsigned int keylen)
675 {
676 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
677 struct crypto_ablkcipher *ablkcipher = *ctx;
678 int err;
679
680 crypto_ablkcipher_clear_flags(ablkcipher, ~0);
681 crypto_ablkcipher_set_flags(ablkcipher,
682 crypto_skcipher_get_flags(tfm) &
683 CRYPTO_TFM_REQ_MASK);
684 err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
685 crypto_skcipher_set_flags(tfm,
686 crypto_ablkcipher_get_flags(ablkcipher) &
687 CRYPTO_TFM_RES_MASK);
688
689 return err;
690 }
691
692 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
693 int (*crypt)(struct ablkcipher_request *))
694 {
695 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
696 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
697 struct ablkcipher_request *subreq = skcipher_request_ctx(req);
698
699 ablkcipher_request_set_tfm(subreq, *ctx);
700 ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
701 req->base.complete, req->base.data);
702 ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
703 req->iv);
704
705 return crypt(subreq);
706 }
707
708 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
709 {
710 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
711 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
712 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
713
714 return skcipher_crypt_ablkcipher(req, alg->encrypt);
715 }
716
717 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
718 {
719 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
720 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
721 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
722
723 return skcipher_crypt_ablkcipher(req, alg->decrypt);
724 }
725
726 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
727 {
728 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
729
730 crypto_free_ablkcipher(*ctx);
731 }
732
733 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
734 {
735 struct crypto_alg *calg = tfm->__crt_alg;
736 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
737 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
738 struct crypto_ablkcipher *ablkcipher;
739 struct crypto_tfm *abtfm;
740
741 if (!crypto_mod_get(calg))
742 return -EAGAIN;
743
744 abtfm = __crypto_alloc_tfm(calg, 0, 0);
745 if (IS_ERR(abtfm)) {
746 crypto_mod_put(calg);
747 return PTR_ERR(abtfm);
748 }
749
750 ablkcipher = __crypto_ablkcipher_cast(abtfm);
751 *ctx = ablkcipher;
752 tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
753
754 skcipher->setkey = skcipher_setkey_ablkcipher;
755 skcipher->encrypt = skcipher_encrypt_ablkcipher;
756 skcipher->decrypt = skcipher_decrypt_ablkcipher;
757
758 skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
759 skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
760 sizeof(struct ablkcipher_request);
761 skcipher->keysize = calg->cra_ablkcipher.max_keysize;
762
763 return 0;
764 }
765
766 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
767 {
768 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
769 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
770
771 alg->exit(skcipher);
772 }
773
774 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
775 {
776 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
777 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
778
779 if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
780 return crypto_init_skcipher_ops_blkcipher(tfm);
781
782 if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
783 tfm->__crt_alg->cra_type == &crypto_givcipher_type)
784 return crypto_init_skcipher_ops_ablkcipher(tfm);
785
786 skcipher->setkey = alg->setkey;
787 skcipher->encrypt = alg->encrypt;
788 skcipher->decrypt = alg->decrypt;
789 skcipher->ivsize = alg->ivsize;
790 skcipher->keysize = alg->max_keysize;
791
792 if (alg->exit)
793 skcipher->base.exit = crypto_skcipher_exit_tfm;
794
795 if (alg->init)
796 return alg->init(skcipher);
797
798 return 0;
799 }
800
801 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
802 {
803 struct skcipher_instance *skcipher =
804 container_of(inst, struct skcipher_instance, s.base);
805
806 skcipher->free(skcipher);
807 }
808
809 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
810 __attribute__ ((unused));
811 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
812 {
813 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
814 base);
815
816 seq_printf(m, "type : skcipher\n");
817 seq_printf(m, "async : %s\n",
818 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
819 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
820 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
821 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
822 seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
823 seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
824 }
825
826 #ifdef CONFIG_NET
827 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
828 {
829 struct crypto_report_blkcipher rblkcipher;
830 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
831 base);
832
833 strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
834 strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
835
836 rblkcipher.blocksize = alg->cra_blocksize;
837 rblkcipher.min_keysize = skcipher->min_keysize;
838 rblkcipher.max_keysize = skcipher->max_keysize;
839 rblkcipher.ivsize = skcipher->ivsize;
840
841 if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
842 sizeof(struct crypto_report_blkcipher), &rblkcipher))
843 goto nla_put_failure;
844 return 0;
845
846 nla_put_failure:
847 return -EMSGSIZE;
848 }
849 #else
850 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
851 {
852 return -ENOSYS;
853 }
854 #endif
855
856 static const struct crypto_type crypto_skcipher_type2 = {
857 .extsize = crypto_skcipher_extsize,
858 .init_tfm = crypto_skcipher_init_tfm,
859 .free = crypto_skcipher_free_instance,
860 #ifdef CONFIG_PROC_FS
861 .show = crypto_skcipher_show,
862 #endif
863 .report = crypto_skcipher_report,
864 .maskclear = ~CRYPTO_ALG_TYPE_MASK,
865 .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
866 .type = CRYPTO_ALG_TYPE_SKCIPHER,
867 .tfmsize = offsetof(struct crypto_skcipher, base),
868 };
869
870 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
871 const char *name, u32 type, u32 mask)
872 {
873 spawn->base.frontend = &crypto_skcipher_type2;
874 return crypto_grab_spawn(&spawn->base, name, type, mask);
875 }
876 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
877
878 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
879 u32 type, u32 mask)
880 {
881 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
882 }
883 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
884
885 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
886 {
887 return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
888 type, mask);
889 }
890 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
891
892 static int skcipher_prepare_alg(struct skcipher_alg *alg)
893 {
894 struct crypto_alg *base = &alg->base;
895
896 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8)
897 return -EINVAL;
898
899 if (!alg->chunksize)
900 alg->chunksize = base->cra_blocksize;
901
902 base->cra_type = &crypto_skcipher_type2;
903 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
904 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
905
906 return 0;
907 }
908
909 int crypto_register_skcipher(struct skcipher_alg *alg)
910 {
911 struct crypto_alg *base = &alg->base;
912 int err;
913
914 err = skcipher_prepare_alg(alg);
915 if (err)
916 return err;
917
918 return crypto_register_alg(base);
919 }
920 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
921
922 void crypto_unregister_skcipher(struct skcipher_alg *alg)
923 {
924 crypto_unregister_alg(&alg->base);
925 }
926 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
927
928 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
929 {
930 int i, ret;
931
932 for (i = 0; i < count; i++) {
933 ret = crypto_register_skcipher(&algs[i]);
934 if (ret)
935 goto err;
936 }
937
938 return 0;
939
940 err:
941 for (--i; i >= 0; --i)
942 crypto_unregister_skcipher(&algs[i]);
943
944 return ret;
945 }
946 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
947
948 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
949 {
950 int i;
951
952 for (i = count - 1; i >= 0; --i)
953 crypto_unregister_skcipher(&algs[i]);
954 }
955 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
956
957 int skcipher_register_instance(struct crypto_template *tmpl,
958 struct skcipher_instance *inst)
959 {
960 int err;
961
962 err = skcipher_prepare_alg(&inst->alg);
963 if (err)
964 return err;
965
966 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
967 }
968 EXPORT_SYMBOL_GPL(skcipher_register_instance);
969
970 MODULE_LICENSE("GPL");
971 MODULE_DESCRIPTION("Symmetric key cipher type");