]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
ovs-ofctl: Fix memory leak in ofctl_packet_out().
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/dsfield.h>
38 #include <net/mpls.h>
39 #include <net/sctp/checksum.h>
40
41 #include "datapath.h"
42 #include "conntrack.h"
43 #include "gso.h"
44 #include "vport.h"
45
46 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
47 struct sw_flow_key *key,
48 const struct nlattr *attr, int len);
49
50 struct deferred_action {
51 struct sk_buff *skb;
52 const struct nlattr *actions;
53
54 /* Store pkt_key clone when creating deferred action. */
55 struct sw_flow_key pkt_key;
56 };
57
58 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
59 struct ovs_frag_data {
60 unsigned long dst;
61 struct vport *vport;
62 struct ovs_gso_cb cb;
63 __be16 inner_protocol;
64 __u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 l2_data[MAX_L2_LEN];
68 };
69
70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
71
72 #define DEFERRED_ACTION_FIFO_SIZE 10
73 #define OVS_RECURSION_LIMIT 4
74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
75 struct action_fifo {
76 int head;
77 int tail;
78 /* Deferred action fifo queue storage. */
79 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
80 };
81
82 struct recirc_keys {
83 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
84 };
85
86 static struct action_fifo __percpu *action_fifos;
87 static struct recirc_keys __percpu *recirc_keys;
88 static DEFINE_PER_CPU(int, exec_actions_level);
89
90 static void action_fifo_init(struct action_fifo *fifo)
91 {
92 fifo->head = 0;
93 fifo->tail = 0;
94 }
95
96 static bool action_fifo_is_empty(const struct action_fifo *fifo)
97 {
98 return (fifo->head == fifo->tail);
99 }
100
101 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
102 {
103 if (action_fifo_is_empty(fifo))
104 return NULL;
105
106 return &fifo->fifo[fifo->tail++];
107 }
108
109 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
110 {
111 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
112 return NULL;
113
114 return &fifo->fifo[fifo->head++];
115 }
116
117 /* Return queue entry if fifo is not full */
118 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
119 const struct sw_flow_key *key,
120 const struct nlattr *attr)
121 {
122 struct action_fifo *fifo;
123 struct deferred_action *da;
124
125 fifo = this_cpu_ptr(action_fifos);
126 da = action_fifo_put(fifo);
127 if (da) {
128 da->skb = skb;
129 da->actions = attr;
130 da->pkt_key = *key;
131 }
132
133 return da;
134 }
135
136 static void invalidate_flow_key(struct sw_flow_key *key)
137 {
138 key->eth.type = htons(0);
139 }
140
141 static bool is_flow_key_valid(const struct sw_flow_key *key)
142 {
143 return !!key->eth.type;
144 }
145
146 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
147 __be16 ethertype)
148 {
149 if (skb->ip_summed == CHECKSUM_COMPLETE) {
150 __be16 diff[] = { ~(hdr->h_proto), ethertype };
151
152 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
153 ~skb->csum);
154 }
155
156 hdr->h_proto = ethertype;
157 }
158
159 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
160 const struct ovs_action_push_mpls *mpls)
161 {
162 __be32 *new_mpls_lse;
163
164 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
165 if (skb->encapsulation)
166 return -ENOTSUPP;
167
168 if (skb_cow_head(skb, MPLS_HLEN) < 0)
169 return -ENOMEM;
170
171 skb_push(skb, MPLS_HLEN);
172 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
173 skb->mac_len);
174 skb_reset_mac_header(skb);
175
176 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
177 *new_mpls_lse = mpls->mpls_lse;
178
179 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
180
181 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
182 if (!ovs_skb_get_inner_protocol(skb))
183 ovs_skb_set_inner_protocol(skb, skb->protocol);
184 skb->protocol = mpls->mpls_ethertype;
185
186 invalidate_flow_key(key);
187 return 0;
188 }
189
190 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
191 const __be16 ethertype)
192 {
193 struct ethhdr *hdr;
194 int err;
195
196 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
197 if (unlikely(err))
198 return err;
199
200 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
201
202 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
203 skb->mac_len);
204
205 __skb_pull(skb, MPLS_HLEN);
206 skb_reset_mac_header(skb);
207
208 /* skb_mpls_header() is used to locate the ethertype
209 * field correctly in the presence of VLAN tags.
210 */
211 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
212 update_ethertype(skb, hdr, ethertype);
213 if (eth_p_mpls(skb->protocol))
214 skb->protocol = ethertype;
215
216 invalidate_flow_key(key);
217 return 0;
218 }
219
220 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
221 const __be32 *mpls_lse, const __be32 *mask)
222 {
223 __be32 *stack;
224 __be32 lse;
225 int err;
226
227 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
228 if (unlikely(err))
229 return err;
230
231 stack = (__be32 *)skb_mpls_header(skb);
232 lse = OVS_MASKED(*stack, *mpls_lse, *mask);
233 if (skb->ip_summed == CHECKSUM_COMPLETE) {
234 __be32 diff[] = { ~(*stack), lse };
235
236 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
237 ~skb->csum);
238 }
239
240 *stack = lse;
241 flow_key->mpls.top_lse = lse;
242 return 0;
243 }
244
245 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
246 {
247 int err;
248
249 err = skb_vlan_pop(skb);
250 if (skb_vlan_tag_present(skb))
251 invalidate_flow_key(key);
252 else
253 key->eth.tci = 0;
254 return err;
255 }
256
257 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
258 const struct ovs_action_push_vlan *vlan)
259 {
260 if (skb_vlan_tag_present(skb))
261 invalidate_flow_key(key);
262 else
263 key->eth.tci = vlan->vlan_tci;
264 return skb_vlan_push(skb, vlan->vlan_tpid,
265 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
266 }
267
268 /* 'src' is already properly masked. */
269 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
270 {
271 u16 *dst = (u16 *)dst_;
272 const u16 *src = (const u16 *)src_;
273 const u16 *mask = (const u16 *)mask_;
274
275 OVS_SET_MASKED(dst[0], src[0], mask[0]);
276 OVS_SET_MASKED(dst[1], src[1], mask[1]);
277 OVS_SET_MASKED(dst[2], src[2], mask[2]);
278 }
279
280 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
281 const struct ovs_key_ethernet *key,
282 const struct ovs_key_ethernet *mask)
283 {
284 int err;
285
286 err = skb_ensure_writable(skb, ETH_HLEN);
287 if (unlikely(err))
288 return err;
289
290 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
291
292 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
293 mask->eth_src);
294 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
295 mask->eth_dst);
296
297 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
298
299 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
300 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
301 return 0;
302 }
303
304 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
305 __be32 addr, __be32 new_addr)
306 {
307 int transport_len = skb->len - skb_transport_offset(skb);
308
309 if (nh->frag_off & htons(IP_OFFSET))
310 return;
311
312 if (nh->protocol == IPPROTO_TCP) {
313 if (likely(transport_len >= sizeof(struct tcphdr)))
314 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
315 addr, new_addr, true);
316 } else if (nh->protocol == IPPROTO_UDP) {
317 if (likely(transport_len >= sizeof(struct udphdr))) {
318 struct udphdr *uh = udp_hdr(skb);
319
320 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
321 inet_proto_csum_replace4(&uh->check, skb,
322 addr, new_addr, true);
323 if (!uh->check)
324 uh->check = CSUM_MANGLED_0;
325 }
326 }
327 }
328
329 }
330
331 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
332 __be32 *addr, __be32 new_addr)
333 {
334 update_ip_l4_checksum(skb, nh, *addr, new_addr);
335 csum_replace4(&nh->check, *addr, new_addr);
336 skb_clear_hash(skb);
337 *addr = new_addr;
338 }
339
340 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
341 __be32 addr[4], const __be32 new_addr[4])
342 {
343 int transport_len = skb->len - skb_transport_offset(skb);
344
345 if (l4_proto == NEXTHDR_TCP) {
346 if (likely(transport_len >= sizeof(struct tcphdr)))
347 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
348 addr, new_addr, true);
349 } else if (l4_proto == NEXTHDR_UDP) {
350 if (likely(transport_len >= sizeof(struct udphdr))) {
351 struct udphdr *uh = udp_hdr(skb);
352
353 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
354 inet_proto_csum_replace16(&uh->check, skb,
355 addr, new_addr, true);
356 if (!uh->check)
357 uh->check = CSUM_MANGLED_0;
358 }
359 }
360 } else if (l4_proto == NEXTHDR_ICMP) {
361 if (likely(transport_len >= sizeof(struct icmp6hdr)))
362 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
363 skb, addr, new_addr, true);
364 }
365 }
366
367 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
368 const __be32 mask[4], __be32 masked[4])
369 {
370 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
371 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
372 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
373 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
374 }
375
376 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
377 __be32 addr[4], const __be32 new_addr[4],
378 bool recalculate_csum)
379 {
380 if (likely(recalculate_csum))
381 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
382
383 skb_clear_hash(skb);
384 memcpy(addr, new_addr, sizeof(__be32[4]));
385 }
386
387 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
388 {
389 /* Bits 21-24 are always unmasked, so this retains their values. */
390 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
391 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
392 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
393 }
394
395 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
396 u8 mask)
397 {
398 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
399
400 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
401 nh->ttl = new_ttl;
402 }
403
404 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
405 const struct ovs_key_ipv4 *key,
406 const struct ovs_key_ipv4 *mask)
407 {
408 struct iphdr *nh;
409 __be32 new_addr;
410 int err;
411
412 err = skb_ensure_writable(skb, skb_network_offset(skb) +
413 sizeof(struct iphdr));
414 if (unlikely(err))
415 return err;
416
417 nh = ip_hdr(skb);
418
419 /* Setting an IP addresses is typically only a side effect of
420 * matching on them in the current userspace implementation, so it
421 * makes sense to check if the value actually changed.
422 */
423 if (mask->ipv4_src) {
424 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
425
426 if (unlikely(new_addr != nh->saddr)) {
427 set_ip_addr(skb, nh, &nh->saddr, new_addr);
428 flow_key->ipv4.addr.src = new_addr;
429 }
430 }
431 if (mask->ipv4_dst) {
432 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
433
434 if (unlikely(new_addr != nh->daddr)) {
435 set_ip_addr(skb, nh, &nh->daddr, new_addr);
436 flow_key->ipv4.addr.dst = new_addr;
437 }
438 }
439 if (mask->ipv4_tos) {
440 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
441 flow_key->ip.tos = nh->tos;
442 }
443 if (mask->ipv4_ttl) {
444 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
445 flow_key->ip.ttl = nh->ttl;
446 }
447
448 return 0;
449 }
450
451 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
452 {
453 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
454 }
455
456 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
457 const struct ovs_key_ipv6 *key,
458 const struct ovs_key_ipv6 *mask)
459 {
460 struct ipv6hdr *nh;
461 int err;
462
463 err = skb_ensure_writable(skb, skb_network_offset(skb) +
464 sizeof(struct ipv6hdr));
465 if (unlikely(err))
466 return err;
467
468 nh = ipv6_hdr(skb);
469
470 /* Setting an IP addresses is typically only a side effect of
471 * matching on them in the current userspace implementation, so it
472 * makes sense to check if the value actually changed.
473 */
474 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
475 __be32 *saddr = (__be32 *)&nh->saddr;
476 __be32 masked[4];
477
478 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
479
480 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
481 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
482 true);
483 memcpy(&flow_key->ipv6.addr.src, masked,
484 sizeof(flow_key->ipv6.addr.src));
485 }
486 }
487 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
488 unsigned int offset = 0;
489 int flags = IP6_FH_F_SKIP_RH;
490 bool recalc_csum = true;
491 __be32 *daddr = (__be32 *)&nh->daddr;
492 __be32 masked[4];
493
494 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
495
496 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
497 if (ipv6_ext_hdr(nh->nexthdr))
498 recalc_csum = (ipv6_find_hdr(skb, &offset,
499 NEXTHDR_ROUTING,
500 NULL, &flags)
501 != NEXTHDR_ROUTING);
502
503 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
504 recalc_csum);
505 memcpy(&flow_key->ipv6.addr.dst, masked,
506 sizeof(flow_key->ipv6.addr.dst));
507 }
508 }
509 if (mask->ipv6_tclass) {
510 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
511 flow_key->ip.tos = ipv6_get_dsfield(nh);
512 }
513 if (mask->ipv6_label) {
514 set_ipv6_fl(nh, ntohl(key->ipv6_label),
515 ntohl(mask->ipv6_label));
516 flow_key->ipv6.label =
517 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
518 }
519 if (mask->ipv6_hlimit) {
520 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
521 mask->ipv6_hlimit);
522 flow_key->ip.ttl = nh->hop_limit;
523 }
524 return 0;
525 }
526
527 /* Must follow skb_ensure_writable() since that can move the skb data. */
528 static void set_tp_port(struct sk_buff *skb, __be16 *port,
529 __be16 new_port, __sum16 *check)
530 {
531 inet_proto_csum_replace2(check, skb, *port, new_port, false);
532 *port = new_port;
533 }
534
535 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
536 const struct ovs_key_udp *key,
537 const struct ovs_key_udp *mask)
538 {
539 struct udphdr *uh;
540 __be16 src, dst;
541 int err;
542
543 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
544 sizeof(struct udphdr));
545 if (unlikely(err))
546 return err;
547
548 uh = udp_hdr(skb);
549 /* Either of the masks is non-zero, so do not bother checking them. */
550 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
551 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
552
553 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
554 if (likely(src != uh->source)) {
555 set_tp_port(skb, &uh->source, src, &uh->check);
556 flow_key->tp.src = src;
557 }
558 if (likely(dst != uh->dest)) {
559 set_tp_port(skb, &uh->dest, dst, &uh->check);
560 flow_key->tp.dst = dst;
561 }
562
563 if (unlikely(!uh->check))
564 uh->check = CSUM_MANGLED_0;
565 } else {
566 uh->source = src;
567 uh->dest = dst;
568 flow_key->tp.src = src;
569 flow_key->tp.dst = dst;
570 }
571
572 skb_clear_hash(skb);
573
574 return 0;
575 }
576
577 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
578 const struct ovs_key_tcp *key,
579 const struct ovs_key_tcp *mask)
580 {
581 struct tcphdr *th;
582 __be16 src, dst;
583 int err;
584
585 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
586 sizeof(struct tcphdr));
587 if (unlikely(err))
588 return err;
589
590 th = tcp_hdr(skb);
591 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
592 if (likely(src != th->source)) {
593 set_tp_port(skb, &th->source, src, &th->check);
594 flow_key->tp.src = src;
595 }
596 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
597 if (likely(dst != th->dest)) {
598 set_tp_port(skb, &th->dest, dst, &th->check);
599 flow_key->tp.dst = dst;
600 }
601 skb_clear_hash(skb);
602
603 return 0;
604 }
605
606 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
607 const struct ovs_key_sctp *key,
608 const struct ovs_key_sctp *mask)
609 {
610 unsigned int sctphoff = skb_transport_offset(skb);
611 struct sctphdr *sh;
612 __le32 old_correct_csum, new_csum, old_csum;
613 int err;
614
615 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
616 if (unlikely(err))
617 return err;
618
619 sh = sctp_hdr(skb);
620 old_csum = sh->checksum;
621 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
622
623 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
624 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
625
626 new_csum = sctp_compute_cksum(skb, sctphoff);
627
628 /* Carry any checksum errors through. */
629 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
630
631 skb_clear_hash(skb);
632 flow_key->tp.src = sh->source;
633 flow_key->tp.dst = sh->dest;
634
635 return 0;
636 }
637
638 static int ovs_vport_output(OVS_VPORT_OUTPUT_PARAMS)
639 {
640 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
641 struct vport *vport = data->vport;
642
643 if (skb_cow_head(skb, data->l2_len) < 0) {
644 kfree_skb(skb);
645 return -ENOMEM;
646 }
647
648 __skb_dst_copy(skb, data->dst);
649 *OVS_GSO_CB(skb) = data->cb;
650 ovs_skb_set_inner_protocol(skb, data->inner_protocol);
651 skb->vlan_tci = data->vlan_tci;
652 skb->vlan_proto = data->vlan_proto;
653
654 /* Reconstruct the MAC header. */
655 skb_push(skb, data->l2_len);
656 memcpy(skb->data, &data->l2_data, data->l2_len);
657 skb_postpush_rcsum(skb, skb->data, data->l2_len);
658 skb_reset_mac_header(skb);
659
660 ovs_vport_send(vport, skb);
661 return 0;
662 }
663
664 static unsigned int
665 ovs_dst_get_mtu(const struct dst_entry *dst)
666 {
667 return dst->dev->mtu;
668 }
669
670 static struct dst_ops ovs_dst_ops = {
671 .family = AF_UNSPEC,
672 .mtu = ovs_dst_get_mtu,
673 };
674
675 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
676 * ovs_vport_output(), which is called once per fragmented packet.
677 */
678 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
679 {
680 unsigned int hlen = skb_network_offset(skb);
681 struct ovs_frag_data *data;
682
683 data = this_cpu_ptr(&ovs_frag_data_storage);
684 data->dst = (unsigned long) skb_dst(skb);
685 data->vport = vport;
686 data->cb = *OVS_GSO_CB(skb);
687 data->inner_protocol = ovs_skb_get_inner_protocol(skb);
688 data->vlan_tci = skb->vlan_tci;
689 data->vlan_proto = skb->vlan_proto;
690 data->l2_len = hlen;
691 memcpy(&data->l2_data, skb->data, hlen);
692
693 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
694 skb_pull(skb, hlen);
695 }
696
697 static void ovs_fragment(struct net *net, struct vport *vport,
698 struct sk_buff *skb, u16 mru, __be16 ethertype)
699 {
700 if (skb_network_offset(skb) > MAX_L2_LEN) {
701 OVS_NLERR(1, "L2 header too long to fragment");
702 goto err;
703 }
704
705 if (ethertype == htons(ETH_P_IP)) {
706 struct dst_entry ovs_dst;
707 unsigned long orig_dst;
708
709 prepare_frag(vport, skb);
710 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
711 DST_OBSOLETE_NONE, DST_NOCOUNT);
712 ovs_dst.dev = vport->dev;
713
714 orig_dst = (unsigned long) skb_dst(skb);
715 skb_dst_set_noref(skb, &ovs_dst);
716 IPCB(skb)->frag_max_size = mru;
717
718 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
719 refdst_drop(orig_dst);
720 } else if (ethertype == htons(ETH_P_IPV6)) {
721 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
722 unsigned long orig_dst;
723 struct rt6_info ovs_rt;
724
725 if (!v6ops) {
726 goto err;
727 }
728
729 prepare_frag(vport, skb);
730 memset(&ovs_rt, 0, sizeof(ovs_rt));
731 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
732 DST_OBSOLETE_NONE, DST_NOCOUNT);
733 ovs_rt.dst.dev = vport->dev;
734
735 orig_dst = (unsigned long) skb_dst(skb);
736 skb_dst_set_noref(skb, &ovs_rt.dst);
737 IP6CB(skb)->frag_max_size = mru;
738 #ifdef HAVE_IP_LOCAL_OUT_TAKES_NET
739 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
740 #else
741 v6ops->fragment(skb->sk, skb, ovs_vport_output);
742 #endif
743 refdst_drop(orig_dst);
744 } else {
745 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
746 ovs_vport_name(vport), ntohs(ethertype), mru,
747 vport->dev->mtu);
748 goto err;
749 }
750
751 return;
752 err:
753 kfree_skb(skb);
754 }
755
756 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
757 struct sw_flow_key *key)
758 {
759 struct vport *vport = ovs_vport_rcu(dp, out_port);
760
761 if (likely(vport)) {
762 u16 mru = OVS_CB(skb)->mru;
763 u32 cutlen = OVS_CB(skb)->cutlen;
764
765 if (unlikely(cutlen > 0)) {
766 if (skb->len - cutlen > ETH_HLEN)
767 pskb_trim(skb, skb->len - cutlen);
768 else
769 pskb_trim(skb, ETH_HLEN);
770 }
771
772 if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
773 ovs_vport_send(vport, skb);
774 } else if (mru <= vport->dev->mtu) {
775 struct net *net = ovs_dp_get_net(dp);
776 __be16 ethertype = key->eth.type;
777
778 if (!is_flow_key_valid(key)) {
779 if (eth_p_mpls(skb->protocol))
780 ethertype = ovs_skb_get_inner_protocol(skb);
781 else
782 ethertype = vlan_get_protocol(skb);
783 }
784
785 ovs_fragment(net, vport, skb, mru, ethertype);
786 } else {
787 OVS_NLERR(true, "Cannot fragment IP frames");
788 kfree_skb(skb);
789 }
790 } else {
791 kfree_skb(skb);
792 }
793 }
794
795 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
796 struct sw_flow_key *key, const struct nlattr *attr,
797 const struct nlattr *actions, int actions_len,
798 uint32_t cutlen)
799 {
800 struct dp_upcall_info upcall;
801 const struct nlattr *a;
802 int rem, err;
803
804 memset(&upcall, 0, sizeof(upcall));
805 upcall.cmd = OVS_PACKET_CMD_ACTION;
806 upcall.mru = OVS_CB(skb)->mru;
807
808 SKB_INIT_FILL_METADATA_DST(skb);
809 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
810 a = nla_next(a, &rem)) {
811 switch (nla_type(a)) {
812 case OVS_USERSPACE_ATTR_USERDATA:
813 upcall.userdata = a;
814 break;
815
816 case OVS_USERSPACE_ATTR_PID:
817 upcall.portid = nla_get_u32(a);
818 break;
819
820 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
821 /* Get out tunnel info. */
822 struct vport *vport;
823
824 vport = ovs_vport_rcu(dp, nla_get_u32(a));
825 if (vport) {
826 err = dev_fill_metadata_dst(vport->dev, skb);
827 if (!err)
828 upcall.egress_tun_info = skb_tunnel_info(skb);
829 }
830
831 break;
832 }
833
834 case OVS_USERSPACE_ATTR_ACTIONS: {
835 /* Include actions. */
836 upcall.actions = actions;
837 upcall.actions_len = actions_len;
838 break;
839 }
840
841 } /* End of switch. */
842 }
843
844 err = ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
845 SKB_RESTORE_FILL_METADATA_DST(skb);
846 return err;
847 }
848
849 static int sample(struct datapath *dp, struct sk_buff *skb,
850 struct sw_flow_key *key, const struct nlattr *attr,
851 const struct nlattr *actions, int actions_len)
852 {
853 const struct nlattr *acts_list = NULL;
854 const struct nlattr *a;
855 int rem;
856 u32 cutlen = 0;
857
858 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
859 a = nla_next(a, &rem)) {
860 u32 probability;
861
862 switch (nla_type(a)) {
863 case OVS_SAMPLE_ATTR_PROBABILITY:
864 probability = nla_get_u32(a);
865 if (!probability || prandom_u32() > probability)
866 return 0;
867 break;
868
869 case OVS_SAMPLE_ATTR_ACTIONS:
870 acts_list = a;
871 break;
872 }
873 }
874
875 rem = nla_len(acts_list);
876 a = nla_data(acts_list);
877
878 /* Actions list is empty, do nothing */
879 if (unlikely(!rem))
880 return 0;
881
882 /* The only known usage of sample action is having a single user-space
883 * action, or having a truncate action followed by a single user-space
884 * action. Treat this usage as a special case.
885 * The output_userspace() should clone the skb to be sent to the
886 * user space. This skb will be consumed by its caller.
887 */
888 if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
889 struct ovs_action_trunc *trunc = nla_data(a);
890
891 if (skb->len > trunc->max_len)
892 cutlen = skb->len - trunc->max_len;
893
894 a = nla_next(a, &rem);
895 }
896
897 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
898 nla_is_last(a, rem)))
899 return output_userspace(dp, skb, key, a, actions,
900 actions_len, cutlen);
901
902 skb = skb_clone(skb, GFP_ATOMIC);
903 if (!skb)
904 /* Skip the sample action when out of memory. */
905 return 0;
906
907 if (!add_deferred_actions(skb, key, a)) {
908 if (net_ratelimit())
909 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
910 ovs_dp_name(dp));
911
912 kfree_skb(skb);
913 }
914 return 0;
915 }
916
917 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
918 const struct nlattr *attr)
919 {
920 struct ovs_action_hash *hash_act = nla_data(attr);
921 u32 hash = 0;
922
923 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
924 hash = skb_get_hash(skb);
925 hash = jhash_1word(hash, hash_act->hash_basis);
926 if (!hash)
927 hash = 0x1;
928
929 key->ovs_flow_hash = hash;
930 }
931
932 static int execute_set_action(struct sk_buff *skb,
933 struct sw_flow_key *flow_key,
934 const struct nlattr *a)
935 {
936 /* Only tunnel set execution is supported without a mask. */
937 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
938 struct ovs_tunnel_info *tun = nla_data(a);
939
940 ovs_skb_dst_drop(skb);
941 ovs_dst_hold((struct dst_entry *)tun->tun_dst);
942 ovs_skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
943 return 0;
944 }
945
946 return -EINVAL;
947 }
948
949 /* Mask is at the midpoint of the data. */
950 #define get_mask(a, type) ((const type)nla_data(a) + 1)
951
952 static int execute_masked_set_action(struct sk_buff *skb,
953 struct sw_flow_key *flow_key,
954 const struct nlattr *a)
955 {
956 int err = 0;
957
958 switch (nla_type(a)) {
959 case OVS_KEY_ATTR_PRIORITY:
960 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
961 *get_mask(a, u32 *));
962 flow_key->phy.priority = skb->priority;
963 break;
964
965 case OVS_KEY_ATTR_SKB_MARK:
966 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
967 flow_key->phy.skb_mark = skb->mark;
968 break;
969
970 case OVS_KEY_ATTR_TUNNEL_INFO:
971 /* Masked data not supported for tunnel. */
972 err = -EINVAL;
973 break;
974
975 case OVS_KEY_ATTR_ETHERNET:
976 err = set_eth_addr(skb, flow_key, nla_data(a),
977 get_mask(a, struct ovs_key_ethernet *));
978 break;
979
980 case OVS_KEY_ATTR_IPV4:
981 err = set_ipv4(skb, flow_key, nla_data(a),
982 get_mask(a, struct ovs_key_ipv4 *));
983 break;
984
985 case OVS_KEY_ATTR_IPV6:
986 err = set_ipv6(skb, flow_key, nla_data(a),
987 get_mask(a, struct ovs_key_ipv6 *));
988 break;
989
990 case OVS_KEY_ATTR_TCP:
991 err = set_tcp(skb, flow_key, nla_data(a),
992 get_mask(a, struct ovs_key_tcp *));
993 break;
994
995 case OVS_KEY_ATTR_UDP:
996 err = set_udp(skb, flow_key, nla_data(a),
997 get_mask(a, struct ovs_key_udp *));
998 break;
999
1000 case OVS_KEY_ATTR_SCTP:
1001 err = set_sctp(skb, flow_key, nla_data(a),
1002 get_mask(a, struct ovs_key_sctp *));
1003 break;
1004
1005 case OVS_KEY_ATTR_MPLS:
1006 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1007 __be32 *));
1008 break;
1009
1010 case OVS_KEY_ATTR_CT_STATE:
1011 case OVS_KEY_ATTR_CT_ZONE:
1012 case OVS_KEY_ATTR_CT_MARK:
1013 case OVS_KEY_ATTR_CT_LABELS:
1014 err = -EINVAL;
1015 break;
1016 }
1017
1018 return err;
1019 }
1020
1021 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1022 struct sw_flow_key *key,
1023 const struct nlattr *a, int rem)
1024 {
1025 struct deferred_action *da;
1026 int level;
1027
1028 if (!is_flow_key_valid(key)) {
1029 int err;
1030
1031 err = ovs_flow_key_update(skb, key);
1032 if (err)
1033 return err;
1034 }
1035 BUG_ON(!is_flow_key_valid(key));
1036
1037 if (!nla_is_last(a, rem)) {
1038 /* Recirc action is the not the last action
1039 * of the action list, need to clone the skb.
1040 */
1041 skb = skb_clone(skb, GFP_ATOMIC);
1042
1043 /* Skip the recirc action when out of memory, but
1044 * continue on with the rest of the action list.
1045 */
1046 if (!skb)
1047 return 0;
1048 }
1049
1050 level = this_cpu_read(exec_actions_level);
1051 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1052 struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1053 struct sw_flow_key *recirc_key = &rks->key[level - 1];
1054
1055 *recirc_key = *key;
1056 recirc_key->recirc_id = nla_get_u32(a);
1057 ovs_dp_process_packet(skb, recirc_key);
1058
1059 return 0;
1060 }
1061
1062 da = add_deferred_actions(skb, key, NULL);
1063 if (da) {
1064 da->pkt_key.recirc_id = nla_get_u32(a);
1065 } else {
1066 kfree_skb(skb);
1067
1068 if (net_ratelimit())
1069 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1070 ovs_dp_name(dp));
1071 }
1072
1073 return 0;
1074 }
1075
1076 /* Execute a list of actions against 'skb'. */
1077 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1078 struct sw_flow_key *key,
1079 const struct nlattr *attr, int len)
1080 {
1081 /* Every output action needs a separate clone of 'skb', but the common
1082 * case is just a single output action, so that doing a clone and
1083 * then freeing the original skbuff is wasteful. So the following code
1084 * is slightly obscure just to avoid that.
1085 */
1086 int prev_port = -1;
1087 const struct nlattr *a;
1088 int rem;
1089
1090 for (a = attr, rem = len; rem > 0;
1091 a = nla_next(a, &rem)) {
1092 int err = 0;
1093
1094 if (unlikely(prev_port != -1)) {
1095 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1096
1097 if (out_skb)
1098 do_output(dp, out_skb, prev_port, key);
1099
1100 OVS_CB(skb)->cutlen = 0;
1101 prev_port = -1;
1102 }
1103
1104 switch (nla_type(a)) {
1105 case OVS_ACTION_ATTR_OUTPUT:
1106 prev_port = nla_get_u32(a);
1107 break;
1108
1109 case OVS_ACTION_ATTR_TRUNC: {
1110 struct ovs_action_trunc *trunc = nla_data(a);
1111
1112 if (skb->len > trunc->max_len)
1113 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1114 break;
1115 }
1116
1117 case OVS_ACTION_ATTR_USERSPACE:
1118 output_userspace(dp, skb, key, a, attr,
1119 len, OVS_CB(skb)->cutlen);
1120 OVS_CB(skb)->cutlen = 0;
1121 break;
1122
1123 case OVS_ACTION_ATTR_HASH:
1124 execute_hash(skb, key, a);
1125 break;
1126
1127 case OVS_ACTION_ATTR_PUSH_MPLS:
1128 err = push_mpls(skb, key, nla_data(a));
1129 break;
1130
1131 case OVS_ACTION_ATTR_POP_MPLS:
1132 err = pop_mpls(skb, key, nla_get_be16(a));
1133 break;
1134
1135 case OVS_ACTION_ATTR_PUSH_VLAN:
1136 err = push_vlan(skb, key, nla_data(a));
1137 break;
1138
1139 case OVS_ACTION_ATTR_POP_VLAN:
1140 err = pop_vlan(skb, key);
1141 break;
1142
1143 case OVS_ACTION_ATTR_RECIRC:
1144 err = execute_recirc(dp, skb, key, a, rem);
1145 if (nla_is_last(a, rem)) {
1146 /* If this is the last action, the skb has
1147 * been consumed or freed.
1148 * Return immediately.
1149 */
1150 return err;
1151 }
1152 break;
1153
1154 case OVS_ACTION_ATTR_SET:
1155 err = execute_set_action(skb, key, nla_data(a));
1156 break;
1157
1158 case OVS_ACTION_ATTR_SET_MASKED:
1159 case OVS_ACTION_ATTR_SET_TO_MASKED:
1160 err = execute_masked_set_action(skb, key, nla_data(a));
1161 break;
1162
1163 case OVS_ACTION_ATTR_SAMPLE:
1164 err = sample(dp, skb, key, a, attr, len);
1165 break;
1166
1167 case OVS_ACTION_ATTR_CT:
1168 if (!is_flow_key_valid(key)) {
1169 err = ovs_flow_key_update(skb, key);
1170 if (err)
1171 return err;
1172 }
1173
1174 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1175 nla_data(a));
1176
1177 /* Hide stolen IP fragments from user space. */
1178 if (err)
1179 return err == -EINPROGRESS ? 0 : err;
1180 break;
1181 }
1182
1183 if (unlikely(err)) {
1184 kfree_skb(skb);
1185 return err;
1186 }
1187 }
1188
1189 if (prev_port != -1)
1190 do_output(dp, skb, prev_port, key);
1191 else
1192 consume_skb(skb);
1193
1194 return 0;
1195 }
1196
1197 static void process_deferred_actions(struct datapath *dp)
1198 {
1199 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1200
1201 /* Do not touch the FIFO in case there is no deferred actions. */
1202 if (action_fifo_is_empty(fifo))
1203 return;
1204
1205 /* Finishing executing all deferred actions. */
1206 do {
1207 struct deferred_action *da = action_fifo_get(fifo);
1208 struct sk_buff *skb = da->skb;
1209 struct sw_flow_key *key = &da->pkt_key;
1210 const struct nlattr *actions = da->actions;
1211
1212 if (actions)
1213 do_execute_actions(dp, skb, key, actions,
1214 nla_len(actions));
1215 else
1216 ovs_dp_process_packet(skb, key);
1217 } while (!action_fifo_is_empty(fifo));
1218
1219 /* Reset FIFO for the next packet. */
1220 action_fifo_init(fifo);
1221 }
1222
1223 /* Execute a list of actions against 'skb'. */
1224 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1225 const struct sw_flow_actions *acts,
1226 struct sw_flow_key *key)
1227 {
1228 int err, level;
1229
1230 level = __this_cpu_inc_return(exec_actions_level);
1231 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1232 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1233 ovs_dp_name(dp));
1234 kfree_skb(skb);
1235 err = -ENETDOWN;
1236 goto out;
1237 }
1238
1239 err = do_execute_actions(dp, skb, key,
1240 acts->actions, acts->actions_len);
1241
1242 if (level == 1)
1243 process_deferred_actions(dp);
1244
1245 out:
1246 __this_cpu_dec(exec_actions_level);
1247 return err;
1248 }
1249
1250 int action_fifos_init(void)
1251 {
1252 action_fifos = alloc_percpu(struct action_fifo);
1253 if (!action_fifos)
1254 return -ENOMEM;
1255
1256 recirc_keys = alloc_percpu(struct recirc_keys);
1257 if (!recirc_keys) {
1258 free_percpu(action_fifos);
1259 return -ENOMEM;
1260 }
1261
1262 return 0;
1263 }
1264
1265 void action_fifos_exit(void)
1266 {
1267 free_percpu(action_fifos);
1268 free_percpu(recirc_keys);
1269 }