]> git.proxmox.com Git - ovs.git/blob - datapath/actions.c
5a1d3206a101e6304cc0ff774a73a887fd596a9b
[ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2017 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/dsfield.h>
38 #include <net/mpls.h>
39 #include <net/sctp/checksum.h>
40
41 #include "datapath.h"
42 #include "conntrack.h"
43 #include "gso.h"
44 #include "vport.h"
45 #include "flow_netlink.h"
46
47 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
48 struct sw_flow_key *key,
49 const struct nlattr *attr, int len);
50
51 struct deferred_action {
52 struct sk_buff *skb;
53 const struct nlattr *actions;
54 int actions_len;
55
56 /* Store pkt_key clone when creating deferred action. */
57 struct sw_flow_key pkt_key;
58 };
59
60 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
61 struct ovs_frag_data {
62 unsigned long dst;
63 struct vport *vport;
64 struct ovs_gso_cb cb;
65 __be16 inner_protocol;
66 u16 network_offset; /* valid only for MPLS */
67 u16 vlan_tci;
68 __be16 vlan_proto;
69 unsigned int l2_len;
70 u8 mac_proto;
71 u8 l2_data[MAX_L2_LEN];
72 };
73
74 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
75
76 #define DEFERRED_ACTION_FIFO_SIZE 10
77 #define OVS_RECURSION_LIMIT 4
78 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
79 struct action_fifo {
80 int head;
81 int tail;
82 /* Deferred action fifo queue storage. */
83 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
84 };
85
86 struct action_flow_keys {
87 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
88 };
89
90 static struct action_fifo __percpu *action_fifos;
91 static struct action_flow_keys __percpu *flow_keys;
92 static DEFINE_PER_CPU(int, exec_actions_level);
93
94 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
95 * space. Return NULL if out of key spaces.
96 */
97 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
98 {
99 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
100 int level = this_cpu_read(exec_actions_level);
101 struct sw_flow_key *key = NULL;
102
103 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
104 key = &keys->key[level - 1];
105 *key = *key_;
106 }
107
108 return key;
109 }
110
111 static void action_fifo_init(struct action_fifo *fifo)
112 {
113 fifo->head = 0;
114 fifo->tail = 0;
115 }
116
117 static bool action_fifo_is_empty(const struct action_fifo *fifo)
118 {
119 return (fifo->head == fifo->tail);
120 }
121
122 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
123 {
124 if (action_fifo_is_empty(fifo))
125 return NULL;
126
127 return &fifo->fifo[fifo->tail++];
128 }
129
130 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
131 {
132 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
133 return NULL;
134
135 return &fifo->fifo[fifo->head++];
136 }
137
138 /* Return queue entry if fifo is not full */
139 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
140 const struct sw_flow_key *key,
141 const struct nlattr *actions,
142 const int actions_len)
143 {
144 struct action_fifo *fifo;
145 struct deferred_action *da;
146
147 fifo = this_cpu_ptr(action_fifos);
148 da = action_fifo_put(fifo);
149 if (da) {
150 da->skb = skb;
151 da->actions = actions;
152 da->actions_len = actions_len;
153 da->pkt_key = *key;
154 }
155
156 return da;
157 }
158
159 static void invalidate_flow_key(struct sw_flow_key *key)
160 {
161 key->mac_proto |= SW_FLOW_KEY_INVALID;
162 }
163
164 static bool is_flow_key_valid(const struct sw_flow_key *key)
165 {
166 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
167 }
168
169 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
170 struct sw_flow_key *key,
171 u32 recirc_id,
172 const struct nlattr *actions, int len,
173 bool last, bool clone_flow_key);
174
175 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
176 __be16 ethertype)
177 {
178 if (skb->ip_summed == CHECKSUM_COMPLETE) {
179 __be16 diff[] = { ~(hdr->h_proto), ethertype };
180
181 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
182 ~skb->csum);
183 }
184
185 hdr->h_proto = ethertype;
186 }
187
188 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
189 const struct ovs_action_push_mpls *mpls)
190 {
191 struct mpls_shim_hdr *new_mpls_lse;
192
193 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
194 if (skb->encapsulation)
195 return -ENOTSUPP;
196
197 if (skb_cow_head(skb, MPLS_HLEN) < 0)
198 return -ENOMEM;
199
200 if (!ovs_skb_get_inner_protocol(skb)) {
201 skb_set_inner_network_header(skb, skb->mac_len);
202 ovs_skb_set_inner_protocol(skb, skb->protocol);
203 }
204
205 skb_push(skb, MPLS_HLEN);
206 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
207 skb->mac_len);
208 skb_reset_mac_header(skb);
209 #ifdef MPLS_HEADER_IS_L3
210 skb_set_network_header(skb, skb->mac_len);
211 #endif
212
213 new_mpls_lse = mpls_hdr(skb);
214 new_mpls_lse->label_stack_entry = mpls->mpls_lse;
215
216 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
217
218 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
219 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
220 skb->protocol = mpls->mpls_ethertype;
221
222 invalidate_flow_key(key);
223 return 0;
224 }
225
226 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
227 const __be16 ethertype)
228 {
229 int err;
230
231 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
232 if (unlikely(err))
233 return err;
234
235 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
236
237 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
238 skb->mac_len);
239
240 __skb_pull(skb, MPLS_HLEN);
241 skb_reset_mac_header(skb);
242 skb_set_network_header(skb, skb->mac_len);
243
244 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
245 struct ethhdr *hdr;
246
247 /* mpls_hdr() is used to locate the ethertype
248 * field correctly in the presence of VLAN tags.
249 */
250 hdr = (struct ethhdr *)((void*)mpls_hdr(skb) - ETH_HLEN);
251 update_ethertype(skb, hdr, ethertype);
252 }
253 if (eth_p_mpls(skb->protocol))
254 skb->protocol = ethertype;
255
256 invalidate_flow_key(key);
257 return 0;
258 }
259
260 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
261 const __be32 *mpls_lse, const __be32 *mask)
262 {
263 struct mpls_shim_hdr *stack;
264 __be32 lse;
265 int err;
266
267 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
268 if (unlikely(err))
269 return err;
270
271 stack = mpls_hdr(skb);
272 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
273 if (skb->ip_summed == CHECKSUM_COMPLETE) {
274 __be32 diff[] = { ~(stack->label_stack_entry), lse };
275
276 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
277 ~skb->csum);
278 }
279
280 stack->label_stack_entry = lse;
281 flow_key->mpls.top_lse = lse;
282 return 0;
283 }
284
285 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
286 {
287 int err;
288
289 err = skb_vlan_pop(skb);
290 if (skb_vlan_tag_present(skb)) {
291 invalidate_flow_key(key);
292 } else {
293 key->eth.vlan.tci = 0;
294 key->eth.vlan.tpid = 0;
295 }
296 return err;
297 }
298
299 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
300 const struct ovs_action_push_vlan *vlan)
301 {
302 if (skb_vlan_tag_present(skb)) {
303 invalidate_flow_key(key);
304 } else {
305 key->eth.vlan.tci = vlan->vlan_tci;
306 key->eth.vlan.tpid = vlan->vlan_tpid;
307 }
308 return skb_vlan_push(skb, vlan->vlan_tpid,
309 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
310 }
311
312 /* 'src' is already properly masked. */
313 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
314 {
315 u16 *dst = (u16 *)dst_;
316 const u16 *src = (const u16 *)src_;
317 const u16 *mask = (const u16 *)mask_;
318
319 OVS_SET_MASKED(dst[0], src[0], mask[0]);
320 OVS_SET_MASKED(dst[1], src[1], mask[1]);
321 OVS_SET_MASKED(dst[2], src[2], mask[2]);
322 }
323
324 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
325 const struct ovs_key_ethernet *key,
326 const struct ovs_key_ethernet *mask)
327 {
328 int err;
329
330 err = skb_ensure_writable(skb, ETH_HLEN);
331 if (unlikely(err))
332 return err;
333
334 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
335
336 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
337 mask->eth_src);
338 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
339 mask->eth_dst);
340
341 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
342
343 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
344 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
345 return 0;
346 }
347
348 /* pop_eth does not support VLAN packets as this action is never called
349 * for them.
350 */
351 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
352 {
353 skb_pull_rcsum(skb, ETH_HLEN);
354 skb_reset_mac_header(skb);
355 skb_reset_mac_len(skb);
356
357 /* safe right before invalidate_flow_key */
358 key->mac_proto = MAC_PROTO_NONE;
359 invalidate_flow_key(key);
360 return 0;
361 }
362
363 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
364 const struct ovs_action_push_eth *ethh)
365 {
366 struct ethhdr *hdr;
367
368 /* Add the new Ethernet header */
369 if (skb_cow_head(skb, ETH_HLEN) < 0)
370 return -ENOMEM;
371
372 skb_push(skb, ETH_HLEN);
373 skb_reset_mac_header(skb);
374 skb_reset_mac_len(skb);
375
376 hdr = eth_hdr(skb);
377 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
378 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
379 hdr->h_proto = skb->protocol;
380
381 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
382
383 /* safe right before invalidate_flow_key */
384 key->mac_proto = MAC_PROTO_ETHERNET;
385 invalidate_flow_key(key);
386 return 0;
387 }
388
389 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
390 const struct nshhdr *nh)
391 {
392 int err;
393
394 err = ovs_nsh_push(skb, nh);
395 if (err)
396 return err;
397
398 /* safe right before invalidate_flow_key */
399 key->mac_proto = MAC_PROTO_NONE;
400 invalidate_flow_key(key);
401 return 0;
402 }
403
404 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
405 {
406 int err;
407
408 err = ovs_nsh_pop(skb);
409 if (err)
410 return err;
411
412 /* safe right before invalidate_flow_key */
413 if (skb->protocol == htons(ETH_P_TEB))
414 key->mac_proto = MAC_PROTO_ETHERNET;
415 else
416 key->mac_proto = MAC_PROTO_NONE;
417 invalidate_flow_key(key);
418 return 0;
419 }
420
421 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
422 __be32 addr, __be32 new_addr)
423 {
424 int transport_len = skb->len - skb_transport_offset(skb);
425
426 if (nh->frag_off & htons(IP_OFFSET))
427 return;
428
429 if (nh->protocol == IPPROTO_TCP) {
430 if (likely(transport_len >= sizeof(struct tcphdr)))
431 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
432 addr, new_addr, true);
433 } else if (nh->protocol == IPPROTO_UDP) {
434 if (likely(transport_len >= sizeof(struct udphdr))) {
435 struct udphdr *uh = udp_hdr(skb);
436
437 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
438 inet_proto_csum_replace4(&uh->check, skb,
439 addr, new_addr, true);
440 if (!uh->check)
441 uh->check = CSUM_MANGLED_0;
442 }
443 }
444 }
445
446 }
447
448 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
449 __be32 *addr, __be32 new_addr)
450 {
451 update_ip_l4_checksum(skb, nh, *addr, new_addr);
452 csum_replace4(&nh->check, *addr, new_addr);
453 skb_clear_hash(skb);
454 *addr = new_addr;
455 }
456
457 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
458 __be32 addr[4], const __be32 new_addr[4])
459 {
460 int transport_len = skb->len - skb_transport_offset(skb);
461
462 if (l4_proto == NEXTHDR_TCP) {
463 if (likely(transport_len >= sizeof(struct tcphdr)))
464 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
465 addr, new_addr, true);
466 } else if (l4_proto == NEXTHDR_UDP) {
467 if (likely(transport_len >= sizeof(struct udphdr))) {
468 struct udphdr *uh = udp_hdr(skb);
469
470 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
471 inet_proto_csum_replace16(&uh->check, skb,
472 addr, new_addr, true);
473 if (!uh->check)
474 uh->check = CSUM_MANGLED_0;
475 }
476 }
477 } else if (l4_proto == NEXTHDR_ICMP) {
478 if (likely(transport_len >= sizeof(struct icmp6hdr)))
479 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
480 skb, addr, new_addr, true);
481 }
482 }
483
484 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
485 const __be32 mask[4], __be32 masked[4])
486 {
487 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
488 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
489 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
490 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
491 }
492
493 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
494 __be32 addr[4], const __be32 new_addr[4],
495 bool recalculate_csum)
496 {
497 if (likely(recalculate_csum))
498 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
499
500 skb_clear_hash(skb);
501 memcpy(addr, new_addr, sizeof(__be32[4]));
502 }
503
504 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
505 {
506 /* Bits 21-24 are always unmasked, so this retains their values. */
507 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
508 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
509 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
510 }
511
512 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
513 u8 mask)
514 {
515 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
516
517 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
518 nh->ttl = new_ttl;
519 }
520
521 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
522 const struct ovs_key_ipv4 *key,
523 const struct ovs_key_ipv4 *mask)
524 {
525 struct iphdr *nh;
526 __be32 new_addr;
527 int err;
528
529 err = skb_ensure_writable(skb, skb_network_offset(skb) +
530 sizeof(struct iphdr));
531 if (unlikely(err))
532 return err;
533
534 nh = ip_hdr(skb);
535
536 /* Setting an IP addresses is typically only a side effect of
537 * matching on them in the current userspace implementation, so it
538 * makes sense to check if the value actually changed.
539 */
540 if (mask->ipv4_src) {
541 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
542
543 if (unlikely(new_addr != nh->saddr)) {
544 set_ip_addr(skb, nh, &nh->saddr, new_addr);
545 flow_key->ipv4.addr.src = new_addr;
546 }
547 }
548 if (mask->ipv4_dst) {
549 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
550
551 if (unlikely(new_addr != nh->daddr)) {
552 set_ip_addr(skb, nh, &nh->daddr, new_addr);
553 flow_key->ipv4.addr.dst = new_addr;
554 }
555 }
556 if (mask->ipv4_tos) {
557 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
558 flow_key->ip.tos = nh->tos;
559 }
560 if (mask->ipv4_ttl) {
561 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
562 flow_key->ip.ttl = nh->ttl;
563 }
564
565 return 0;
566 }
567
568 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
569 {
570 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
571 }
572
573 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
574 const struct ovs_key_ipv6 *key,
575 const struct ovs_key_ipv6 *mask)
576 {
577 struct ipv6hdr *nh;
578 int err;
579
580 err = skb_ensure_writable(skb, skb_network_offset(skb) +
581 sizeof(struct ipv6hdr));
582 if (unlikely(err))
583 return err;
584
585 nh = ipv6_hdr(skb);
586
587 /* Setting an IP addresses is typically only a side effect of
588 * matching on them in the current userspace implementation, so it
589 * makes sense to check if the value actually changed.
590 */
591 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
592 __be32 *saddr = (__be32 *)&nh->saddr;
593 __be32 masked[4];
594
595 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
596
597 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
598 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
599 true);
600 memcpy(&flow_key->ipv6.addr.src, masked,
601 sizeof(flow_key->ipv6.addr.src));
602 }
603 }
604 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
605 unsigned int offset = 0;
606 int flags = IP6_FH_F_SKIP_RH;
607 bool recalc_csum = true;
608 __be32 *daddr = (__be32 *)&nh->daddr;
609 __be32 masked[4];
610
611 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
612
613 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
614 if (ipv6_ext_hdr(nh->nexthdr))
615 recalc_csum = (ipv6_find_hdr(skb, &offset,
616 NEXTHDR_ROUTING,
617 NULL, &flags)
618 != NEXTHDR_ROUTING);
619
620 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
621 recalc_csum);
622 memcpy(&flow_key->ipv6.addr.dst, masked,
623 sizeof(flow_key->ipv6.addr.dst));
624 }
625 }
626 if (mask->ipv6_tclass) {
627 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
628 flow_key->ip.tos = ipv6_get_dsfield(nh);
629 }
630 if (mask->ipv6_label) {
631 set_ipv6_fl(nh, ntohl(key->ipv6_label),
632 ntohl(mask->ipv6_label));
633 flow_key->ipv6.label =
634 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
635 }
636 if (mask->ipv6_hlimit) {
637 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
638 mask->ipv6_hlimit);
639 flow_key->ip.ttl = nh->hop_limit;
640 }
641 return 0;
642 }
643
644 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
645 const struct nlattr *a)
646 {
647 struct nshhdr *nh;
648 size_t length;
649 int err;
650 u8 flags;
651 u8 ttl;
652 int i;
653
654 struct ovs_key_nsh key;
655 struct ovs_key_nsh mask;
656
657 err = nsh_key_from_nlattr(a, &key, &mask);
658 if (err)
659 return err;
660
661 /* Make sure the NSH base header is there */
662 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
663 return -ENOMEM;
664
665 nh = nsh_hdr(skb);
666 length = nsh_hdr_len(nh);
667
668 /* Make sure the whole NSH header is there */
669 err = skb_ensure_writable(skb, skb_network_offset(skb) +
670 length);
671 if (unlikely(err))
672 return err;
673
674 nh = nsh_hdr(skb);
675 skb_postpull_rcsum(skb, nh, length);
676 flags = nsh_get_flags(nh);
677 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
678 flow_key->nsh.base.flags = flags;
679 ttl = nsh_get_ttl(nh);
680 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
681 flow_key->nsh.base.ttl = ttl;
682 nsh_set_flags_and_ttl(nh, flags, ttl);
683 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
684 mask.base.path_hdr);
685 flow_key->nsh.base.path_hdr = nh->path_hdr;
686 switch (nh->mdtype) {
687 case NSH_M_TYPE1:
688 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
689 nh->md1.context[i] =
690 OVS_MASKED(nh->md1.context[i], key.context[i],
691 mask.context[i]);
692 }
693 memcpy(flow_key->nsh.context, nh->md1.context,
694 sizeof(nh->md1.context));
695 break;
696 case NSH_M_TYPE2:
697 memset(flow_key->nsh.context, 0,
698 sizeof(flow_key->nsh.context));
699 break;
700 default:
701 return -EINVAL;
702 }
703 skb_postpush_rcsum(skb, nh, length);
704 return 0;
705 }
706
707 /* Must follow skb_ensure_writable() since that can move the skb data. */
708 static void set_tp_port(struct sk_buff *skb, __be16 *port,
709 __be16 new_port, __sum16 *check)
710 {
711 inet_proto_csum_replace2(check, skb, *port, new_port, false);
712 *port = new_port;
713 }
714
715 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716 const struct ovs_key_udp *key,
717 const struct ovs_key_udp *mask)
718 {
719 struct udphdr *uh;
720 __be16 src, dst;
721 int err;
722
723 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724 sizeof(struct udphdr));
725 if (unlikely(err))
726 return err;
727
728 uh = udp_hdr(skb);
729 /* Either of the masks is non-zero, so do not bother checking them. */
730 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
731 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
732
733 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
734 if (likely(src != uh->source)) {
735 set_tp_port(skb, &uh->source, src, &uh->check);
736 flow_key->tp.src = src;
737 }
738 if (likely(dst != uh->dest)) {
739 set_tp_port(skb, &uh->dest, dst, &uh->check);
740 flow_key->tp.dst = dst;
741 }
742
743 if (unlikely(!uh->check))
744 uh->check = CSUM_MANGLED_0;
745 } else {
746 uh->source = src;
747 uh->dest = dst;
748 flow_key->tp.src = src;
749 flow_key->tp.dst = dst;
750 }
751
752 skb_clear_hash(skb);
753
754 return 0;
755 }
756
757 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
758 const struct ovs_key_tcp *key,
759 const struct ovs_key_tcp *mask)
760 {
761 struct tcphdr *th;
762 __be16 src, dst;
763 int err;
764
765 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
766 sizeof(struct tcphdr));
767 if (unlikely(err))
768 return err;
769
770 th = tcp_hdr(skb);
771 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
772 if (likely(src != th->source)) {
773 set_tp_port(skb, &th->source, src, &th->check);
774 flow_key->tp.src = src;
775 }
776 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
777 if (likely(dst != th->dest)) {
778 set_tp_port(skb, &th->dest, dst, &th->check);
779 flow_key->tp.dst = dst;
780 }
781 skb_clear_hash(skb);
782
783 return 0;
784 }
785
786 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
787 const struct ovs_key_sctp *key,
788 const struct ovs_key_sctp *mask)
789 {
790 unsigned int sctphoff = skb_transport_offset(skb);
791 struct sctphdr *sh;
792 __le32 old_correct_csum, new_csum, old_csum;
793 int err;
794
795 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
796 if (unlikely(err))
797 return err;
798
799 sh = sctp_hdr(skb);
800 old_csum = sh->checksum;
801 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
802
803 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
804 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
805
806 new_csum = sctp_compute_cksum(skb, sctphoff);
807
808 /* Carry any checksum errors through. */
809 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
810
811 skb_clear_hash(skb);
812 flow_key->tp.src = sh->source;
813 flow_key->tp.dst = sh->dest;
814
815 return 0;
816 }
817
818 static int ovs_vport_output(OVS_VPORT_OUTPUT_PARAMS)
819 {
820 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
821 struct vport *vport = data->vport;
822
823 if (skb_cow_head(skb, data->l2_len) < 0) {
824 kfree_skb(skb);
825 return -ENOMEM;
826 }
827
828 __skb_dst_copy(skb, data->dst);
829 *OVS_GSO_CB(skb) = data->cb;
830 ovs_skb_set_inner_protocol(skb, data->inner_protocol);
831 if (data->vlan_tci & VLAN_CFI_MASK)
832 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
833 else
834 __vlan_hwaccel_clear_tag(skb);
835
836 /* Reconstruct the MAC header. */
837 skb_push(skb, data->l2_len);
838 memcpy(skb->data, &data->l2_data, data->l2_len);
839 skb_postpush_rcsum(skb, skb->data, data->l2_len);
840 skb_reset_mac_header(skb);
841
842 if (eth_p_mpls(skb->protocol)) {
843 skb->inner_network_header = skb->network_header;
844 skb_set_network_header(skb, data->network_offset);
845 skb_reset_mac_len(skb);
846 }
847
848 ovs_vport_send(vport, skb, data->mac_proto);
849 return 0;
850 }
851
852 static unsigned int
853 ovs_dst_get_mtu(const struct dst_entry *dst)
854 {
855 return dst->dev->mtu;
856 }
857
858 static struct dst_ops ovs_dst_ops = {
859 .family = AF_UNSPEC,
860 .mtu = ovs_dst_get_mtu,
861 };
862
863 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
864 * ovs_vport_output(), which is called once per fragmented packet.
865 */
866 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
867 u16 orig_network_offset, u8 mac_proto)
868 {
869 unsigned int hlen = skb_network_offset(skb);
870 struct ovs_frag_data *data;
871
872 data = this_cpu_ptr(&ovs_frag_data_storage);
873 data->dst = (unsigned long) skb_dst(skb);
874 data->vport = vport;
875 data->cb = *OVS_GSO_CB(skb);
876 data->inner_protocol = ovs_skb_get_inner_protocol(skb);
877 data->network_offset = orig_network_offset;
878 if (skb_vlan_tag_present(skb))
879 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
880 else
881 data->vlan_tci = 0;
882 data->vlan_proto = skb->vlan_proto;
883 data->mac_proto = mac_proto;
884 data->l2_len = hlen;
885 memcpy(&data->l2_data, skb->data, hlen);
886
887 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
888 skb_pull(skb, hlen);
889 }
890
891 static void ovs_fragment(struct net *net, struct vport *vport,
892 struct sk_buff *skb, u16 mru,
893 struct sw_flow_key *key)
894 {
895 u16 orig_network_offset = 0;
896
897 if (eth_p_mpls(skb->protocol)) {
898 orig_network_offset = skb_network_offset(skb);
899 skb->network_header = skb->inner_network_header;
900 }
901
902 if (skb_network_offset(skb) > MAX_L2_LEN) {
903 OVS_NLERR(1, "L2 header too long to fragment");
904 goto err;
905 }
906
907 if (key->eth.type == htons(ETH_P_IP)) {
908 struct dst_entry ovs_dst;
909 unsigned long orig_dst;
910
911 prepare_frag(vport, skb, orig_network_offset,
912 ovs_key_mac_proto(key));
913 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
914 DST_OBSOLETE_NONE, DST_NOCOUNT);
915 ovs_dst.dev = vport->dev;
916
917 orig_dst = (unsigned long) skb_dst(skb);
918 skb_dst_set_noref(skb, &ovs_dst);
919 IPCB(skb)->frag_max_size = mru;
920
921 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
922 refdst_drop(orig_dst);
923 } else if (key->eth.type == htons(ETH_P_IPV6)) {
924 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
925 unsigned long orig_dst;
926 struct rt6_info ovs_rt;
927
928 if (!v6ops)
929 goto err;
930
931 prepare_frag(vport, skb, orig_network_offset,
932 ovs_key_mac_proto(key));
933 memset(&ovs_rt, 0, sizeof(ovs_rt));
934 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
935 DST_OBSOLETE_NONE, DST_NOCOUNT);
936 ovs_rt.dst.dev = vport->dev;
937
938 orig_dst = (unsigned long) skb_dst(skb);
939 skb_dst_set_noref(skb, &ovs_rt.dst);
940 IP6CB(skb)->frag_max_size = mru;
941 #ifdef HAVE_IP_LOCAL_OUT_TAKES_NET
942 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
943 #else
944 v6ops->fragment(skb->sk, skb, ovs_vport_output);
945 #endif
946 refdst_drop(orig_dst);
947 } else {
948 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
949 ovs_vport_name(vport), ntohs(key->eth.type), mru,
950 vport->dev->mtu);
951 goto err;
952 }
953
954 return;
955 err:
956 kfree_skb(skb);
957 }
958
959 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
960 struct sw_flow_key *key)
961 {
962 struct vport *vport = ovs_vport_rcu(dp, out_port);
963
964 if (likely(vport)) {
965 u16 mru = OVS_CB(skb)->mru;
966 u32 cutlen = OVS_CB(skb)->cutlen;
967
968 if (unlikely(cutlen > 0)) {
969 if (skb->len - cutlen > ovs_mac_header_len(key))
970 pskb_trim(skb, skb->len - cutlen);
971 else
972 pskb_trim(skb, ovs_mac_header_len(key));
973 }
974
975 if (likely(!mru ||
976 (skb->len <= mru + vport->dev->hard_header_len))) {
977 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
978 } else if (mru <= vport->dev->mtu) {
979 struct net *net = ovs_dp_get_net(dp);
980
981 ovs_fragment(net, vport, skb, mru, key);
982 } else {
983 OVS_NLERR(true, "Cannot fragment IP frames");
984 kfree_skb(skb);
985 }
986 } else {
987 kfree_skb(skb);
988 }
989 }
990
991 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
992 struct sw_flow_key *key, const struct nlattr *attr,
993 const struct nlattr *actions, int actions_len,
994 uint32_t cutlen)
995 {
996 struct dp_upcall_info upcall;
997 const struct nlattr *a;
998 int rem, err;
999
1000 memset(&upcall, 0, sizeof(upcall));
1001 upcall.cmd = OVS_PACKET_CMD_ACTION;
1002 upcall.mru = OVS_CB(skb)->mru;
1003
1004 SKB_INIT_FILL_METADATA_DST(skb);
1005 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
1006 a = nla_next(a, &rem)) {
1007 switch (nla_type(a)) {
1008 case OVS_USERSPACE_ATTR_USERDATA:
1009 upcall.userdata = a;
1010 break;
1011
1012 case OVS_USERSPACE_ATTR_PID:
1013 upcall.portid = nla_get_u32(a);
1014 break;
1015
1016 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1017 /* Get out tunnel info. */
1018 struct vport *vport;
1019
1020 vport = ovs_vport_rcu(dp, nla_get_u32(a));
1021 if (vport) {
1022 err = dev_fill_metadata_dst(vport->dev, skb);
1023 if (!err)
1024 upcall.egress_tun_info = skb_tunnel_info(skb);
1025 }
1026
1027 break;
1028 }
1029
1030 case OVS_USERSPACE_ATTR_ACTIONS: {
1031 /* Include actions. */
1032 upcall.actions = actions;
1033 upcall.actions_len = actions_len;
1034 break;
1035 }
1036
1037 } /* End of switch. */
1038 }
1039
1040 err = ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1041 SKB_RESTORE_FILL_METADATA_DST(skb);
1042 return err;
1043 }
1044
1045 /* When 'last' is true, sample() should always consume the 'skb'.
1046 * Otherwise, sample() should keep 'skb' intact regardless what
1047 * actions are executed within sample().
1048 */
1049 static int sample(struct datapath *dp, struct sk_buff *skb,
1050 struct sw_flow_key *key, const struct nlattr *attr,
1051 bool last)
1052 {
1053 struct nlattr *actions;
1054 struct nlattr *sample_arg;
1055 int rem = nla_len(attr);
1056 const struct sample_arg *arg;
1057 bool clone_flow_key;
1058
1059 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1060 sample_arg = nla_data(attr);
1061 arg = nla_data(sample_arg);
1062 actions = nla_next(sample_arg, &rem);
1063
1064 if ((arg->probability != U32_MAX) &&
1065 (!arg->probability || prandom_u32() > arg->probability)) {
1066 if (last)
1067 consume_skb(skb);
1068 return 0;
1069 }
1070
1071 clone_flow_key = !arg->exec;
1072 return clone_execute(dp, skb, key, 0, actions, rem, last,
1073 clone_flow_key);
1074 }
1075
1076 /* When 'last' is true, clone() should always consume the 'skb'.
1077 * Otherwise, clone() should keep 'skb' intact regardless what
1078 * actions are executed within clone().
1079 */
1080 static int clone(struct datapath *dp, struct sk_buff *skb,
1081 struct sw_flow_key *key, const struct nlattr *attr,
1082 bool last)
1083 {
1084 struct nlattr *actions;
1085 struct nlattr *clone_arg;
1086 int rem = nla_len(attr);
1087 bool dont_clone_flow_key;
1088
1089 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1090 clone_arg = nla_data(attr);
1091 dont_clone_flow_key = nla_get_u32(clone_arg);
1092 actions = nla_next(clone_arg, &rem);
1093
1094 return clone_execute(dp, skb, key, 0, actions, rem, last,
1095 !dont_clone_flow_key);
1096 }
1097
1098 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1099 const struct nlattr *attr)
1100 {
1101 struct ovs_action_hash *hash_act = nla_data(attr);
1102 u32 hash = 0;
1103
1104 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1105 hash = skb_get_hash(skb);
1106 hash = jhash_1word(hash, hash_act->hash_basis);
1107 if (!hash)
1108 hash = 0x1;
1109
1110 key->ovs_flow_hash = hash;
1111 }
1112
1113 static int execute_set_action(struct sk_buff *skb,
1114 struct sw_flow_key *flow_key,
1115 const struct nlattr *a)
1116 {
1117 /* Only tunnel set execution is supported without a mask. */
1118 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1119 struct ovs_tunnel_info *tun = nla_data(a);
1120
1121 ovs_skb_dst_drop(skb);
1122 ovs_dst_hold((struct dst_entry *)tun->tun_dst);
1123 ovs_skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1124 return 0;
1125 }
1126
1127 return -EINVAL;
1128 }
1129
1130 /* Mask is at the midpoint of the data. */
1131 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1132
1133 static int execute_masked_set_action(struct sk_buff *skb,
1134 struct sw_flow_key *flow_key,
1135 const struct nlattr *a)
1136 {
1137 int err = 0;
1138
1139 switch (nla_type(a)) {
1140 case OVS_KEY_ATTR_PRIORITY:
1141 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1142 *get_mask(a, u32 *));
1143 flow_key->phy.priority = skb->priority;
1144 break;
1145
1146 case OVS_KEY_ATTR_SKB_MARK:
1147 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1148 flow_key->phy.skb_mark = skb->mark;
1149 break;
1150
1151 case OVS_KEY_ATTR_TUNNEL_INFO:
1152 /* Masked data not supported for tunnel. */
1153 err = -EINVAL;
1154 break;
1155
1156 case OVS_KEY_ATTR_ETHERNET:
1157 err = set_eth_addr(skb, flow_key, nla_data(a),
1158 get_mask(a, struct ovs_key_ethernet *));
1159 break;
1160
1161 case OVS_KEY_ATTR_NSH:
1162 err = set_nsh(skb, flow_key, a);
1163 break;
1164
1165 case OVS_KEY_ATTR_IPV4:
1166 err = set_ipv4(skb, flow_key, nla_data(a),
1167 get_mask(a, struct ovs_key_ipv4 *));
1168 break;
1169
1170 case OVS_KEY_ATTR_IPV6:
1171 err = set_ipv6(skb, flow_key, nla_data(a),
1172 get_mask(a, struct ovs_key_ipv6 *));
1173 break;
1174
1175 case OVS_KEY_ATTR_TCP:
1176 err = set_tcp(skb, flow_key, nla_data(a),
1177 get_mask(a, struct ovs_key_tcp *));
1178 break;
1179
1180 case OVS_KEY_ATTR_UDP:
1181 err = set_udp(skb, flow_key, nla_data(a),
1182 get_mask(a, struct ovs_key_udp *));
1183 break;
1184
1185 case OVS_KEY_ATTR_SCTP:
1186 err = set_sctp(skb, flow_key, nla_data(a),
1187 get_mask(a, struct ovs_key_sctp *));
1188 break;
1189
1190 case OVS_KEY_ATTR_MPLS:
1191 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1192 __be32 *));
1193 break;
1194
1195 case OVS_KEY_ATTR_CT_STATE:
1196 case OVS_KEY_ATTR_CT_ZONE:
1197 case OVS_KEY_ATTR_CT_MARK:
1198 case OVS_KEY_ATTR_CT_LABELS:
1199 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1200 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1201 err = -EINVAL;
1202 break;
1203 }
1204
1205 return err;
1206 }
1207
1208 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1209 struct sw_flow_key *key,
1210 const struct nlattr *a, bool last)
1211 {
1212 u32 recirc_id;
1213
1214 if (!is_flow_key_valid(key)) {
1215 int err;
1216
1217 err = ovs_flow_key_update(skb, key);
1218 if (err)
1219 return err;
1220 }
1221 BUG_ON(!is_flow_key_valid(key));
1222
1223 recirc_id = nla_get_u32(a);
1224 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1225 }
1226
1227 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1228 struct sw_flow_key *key,
1229 const struct nlattr *attr, bool last)
1230 {
1231 const struct nlattr *actions, *cpl_arg;
1232 const struct check_pkt_len_arg *arg;
1233 int rem = nla_len(attr);
1234 bool clone_flow_key;
1235
1236 /* The first netlink attribute in 'attr' is always
1237 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1238 */
1239 cpl_arg = nla_data(attr);
1240 arg = nla_data(cpl_arg);
1241
1242 if (skb->len <= arg->pkt_len) {
1243 /* Second netlink attribute in 'attr' is always
1244 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1245 */
1246 actions = nla_next(cpl_arg, &rem);
1247 clone_flow_key = !arg->exec_for_lesser_equal;
1248 } else {
1249 /* Third netlink attribute in 'attr' is always
1250 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1251 */
1252 actions = nla_next(cpl_arg, &rem);
1253 actions = nla_next(actions, &rem);
1254 clone_flow_key = !arg->exec_for_greater;
1255 }
1256
1257 return clone_execute(dp, skb, key, 0, nla_data(actions),
1258 nla_len(actions), last, clone_flow_key);
1259 }
1260
1261 /* Execute a list of actions against 'skb'. */
1262 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1263 struct sw_flow_key *key,
1264 const struct nlattr *attr, int len)
1265 {
1266 const struct nlattr *a;
1267 int rem;
1268
1269 for (a = attr, rem = len; rem > 0;
1270 a = nla_next(a, &rem)) {
1271 int err = 0;
1272
1273 switch (nla_type(a)) {
1274 case OVS_ACTION_ATTR_OUTPUT: {
1275 int port = nla_get_u32(a);
1276 struct sk_buff *clone;
1277
1278 /* Every output action needs a separate clone
1279 * of 'skb', In case the output action is the
1280 * last action, cloning can be avoided.
1281 */
1282 if (nla_is_last(a, rem)) {
1283 do_output(dp, skb, port, key);
1284 /* 'skb' has been used for output.
1285 */
1286 return 0;
1287 }
1288
1289 clone = skb_clone(skb, GFP_ATOMIC);
1290 if (clone)
1291 do_output(dp, clone, port, key);
1292 OVS_CB(skb)->cutlen = 0;
1293 break;
1294 }
1295
1296 case OVS_ACTION_ATTR_TRUNC: {
1297 struct ovs_action_trunc *trunc = nla_data(a);
1298
1299 if (skb->len > trunc->max_len)
1300 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1301 break;
1302 }
1303
1304 case OVS_ACTION_ATTR_USERSPACE:
1305 output_userspace(dp, skb, key, a, attr,
1306 len, OVS_CB(skb)->cutlen);
1307 OVS_CB(skb)->cutlen = 0;
1308 break;
1309
1310 case OVS_ACTION_ATTR_HASH:
1311 execute_hash(skb, key, a);
1312 break;
1313
1314 case OVS_ACTION_ATTR_PUSH_MPLS:
1315 err = push_mpls(skb, key, nla_data(a));
1316 break;
1317
1318 case OVS_ACTION_ATTR_POP_MPLS:
1319 err = pop_mpls(skb, key, nla_get_be16(a));
1320 break;
1321
1322 case OVS_ACTION_ATTR_PUSH_VLAN:
1323 err = push_vlan(skb, key, nla_data(a));
1324 break;
1325
1326 case OVS_ACTION_ATTR_POP_VLAN:
1327 err = pop_vlan(skb, key);
1328 break;
1329
1330 case OVS_ACTION_ATTR_RECIRC: {
1331 bool last = nla_is_last(a, rem);
1332
1333 err = execute_recirc(dp, skb, key, a, last);
1334 if (last) {
1335 /* If this is the last action, the skb has
1336 * been consumed or freed.
1337 * Return immediately.
1338 */
1339 return err;
1340 }
1341 break;
1342 }
1343
1344 case OVS_ACTION_ATTR_SET:
1345 err = execute_set_action(skb, key, nla_data(a));
1346 break;
1347
1348 case OVS_ACTION_ATTR_SET_MASKED:
1349 case OVS_ACTION_ATTR_SET_TO_MASKED:
1350 err = execute_masked_set_action(skb, key, nla_data(a));
1351 break;
1352
1353 case OVS_ACTION_ATTR_SAMPLE: {
1354 bool last = nla_is_last(a, rem);
1355
1356 err = sample(dp, skb, key, a, last);
1357 if (last)
1358 return err;
1359
1360 break;
1361 }
1362
1363 case OVS_ACTION_ATTR_CT:
1364 if (!is_flow_key_valid(key)) {
1365 err = ovs_flow_key_update(skb, key);
1366 if (err)
1367 return err;
1368 }
1369
1370 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1371 nla_data(a));
1372
1373 /* Hide stolen IP fragments from user space. */
1374 if (err)
1375 return err == -EINPROGRESS ? 0 : err;
1376 break;
1377
1378 case OVS_ACTION_ATTR_CT_CLEAR:
1379 err = ovs_ct_clear(skb, key);
1380 break;
1381
1382 case OVS_ACTION_ATTR_PUSH_ETH:
1383 err = push_eth(skb, key, nla_data(a));
1384 break;
1385
1386 case OVS_ACTION_ATTR_POP_ETH:
1387 err = pop_eth(skb, key);
1388 break;
1389
1390 case OVS_ACTION_ATTR_PUSH_NSH: {
1391 u8 buffer[NSH_HDR_MAX_LEN];
1392 struct nshhdr *nh = (struct nshhdr *)buffer;
1393
1394 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1395 NSH_HDR_MAX_LEN);
1396 if (unlikely(err))
1397 break;
1398 err = push_nsh(skb, key, nh);
1399 break;
1400 }
1401
1402 case OVS_ACTION_ATTR_POP_NSH:
1403 err = pop_nsh(skb, key);
1404 break;
1405
1406 case OVS_ACTION_ATTR_METER:
1407 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1408 consume_skb(skb);
1409 return 0;
1410 }
1411 break;
1412
1413 case OVS_ACTION_ATTR_CLONE: {
1414 bool last = nla_is_last(a, rem);
1415
1416 err = clone(dp, skb, key, a, last);
1417 if (last)
1418 return err;
1419 break;
1420 }
1421
1422 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1423 bool last = nla_is_last(a, rem);
1424
1425 err = execute_check_pkt_len(dp, skb, key, a, last);
1426 if (last)
1427 return err;
1428
1429 break;
1430 }
1431 }
1432
1433 if (unlikely(err)) {
1434 kfree_skb(skb);
1435 return err;
1436 }
1437 }
1438
1439 consume_skb(skb);
1440 return 0;
1441 }
1442
1443 /* Execute the actions on the clone of the packet. The effect of the
1444 * execution does not affect the original 'skb' nor the original 'key'.
1445 *
1446 * The execution may be deferred in case the actions can not be executed
1447 * immediately.
1448 */
1449 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1450 struct sw_flow_key *key, u32 recirc_id,
1451 const struct nlattr *actions, int len,
1452 bool last, bool clone_flow_key)
1453 {
1454 struct deferred_action *da;
1455 struct sw_flow_key *clone;
1456
1457 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1458 if (!skb) {
1459 /* Out of memory, skip this action.
1460 */
1461 return 0;
1462 }
1463
1464 /* When clone_flow_key is false, the 'key' will not be change
1465 * by the actions, then the 'key' can be used directly.
1466 * Otherwise, try to clone key from the next recursion level of
1467 * 'flow_keys'. If clone is successful, execute the actions
1468 * without deferring.
1469 */
1470 clone = clone_flow_key ? clone_key(key) : key;
1471 if (clone) {
1472 int err = 0;
1473
1474 if (actions) { /* Sample action */
1475 if (clone_flow_key)
1476 __this_cpu_inc(exec_actions_level);
1477
1478 err = do_execute_actions(dp, skb, clone,
1479 actions, len);
1480
1481 if (clone_flow_key)
1482 __this_cpu_dec(exec_actions_level);
1483 } else { /* Recirc action */
1484 clone->recirc_id = recirc_id;
1485 ovs_dp_process_packet(skb, clone);
1486 }
1487 return err;
1488 }
1489
1490 /* Out of 'flow_keys' space. Defer actions */
1491 da = add_deferred_actions(skb, key, actions, len);
1492 if (da) {
1493 if (!actions) { /* Recirc action */
1494 key = &da->pkt_key;
1495 key->recirc_id = recirc_id;
1496 }
1497 } else {
1498 /* Out of per CPU action FIFO space. Drop the 'skb' and
1499 * log an error.
1500 */
1501 kfree_skb(skb);
1502
1503 if (net_ratelimit()) {
1504 if (actions) { /* Sample action */
1505 pr_warn("%s: deferred action limit reached, drop sample action\n",
1506 ovs_dp_name(dp));
1507 } else { /* Recirc action */
1508 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1509 ovs_dp_name(dp));
1510 }
1511 }
1512 }
1513 return 0;
1514 }
1515
1516 static void process_deferred_actions(struct datapath *dp)
1517 {
1518 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1519
1520 /* Do not touch the FIFO in case there is no deferred actions. */
1521 if (action_fifo_is_empty(fifo))
1522 return;
1523
1524 /* Finishing executing all deferred actions. */
1525 do {
1526 struct deferred_action *da = action_fifo_get(fifo);
1527 struct sk_buff *skb = da->skb;
1528 struct sw_flow_key *key = &da->pkt_key;
1529 const struct nlattr *actions = da->actions;
1530 int actions_len = da->actions_len;
1531
1532 if (actions)
1533 do_execute_actions(dp, skb, key, actions, actions_len);
1534 else
1535 ovs_dp_process_packet(skb, key);
1536 } while (!action_fifo_is_empty(fifo));
1537
1538 /* Reset FIFO for the next packet. */
1539 action_fifo_init(fifo);
1540 }
1541
1542 /* Execute a list of actions against 'skb'. */
1543 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1544 const struct sw_flow_actions *acts,
1545 struct sw_flow_key *key)
1546 {
1547 int err, level;
1548
1549 level = __this_cpu_inc_return(exec_actions_level);
1550 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1551 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1552 ovs_dp_name(dp));
1553 kfree_skb(skb);
1554 err = -ENETDOWN;
1555 goto out;
1556 }
1557
1558 OVS_CB(skb)->acts_origlen = acts->orig_len;
1559 err = do_execute_actions(dp, skb, key,
1560 acts->actions, acts->actions_len);
1561
1562 if (level == 1)
1563 process_deferred_actions(dp);
1564
1565 out:
1566 __this_cpu_dec(exec_actions_level);
1567 return err;
1568 }
1569
1570 int action_fifos_init(void)
1571 {
1572 action_fifos = alloc_percpu(struct action_fifo);
1573 if (!action_fifos)
1574 return -ENOMEM;
1575
1576 flow_keys = alloc_percpu(struct action_flow_keys);
1577 if (!flow_keys) {
1578 free_percpu(action_fifos);
1579 return -ENOMEM;
1580 }
1581
1582 return 0;
1583 }
1584
1585 void action_fifos_exit(void)
1586 {
1587 free_percpu(action_fifos);
1588 free_percpu(flow_keys);
1589 }