]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: add mac_proto field to the flow key
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/dsfield.h>
38 #include <net/mpls.h>
39 #include <net/sctp/checksum.h>
40
41 #include "datapath.h"
42 #include "conntrack.h"
43 #include "gso.h"
44 #include "vport.h"
45
46 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
47 struct sw_flow_key *key,
48 const struct nlattr *attr, int len);
49
50 struct deferred_action {
51 struct sk_buff *skb;
52 const struct nlattr *actions;
53
54 /* Store pkt_key clone when creating deferred action. */
55 struct sw_flow_key pkt_key;
56 };
57
58 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
59 struct ovs_frag_data {
60 unsigned long dst;
61 struct vport *vport;
62 struct ovs_gso_cb cb;
63 __be16 inner_protocol;
64 __u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 l2_data[MAX_L2_LEN];
68 };
69
70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
71
72 #define DEFERRED_ACTION_FIFO_SIZE 10
73 #define OVS_RECURSION_LIMIT 4
74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
75 struct action_fifo {
76 int head;
77 int tail;
78 /* Deferred action fifo queue storage. */
79 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
80 };
81
82 struct recirc_keys {
83 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
84 };
85
86 static struct action_fifo __percpu *action_fifos;
87 static struct recirc_keys __percpu *recirc_keys;
88 static DEFINE_PER_CPU(int, exec_actions_level);
89
90 static void action_fifo_init(struct action_fifo *fifo)
91 {
92 fifo->head = 0;
93 fifo->tail = 0;
94 }
95
96 static bool action_fifo_is_empty(const struct action_fifo *fifo)
97 {
98 return (fifo->head == fifo->tail);
99 }
100
101 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
102 {
103 if (action_fifo_is_empty(fifo))
104 return NULL;
105
106 return &fifo->fifo[fifo->tail++];
107 }
108
109 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
110 {
111 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
112 return NULL;
113
114 return &fifo->fifo[fifo->head++];
115 }
116
117 /* Return queue entry if fifo is not full */
118 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
119 const struct sw_flow_key *key,
120 const struct nlattr *attr)
121 {
122 struct action_fifo *fifo;
123 struct deferred_action *da;
124
125 fifo = this_cpu_ptr(action_fifos);
126 da = action_fifo_put(fifo);
127 if (da) {
128 da->skb = skb;
129 da->actions = attr;
130 da->pkt_key = *key;
131 }
132
133 return da;
134 }
135
136 static void invalidate_flow_key(struct sw_flow_key *key)
137 {
138 key->mac_proto |= SW_FLOW_KEY_INVALID;
139 }
140
141 static bool is_flow_key_valid(const struct sw_flow_key *key)
142 {
143 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
144 }
145
146 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
147 __be16 ethertype)
148 {
149 if (skb->ip_summed == CHECKSUM_COMPLETE) {
150 __be16 diff[] = { ~(hdr->h_proto), ethertype };
151
152 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
153 ~skb->csum);
154 }
155
156 hdr->h_proto = ethertype;
157 }
158
159 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
160 const struct ovs_action_push_mpls *mpls)
161 {
162 __be32 *new_mpls_lse;
163
164 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
165 if (skb->encapsulation)
166 return -ENOTSUPP;
167
168 if (skb_cow_head(skb, MPLS_HLEN) < 0)
169 return -ENOMEM;
170
171 skb_push(skb, MPLS_HLEN);
172 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
173 skb->mac_len);
174 skb_reset_mac_header(skb);
175
176 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
177 *new_mpls_lse = mpls->mpls_lse;
178
179 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
180
181 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
182 if (!ovs_skb_get_inner_protocol(skb))
183 ovs_skb_set_inner_protocol(skb, skb->protocol);
184 skb->protocol = mpls->mpls_ethertype;
185
186 invalidate_flow_key(key);
187 return 0;
188 }
189
190 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
191 const __be16 ethertype)
192 {
193 struct ethhdr *hdr;
194 int err;
195
196 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
197 if (unlikely(err))
198 return err;
199
200 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
201
202 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
203 skb->mac_len);
204
205 __skb_pull(skb, MPLS_HLEN);
206 skb_reset_mac_header(skb);
207
208 /* skb_mpls_header() is used to locate the ethertype
209 * field correctly in the presence of VLAN tags.
210 */
211 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
212 update_ethertype(skb, hdr, ethertype);
213 if (eth_p_mpls(skb->protocol))
214 skb->protocol = ethertype;
215
216 invalidate_flow_key(key);
217 return 0;
218 }
219
220 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
221 const __be32 *mpls_lse, const __be32 *mask)
222 {
223 __be32 *stack;
224 __be32 lse;
225 int err;
226
227 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
228 if (unlikely(err))
229 return err;
230
231 stack = (__be32 *)skb_mpls_header(skb);
232 lse = OVS_MASKED(*stack, *mpls_lse, *mask);
233 if (skb->ip_summed == CHECKSUM_COMPLETE) {
234 __be32 diff[] = { ~(*stack), lse };
235
236 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
237 ~skb->csum);
238 }
239
240 *stack = lse;
241 flow_key->mpls.top_lse = lse;
242 return 0;
243 }
244
245 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
246 {
247 int err;
248
249 err = skb_vlan_pop(skb);
250 if (skb_vlan_tag_present(skb)) {
251 invalidate_flow_key(key);
252 } else {
253 key->eth.vlan.tci = 0;
254 key->eth.vlan.tpid = 0;
255 }
256 return err;
257 }
258
259 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
260 const struct ovs_action_push_vlan *vlan)
261 {
262 if (skb_vlan_tag_present(skb)) {
263 invalidate_flow_key(key);
264 } else {
265 key->eth.vlan.tci = vlan->vlan_tci;
266 key->eth.vlan.tpid = vlan->vlan_tpid;
267 }
268 return skb_vlan_push(skb, vlan->vlan_tpid,
269 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
270 }
271
272 /* 'src' is already properly masked. */
273 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
274 {
275 u16 *dst = (u16 *)dst_;
276 const u16 *src = (const u16 *)src_;
277 const u16 *mask = (const u16 *)mask_;
278
279 OVS_SET_MASKED(dst[0], src[0], mask[0]);
280 OVS_SET_MASKED(dst[1], src[1], mask[1]);
281 OVS_SET_MASKED(dst[2], src[2], mask[2]);
282 }
283
284 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
285 const struct ovs_key_ethernet *key,
286 const struct ovs_key_ethernet *mask)
287 {
288 int err;
289
290 err = skb_ensure_writable(skb, ETH_HLEN);
291 if (unlikely(err))
292 return err;
293
294 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
295
296 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
297 mask->eth_src);
298 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
299 mask->eth_dst);
300
301 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
302
303 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
304 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
305 return 0;
306 }
307
308 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
309 __be32 addr, __be32 new_addr)
310 {
311 int transport_len = skb->len - skb_transport_offset(skb);
312
313 if (nh->frag_off & htons(IP_OFFSET))
314 return;
315
316 if (nh->protocol == IPPROTO_TCP) {
317 if (likely(transport_len >= sizeof(struct tcphdr)))
318 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
319 addr, new_addr, true);
320 } else if (nh->protocol == IPPROTO_UDP) {
321 if (likely(transport_len >= sizeof(struct udphdr))) {
322 struct udphdr *uh = udp_hdr(skb);
323
324 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
325 inet_proto_csum_replace4(&uh->check, skb,
326 addr, new_addr, true);
327 if (!uh->check)
328 uh->check = CSUM_MANGLED_0;
329 }
330 }
331 }
332
333 }
334
335 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
336 __be32 *addr, __be32 new_addr)
337 {
338 update_ip_l4_checksum(skb, nh, *addr, new_addr);
339 csum_replace4(&nh->check, *addr, new_addr);
340 skb_clear_hash(skb);
341 *addr = new_addr;
342 }
343
344 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
345 __be32 addr[4], const __be32 new_addr[4])
346 {
347 int transport_len = skb->len - skb_transport_offset(skb);
348
349 if (l4_proto == NEXTHDR_TCP) {
350 if (likely(transport_len >= sizeof(struct tcphdr)))
351 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
352 addr, new_addr, true);
353 } else if (l4_proto == NEXTHDR_UDP) {
354 if (likely(transport_len >= sizeof(struct udphdr))) {
355 struct udphdr *uh = udp_hdr(skb);
356
357 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
358 inet_proto_csum_replace16(&uh->check, skb,
359 addr, new_addr, true);
360 if (!uh->check)
361 uh->check = CSUM_MANGLED_0;
362 }
363 }
364 } else if (l4_proto == NEXTHDR_ICMP) {
365 if (likely(transport_len >= sizeof(struct icmp6hdr)))
366 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
367 skb, addr, new_addr, true);
368 }
369 }
370
371 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
372 const __be32 mask[4], __be32 masked[4])
373 {
374 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
375 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
376 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
377 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
378 }
379
380 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
381 __be32 addr[4], const __be32 new_addr[4],
382 bool recalculate_csum)
383 {
384 if (likely(recalculate_csum))
385 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
386
387 skb_clear_hash(skb);
388 memcpy(addr, new_addr, sizeof(__be32[4]));
389 }
390
391 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
392 {
393 /* Bits 21-24 are always unmasked, so this retains their values. */
394 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
395 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
396 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
397 }
398
399 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
400 u8 mask)
401 {
402 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
403
404 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
405 nh->ttl = new_ttl;
406 }
407
408 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
409 const struct ovs_key_ipv4 *key,
410 const struct ovs_key_ipv4 *mask)
411 {
412 struct iphdr *nh;
413 __be32 new_addr;
414 int err;
415
416 err = skb_ensure_writable(skb, skb_network_offset(skb) +
417 sizeof(struct iphdr));
418 if (unlikely(err))
419 return err;
420
421 nh = ip_hdr(skb);
422
423 /* Setting an IP addresses is typically only a side effect of
424 * matching on them in the current userspace implementation, so it
425 * makes sense to check if the value actually changed.
426 */
427 if (mask->ipv4_src) {
428 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
429
430 if (unlikely(new_addr != nh->saddr)) {
431 set_ip_addr(skb, nh, &nh->saddr, new_addr);
432 flow_key->ipv4.addr.src = new_addr;
433 }
434 }
435 if (mask->ipv4_dst) {
436 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
437
438 if (unlikely(new_addr != nh->daddr)) {
439 set_ip_addr(skb, nh, &nh->daddr, new_addr);
440 flow_key->ipv4.addr.dst = new_addr;
441 }
442 }
443 if (mask->ipv4_tos) {
444 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
445 flow_key->ip.tos = nh->tos;
446 }
447 if (mask->ipv4_ttl) {
448 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
449 flow_key->ip.ttl = nh->ttl;
450 }
451
452 return 0;
453 }
454
455 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
456 {
457 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
458 }
459
460 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
461 const struct ovs_key_ipv6 *key,
462 const struct ovs_key_ipv6 *mask)
463 {
464 struct ipv6hdr *nh;
465 int err;
466
467 err = skb_ensure_writable(skb, skb_network_offset(skb) +
468 sizeof(struct ipv6hdr));
469 if (unlikely(err))
470 return err;
471
472 nh = ipv6_hdr(skb);
473
474 /* Setting an IP addresses is typically only a side effect of
475 * matching on them in the current userspace implementation, so it
476 * makes sense to check if the value actually changed.
477 */
478 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
479 __be32 *saddr = (__be32 *)&nh->saddr;
480 __be32 masked[4];
481
482 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
483
484 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
485 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
486 true);
487 memcpy(&flow_key->ipv6.addr.src, masked,
488 sizeof(flow_key->ipv6.addr.src));
489 }
490 }
491 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
492 unsigned int offset = 0;
493 int flags = IP6_FH_F_SKIP_RH;
494 bool recalc_csum = true;
495 __be32 *daddr = (__be32 *)&nh->daddr;
496 __be32 masked[4];
497
498 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
499
500 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
501 if (ipv6_ext_hdr(nh->nexthdr))
502 recalc_csum = (ipv6_find_hdr(skb, &offset,
503 NEXTHDR_ROUTING,
504 NULL, &flags)
505 != NEXTHDR_ROUTING);
506
507 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
508 recalc_csum);
509 memcpy(&flow_key->ipv6.addr.dst, masked,
510 sizeof(flow_key->ipv6.addr.dst));
511 }
512 }
513 if (mask->ipv6_tclass) {
514 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
515 flow_key->ip.tos = ipv6_get_dsfield(nh);
516 }
517 if (mask->ipv6_label) {
518 set_ipv6_fl(nh, ntohl(key->ipv6_label),
519 ntohl(mask->ipv6_label));
520 flow_key->ipv6.label =
521 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
522 }
523 if (mask->ipv6_hlimit) {
524 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
525 mask->ipv6_hlimit);
526 flow_key->ip.ttl = nh->hop_limit;
527 }
528 return 0;
529 }
530
531 /* Must follow skb_ensure_writable() since that can move the skb data. */
532 static void set_tp_port(struct sk_buff *skb, __be16 *port,
533 __be16 new_port, __sum16 *check)
534 {
535 inet_proto_csum_replace2(check, skb, *port, new_port, false);
536 *port = new_port;
537 }
538
539 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
540 const struct ovs_key_udp *key,
541 const struct ovs_key_udp *mask)
542 {
543 struct udphdr *uh;
544 __be16 src, dst;
545 int err;
546
547 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
548 sizeof(struct udphdr));
549 if (unlikely(err))
550 return err;
551
552 uh = udp_hdr(skb);
553 /* Either of the masks is non-zero, so do not bother checking them. */
554 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
555 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
556
557 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
558 if (likely(src != uh->source)) {
559 set_tp_port(skb, &uh->source, src, &uh->check);
560 flow_key->tp.src = src;
561 }
562 if (likely(dst != uh->dest)) {
563 set_tp_port(skb, &uh->dest, dst, &uh->check);
564 flow_key->tp.dst = dst;
565 }
566
567 if (unlikely(!uh->check))
568 uh->check = CSUM_MANGLED_0;
569 } else {
570 uh->source = src;
571 uh->dest = dst;
572 flow_key->tp.src = src;
573 flow_key->tp.dst = dst;
574 }
575
576 skb_clear_hash(skb);
577
578 return 0;
579 }
580
581 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
582 const struct ovs_key_tcp *key,
583 const struct ovs_key_tcp *mask)
584 {
585 struct tcphdr *th;
586 __be16 src, dst;
587 int err;
588
589 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
590 sizeof(struct tcphdr));
591 if (unlikely(err))
592 return err;
593
594 th = tcp_hdr(skb);
595 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
596 if (likely(src != th->source)) {
597 set_tp_port(skb, &th->source, src, &th->check);
598 flow_key->tp.src = src;
599 }
600 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
601 if (likely(dst != th->dest)) {
602 set_tp_port(skb, &th->dest, dst, &th->check);
603 flow_key->tp.dst = dst;
604 }
605 skb_clear_hash(skb);
606
607 return 0;
608 }
609
610 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
611 const struct ovs_key_sctp *key,
612 const struct ovs_key_sctp *mask)
613 {
614 unsigned int sctphoff = skb_transport_offset(skb);
615 struct sctphdr *sh;
616 __le32 old_correct_csum, new_csum, old_csum;
617 int err;
618
619 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
620 if (unlikely(err))
621 return err;
622
623 sh = sctp_hdr(skb);
624 old_csum = sh->checksum;
625 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
626
627 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
628 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
629
630 new_csum = sctp_compute_cksum(skb, sctphoff);
631
632 /* Carry any checksum errors through. */
633 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
634
635 skb_clear_hash(skb);
636 flow_key->tp.src = sh->source;
637 flow_key->tp.dst = sh->dest;
638
639 return 0;
640 }
641
642 static int ovs_vport_output(OVS_VPORT_OUTPUT_PARAMS)
643 {
644 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
645 struct vport *vport = data->vport;
646
647 if (skb_cow_head(skb, data->l2_len) < 0) {
648 kfree_skb(skb);
649 return -ENOMEM;
650 }
651
652 __skb_dst_copy(skb, data->dst);
653 *OVS_GSO_CB(skb) = data->cb;
654 ovs_skb_set_inner_protocol(skb, data->inner_protocol);
655 skb->vlan_tci = data->vlan_tci;
656 skb->vlan_proto = data->vlan_proto;
657
658 /* Reconstruct the MAC header. */
659 skb_push(skb, data->l2_len);
660 memcpy(skb->data, &data->l2_data, data->l2_len);
661 skb_postpush_rcsum(skb, skb->data, data->l2_len);
662 skb_reset_mac_header(skb);
663
664 ovs_vport_send(vport, skb);
665 return 0;
666 }
667
668 static unsigned int
669 ovs_dst_get_mtu(const struct dst_entry *dst)
670 {
671 return dst->dev->mtu;
672 }
673
674 static struct dst_ops ovs_dst_ops = {
675 .family = AF_UNSPEC,
676 .mtu = ovs_dst_get_mtu,
677 };
678
679 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
680 * ovs_vport_output(), which is called once per fragmented packet.
681 */
682 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
683 {
684 unsigned int hlen = skb_network_offset(skb);
685 struct ovs_frag_data *data;
686
687 data = this_cpu_ptr(&ovs_frag_data_storage);
688 data->dst = (unsigned long) skb_dst(skb);
689 data->vport = vport;
690 data->cb = *OVS_GSO_CB(skb);
691 data->inner_protocol = ovs_skb_get_inner_protocol(skb);
692 data->vlan_tci = skb->vlan_tci;
693 data->vlan_proto = skb->vlan_proto;
694 data->l2_len = hlen;
695 memcpy(&data->l2_data, skb->data, hlen);
696
697 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
698 skb_pull(skb, hlen);
699 }
700
701 static void ovs_fragment(struct net *net, struct vport *vport,
702 struct sk_buff *skb, u16 mru, __be16 ethertype)
703 {
704 if (skb_network_offset(skb) > MAX_L2_LEN) {
705 OVS_NLERR(1, "L2 header too long to fragment");
706 goto err;
707 }
708
709 if (ethertype == htons(ETH_P_IP)) {
710 struct dst_entry ovs_dst;
711 unsigned long orig_dst;
712
713 prepare_frag(vport, skb);
714 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
715 DST_OBSOLETE_NONE, DST_NOCOUNT);
716 ovs_dst.dev = vport->dev;
717
718 orig_dst = (unsigned long) skb_dst(skb);
719 skb_dst_set_noref(skb, &ovs_dst);
720 IPCB(skb)->frag_max_size = mru;
721
722 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
723 refdst_drop(orig_dst);
724 } else if (ethertype == htons(ETH_P_IPV6)) {
725 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
726 unsigned long orig_dst;
727 struct rt6_info ovs_rt;
728
729 if (!v6ops) {
730 goto err;
731 }
732
733 prepare_frag(vport, skb);
734 memset(&ovs_rt, 0, sizeof(ovs_rt));
735 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
736 DST_OBSOLETE_NONE, DST_NOCOUNT);
737 ovs_rt.dst.dev = vport->dev;
738
739 orig_dst = (unsigned long) skb_dst(skb);
740 skb_dst_set_noref(skb, &ovs_rt.dst);
741 IP6CB(skb)->frag_max_size = mru;
742 #ifdef HAVE_IP_LOCAL_OUT_TAKES_NET
743 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
744 #else
745 v6ops->fragment(skb->sk, skb, ovs_vport_output);
746 #endif
747 refdst_drop(orig_dst);
748 } else {
749 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
750 ovs_vport_name(vport), ntohs(ethertype), mru,
751 vport->dev->mtu);
752 goto err;
753 }
754
755 return;
756 err:
757 kfree_skb(skb);
758 }
759
760 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
761 struct sw_flow_key *key)
762 {
763 struct vport *vport = ovs_vport_rcu(dp, out_port);
764
765 if (likely(vport)) {
766 u16 mru = OVS_CB(skb)->mru;
767 u32 cutlen = OVS_CB(skb)->cutlen;
768
769 if (unlikely(cutlen > 0)) {
770 if (skb->len - cutlen > ETH_HLEN)
771 pskb_trim(skb, skb->len - cutlen);
772 else
773 pskb_trim(skb, ETH_HLEN);
774 }
775
776 if (likely(!mru ||
777 (skb->len <= mru + vport->dev->hard_header_len))) {
778 ovs_vport_send(vport, skb);
779 } else if (mru <= vport->dev->mtu) {
780 struct net *net = ovs_dp_get_net(dp);
781
782 ovs_fragment(net, vport, skb, mru, key->eth.type);
783 } else {
784 OVS_NLERR(true, "Cannot fragment IP frames");
785 kfree_skb(skb);
786 }
787 } else {
788 kfree_skb(skb);
789 }
790 }
791
792 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
793 struct sw_flow_key *key, const struct nlattr *attr,
794 const struct nlattr *actions, int actions_len,
795 uint32_t cutlen)
796 {
797 struct dp_upcall_info upcall;
798 const struct nlattr *a;
799 int rem, err;
800
801 memset(&upcall, 0, sizeof(upcall));
802 upcall.cmd = OVS_PACKET_CMD_ACTION;
803 upcall.mru = OVS_CB(skb)->mru;
804
805 SKB_INIT_FILL_METADATA_DST(skb);
806 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
807 a = nla_next(a, &rem)) {
808 switch (nla_type(a)) {
809 case OVS_USERSPACE_ATTR_USERDATA:
810 upcall.userdata = a;
811 break;
812
813 case OVS_USERSPACE_ATTR_PID:
814 upcall.portid = nla_get_u32(a);
815 break;
816
817 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
818 /* Get out tunnel info. */
819 struct vport *vport;
820
821 vport = ovs_vport_rcu(dp, nla_get_u32(a));
822 if (vport) {
823 err = dev_fill_metadata_dst(vport->dev, skb);
824 if (!err)
825 upcall.egress_tun_info = skb_tunnel_info(skb);
826 }
827
828 break;
829 }
830
831 case OVS_USERSPACE_ATTR_ACTIONS: {
832 /* Include actions. */
833 upcall.actions = actions;
834 upcall.actions_len = actions_len;
835 break;
836 }
837
838 } /* End of switch. */
839 }
840
841 err = ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
842 SKB_RESTORE_FILL_METADATA_DST(skb);
843 return err;
844 }
845
846 static int sample(struct datapath *dp, struct sk_buff *skb,
847 struct sw_flow_key *key, const struct nlattr *attr,
848 const struct nlattr *actions, int actions_len)
849 {
850 const struct nlattr *acts_list = NULL;
851 const struct nlattr *a;
852 int rem;
853 u32 cutlen = 0;
854
855 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
856 a = nla_next(a, &rem)) {
857 u32 probability;
858
859 switch (nla_type(a)) {
860 case OVS_SAMPLE_ATTR_PROBABILITY:
861 probability = nla_get_u32(a);
862 if (!probability || prandom_u32() > probability)
863 return 0;
864 break;
865
866 case OVS_SAMPLE_ATTR_ACTIONS:
867 acts_list = a;
868 break;
869 }
870 }
871
872 rem = nla_len(acts_list);
873 a = nla_data(acts_list);
874
875 /* Actions list is empty, do nothing */
876 if (unlikely(!rem))
877 return 0;
878
879 /* The only known usage of sample action is having a single user-space
880 * action, or having a truncate action followed by a single user-space
881 * action. Treat this usage as a special case.
882 * The output_userspace() should clone the skb to be sent to the
883 * user space. This skb will be consumed by its caller.
884 */
885 if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
886 struct ovs_action_trunc *trunc = nla_data(a);
887
888 if (skb->len > trunc->max_len)
889 cutlen = skb->len - trunc->max_len;
890
891 a = nla_next(a, &rem);
892 }
893
894 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
895 nla_is_last(a, rem)))
896 return output_userspace(dp, skb, key, a, actions,
897 actions_len, cutlen);
898
899 skb = skb_clone(skb, GFP_ATOMIC);
900 if (!skb)
901 /* Skip the sample action when out of memory. */
902 return 0;
903
904 if (!add_deferred_actions(skb, key, a)) {
905 if (net_ratelimit())
906 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
907 ovs_dp_name(dp));
908
909 kfree_skb(skb);
910 }
911 return 0;
912 }
913
914 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
915 const struct nlattr *attr)
916 {
917 struct ovs_action_hash *hash_act = nla_data(attr);
918 u32 hash = 0;
919
920 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
921 hash = skb_get_hash(skb);
922 hash = jhash_1word(hash, hash_act->hash_basis);
923 if (!hash)
924 hash = 0x1;
925
926 key->ovs_flow_hash = hash;
927 }
928
929 static int execute_set_action(struct sk_buff *skb,
930 struct sw_flow_key *flow_key,
931 const struct nlattr *a)
932 {
933 /* Only tunnel set execution is supported without a mask. */
934 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
935 struct ovs_tunnel_info *tun = nla_data(a);
936
937 ovs_skb_dst_drop(skb);
938 ovs_dst_hold((struct dst_entry *)tun->tun_dst);
939 ovs_skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
940 return 0;
941 }
942
943 return -EINVAL;
944 }
945
946 /* Mask is at the midpoint of the data. */
947 #define get_mask(a, type) ((const type)nla_data(a) + 1)
948
949 static int execute_masked_set_action(struct sk_buff *skb,
950 struct sw_flow_key *flow_key,
951 const struct nlattr *a)
952 {
953 int err = 0;
954
955 switch (nla_type(a)) {
956 case OVS_KEY_ATTR_PRIORITY:
957 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
958 *get_mask(a, u32 *));
959 flow_key->phy.priority = skb->priority;
960 break;
961
962 case OVS_KEY_ATTR_SKB_MARK:
963 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
964 flow_key->phy.skb_mark = skb->mark;
965 break;
966
967 case OVS_KEY_ATTR_TUNNEL_INFO:
968 /* Masked data not supported for tunnel. */
969 err = -EINVAL;
970 break;
971
972 case OVS_KEY_ATTR_ETHERNET:
973 err = set_eth_addr(skb, flow_key, nla_data(a),
974 get_mask(a, struct ovs_key_ethernet *));
975 break;
976
977 case OVS_KEY_ATTR_IPV4:
978 err = set_ipv4(skb, flow_key, nla_data(a),
979 get_mask(a, struct ovs_key_ipv4 *));
980 break;
981
982 case OVS_KEY_ATTR_IPV6:
983 err = set_ipv6(skb, flow_key, nla_data(a),
984 get_mask(a, struct ovs_key_ipv6 *));
985 break;
986
987 case OVS_KEY_ATTR_TCP:
988 err = set_tcp(skb, flow_key, nla_data(a),
989 get_mask(a, struct ovs_key_tcp *));
990 break;
991
992 case OVS_KEY_ATTR_UDP:
993 err = set_udp(skb, flow_key, nla_data(a),
994 get_mask(a, struct ovs_key_udp *));
995 break;
996
997 case OVS_KEY_ATTR_SCTP:
998 err = set_sctp(skb, flow_key, nla_data(a),
999 get_mask(a, struct ovs_key_sctp *));
1000 break;
1001
1002 case OVS_KEY_ATTR_MPLS:
1003 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1004 __be32 *));
1005 break;
1006
1007 case OVS_KEY_ATTR_CT_STATE:
1008 case OVS_KEY_ATTR_CT_ZONE:
1009 case OVS_KEY_ATTR_CT_MARK:
1010 case OVS_KEY_ATTR_CT_LABELS:
1011 err = -EINVAL;
1012 break;
1013 }
1014
1015 return err;
1016 }
1017
1018 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1019 struct sw_flow_key *key,
1020 const struct nlattr *a, int rem)
1021 {
1022 struct deferred_action *da;
1023 int level;
1024
1025 if (!is_flow_key_valid(key)) {
1026 int err;
1027
1028 err = ovs_flow_key_update(skb, key);
1029 if (err)
1030 return err;
1031 }
1032 BUG_ON(!is_flow_key_valid(key));
1033
1034 if (!nla_is_last(a, rem)) {
1035 /* Recirc action is the not the last action
1036 * of the action list, need to clone the skb.
1037 */
1038 skb = skb_clone(skb, GFP_ATOMIC);
1039
1040 /* Skip the recirc action when out of memory, but
1041 * continue on with the rest of the action list.
1042 */
1043 if (!skb)
1044 return 0;
1045 }
1046
1047 level = this_cpu_read(exec_actions_level);
1048 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1049 struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1050 struct sw_flow_key *recirc_key = &rks->key[level - 1];
1051
1052 *recirc_key = *key;
1053 recirc_key->recirc_id = nla_get_u32(a);
1054 ovs_dp_process_packet(skb, recirc_key);
1055
1056 return 0;
1057 }
1058
1059 da = add_deferred_actions(skb, key, NULL);
1060 if (da) {
1061 da->pkt_key.recirc_id = nla_get_u32(a);
1062 } else {
1063 kfree_skb(skb);
1064
1065 if (net_ratelimit())
1066 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1067 ovs_dp_name(dp));
1068 }
1069
1070 return 0;
1071 }
1072
1073 /* Execute a list of actions against 'skb'. */
1074 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1075 struct sw_flow_key *key,
1076 const struct nlattr *attr, int len)
1077 {
1078 /* Every output action needs a separate clone of 'skb', but the common
1079 * case is just a single output action, so that doing a clone and
1080 * then freeing the original skbuff is wasteful. So the following code
1081 * is slightly obscure just to avoid that.
1082 */
1083 int prev_port = -1;
1084 const struct nlattr *a;
1085 int rem;
1086
1087 for (a = attr, rem = len; rem > 0;
1088 a = nla_next(a, &rem)) {
1089 int err = 0;
1090
1091 if (unlikely(prev_port != -1)) {
1092 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1093
1094 if (out_skb)
1095 do_output(dp, out_skb, prev_port, key);
1096
1097 OVS_CB(skb)->cutlen = 0;
1098 prev_port = -1;
1099 }
1100
1101 switch (nla_type(a)) {
1102 case OVS_ACTION_ATTR_OUTPUT:
1103 prev_port = nla_get_u32(a);
1104 break;
1105
1106 case OVS_ACTION_ATTR_TRUNC: {
1107 struct ovs_action_trunc *trunc = nla_data(a);
1108
1109 if (skb->len > trunc->max_len)
1110 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1111 break;
1112 }
1113
1114 case OVS_ACTION_ATTR_USERSPACE:
1115 output_userspace(dp, skb, key, a, attr,
1116 len, OVS_CB(skb)->cutlen);
1117 OVS_CB(skb)->cutlen = 0;
1118 break;
1119
1120 case OVS_ACTION_ATTR_HASH:
1121 execute_hash(skb, key, a);
1122 break;
1123
1124 case OVS_ACTION_ATTR_PUSH_MPLS:
1125 err = push_mpls(skb, key, nla_data(a));
1126 break;
1127
1128 case OVS_ACTION_ATTR_POP_MPLS:
1129 err = pop_mpls(skb, key, nla_get_be16(a));
1130 break;
1131
1132 case OVS_ACTION_ATTR_PUSH_VLAN:
1133 err = push_vlan(skb, key, nla_data(a));
1134 break;
1135
1136 case OVS_ACTION_ATTR_POP_VLAN:
1137 err = pop_vlan(skb, key);
1138 break;
1139
1140 case OVS_ACTION_ATTR_RECIRC:
1141 err = execute_recirc(dp, skb, key, a, rem);
1142 if (nla_is_last(a, rem)) {
1143 /* If this is the last action, the skb has
1144 * been consumed or freed.
1145 * Return immediately.
1146 */
1147 return err;
1148 }
1149 break;
1150
1151 case OVS_ACTION_ATTR_SET:
1152 err = execute_set_action(skb, key, nla_data(a));
1153 break;
1154
1155 case OVS_ACTION_ATTR_SET_MASKED:
1156 case OVS_ACTION_ATTR_SET_TO_MASKED:
1157 err = execute_masked_set_action(skb, key, nla_data(a));
1158 break;
1159
1160 case OVS_ACTION_ATTR_SAMPLE:
1161 err = sample(dp, skb, key, a, attr, len);
1162 break;
1163
1164 case OVS_ACTION_ATTR_CT:
1165 if (!is_flow_key_valid(key)) {
1166 err = ovs_flow_key_update(skb, key);
1167 if (err)
1168 return err;
1169 }
1170
1171 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1172 nla_data(a));
1173
1174 /* Hide stolen IP fragments from user space. */
1175 if (err)
1176 return err == -EINPROGRESS ? 0 : err;
1177 break;
1178 }
1179
1180 if (unlikely(err)) {
1181 kfree_skb(skb);
1182 return err;
1183 }
1184 }
1185
1186 if (prev_port != -1)
1187 do_output(dp, skb, prev_port, key);
1188 else
1189 consume_skb(skb);
1190
1191 return 0;
1192 }
1193
1194 static void process_deferred_actions(struct datapath *dp)
1195 {
1196 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1197
1198 /* Do not touch the FIFO in case there is no deferred actions. */
1199 if (action_fifo_is_empty(fifo))
1200 return;
1201
1202 /* Finishing executing all deferred actions. */
1203 do {
1204 struct deferred_action *da = action_fifo_get(fifo);
1205 struct sk_buff *skb = da->skb;
1206 struct sw_flow_key *key = &da->pkt_key;
1207 const struct nlattr *actions = da->actions;
1208
1209 if (actions)
1210 do_execute_actions(dp, skb, key, actions,
1211 nla_len(actions));
1212 else
1213 ovs_dp_process_packet(skb, key);
1214 } while (!action_fifo_is_empty(fifo));
1215
1216 /* Reset FIFO for the next packet. */
1217 action_fifo_init(fifo);
1218 }
1219
1220 /* Execute a list of actions against 'skb'. */
1221 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1222 const struct sw_flow_actions *acts,
1223 struct sw_flow_key *key)
1224 {
1225 int err, level;
1226
1227 level = __this_cpu_inc_return(exec_actions_level);
1228 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1229 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1230 ovs_dp_name(dp));
1231 kfree_skb(skb);
1232 err = -ENETDOWN;
1233 goto out;
1234 }
1235
1236 err = do_execute_actions(dp, skb, key,
1237 acts->actions, acts->actions_len);
1238
1239 if (level == 1)
1240 process_deferred_actions(dp);
1241
1242 out:
1243 __this_cpu_dec(exec_actions_level);
1244 return err;
1245 }
1246
1247 int action_fifos_init(void)
1248 {
1249 action_fifos = alloc_percpu(struct action_fifo);
1250 if (!action_fifos)
1251 return -ENOMEM;
1252
1253 recirc_keys = alloc_percpu(struct recirc_keys);
1254 if (!recirc_keys) {
1255 free_percpu(action_fifos);
1256 return -ENOMEM;
1257 }
1258
1259 return 0;
1260 }
1261
1262 void action_fifos_exit(void)
1263 {
1264 free_percpu(action_fifos);
1265 free_percpu(recirc_keys);
1266 }