]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: Account for rename to vlan_insert_tag_set_proto()
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/mpls.h>
36 #include <net/sctp/checksum.h>
37
38 #include "datapath.h"
39 #include "gso.h"
40 #include "vlan.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
65 * looping by the network stack
66 */
67 static DEFINE_PER_CPU(int, exec_actions_level);
68
69 static void action_fifo_init(struct action_fifo *fifo)
70 {
71 fifo->head = 0;
72 fifo->tail = 0;
73 }
74
75 static bool action_fifo_is_empty(const struct action_fifo *fifo)
76 {
77 return (fifo->head == fifo->tail);
78 }
79
80 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
81 {
82 if (action_fifo_is_empty(fifo))
83 return NULL;
84
85 return &fifo->fifo[fifo->tail++];
86 }
87
88 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
89 {
90 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
91 return NULL;
92
93 return &fifo->fifo[fifo->head++];
94 }
95
96 /* Return queue entry if fifo is not full */
97 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
98 const struct sw_flow_key *key,
99 const struct nlattr *attr)
100 {
101 struct action_fifo *fifo;
102 struct deferred_action *da;
103
104 fifo = this_cpu_ptr(action_fifos);
105 da = action_fifo_put(fifo);
106 if (da) {
107 da->skb = skb;
108 da->actions = attr;
109 da->pkt_key = *key;
110 }
111
112 return da;
113 }
114
115 static void invalidate_flow_key(struct sw_flow_key *key)
116 {
117 key->eth.type = htons(0);
118 }
119
120 static bool is_flow_key_valid(const struct sw_flow_key *key)
121 {
122 return !!key->eth.type;
123 }
124
125 static int make_writable(struct sk_buff *skb, int write_len)
126 {
127 if (!pskb_may_pull(skb, write_len))
128 return -ENOMEM;
129
130 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
131 return 0;
132
133 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
134 }
135
136 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
137 const struct ovs_action_push_mpls *mpls)
138 {
139 __be32 *new_mpls_lse;
140 struct ethhdr *hdr;
141
142 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
143 if (skb_encapsulation(skb))
144 return -ENOTSUPP;
145
146 if (skb_cow_head(skb, MPLS_HLEN) < 0)
147 return -ENOMEM;
148
149 skb_push(skb, MPLS_HLEN);
150 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
151 skb->mac_len);
152 skb_reset_mac_header(skb);
153
154 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
155 *new_mpls_lse = mpls->mpls_lse;
156
157 if (skb->ip_summed == CHECKSUM_COMPLETE)
158 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
159 MPLS_HLEN, 0));
160
161 hdr = eth_hdr(skb);
162 hdr->h_proto = mpls->mpls_ethertype;
163 if (!ovs_skb_get_inner_protocol(skb))
164 ovs_skb_set_inner_protocol(skb, skb->protocol);
165 skb->protocol = mpls->mpls_ethertype;
166
167 invalidate_flow_key(key);
168 return 0;
169 }
170
171 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
172 const __be16 ethertype)
173 {
174 struct ethhdr *hdr;
175 int err;
176
177 err = make_writable(skb, skb->mac_len + MPLS_HLEN);
178 if (unlikely(err))
179 return err;
180
181 if (skb->ip_summed == CHECKSUM_COMPLETE)
182 skb->csum = csum_sub(skb->csum,
183 csum_partial(skb_mpls_header(skb),
184 MPLS_HLEN, 0));
185
186 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
187 skb->mac_len);
188
189 __skb_pull(skb, MPLS_HLEN);
190 skb_reset_mac_header(skb);
191
192 /* skb_mpls_header() is used to locate the ethertype
193 * field correctly in the presence of VLAN tags.
194 */
195 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
196 hdr->h_proto = ethertype;
197 if (eth_p_mpls(skb->protocol))
198 skb->protocol = ethertype;
199
200 invalidate_flow_key(key);
201 return 0;
202 }
203
204 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
205 const __be32 *mpls_lse)
206 {
207 __be32 *stack;
208 int err;
209
210 err = make_writable(skb, skb->mac_len + MPLS_HLEN);
211 if (unlikely(err))
212 return err;
213
214 stack = (__be32 *)skb_mpls_header(skb);
215 if (skb->ip_summed == CHECKSUM_COMPLETE) {
216 __be32 diff[] = { ~(*stack), *mpls_lse };
217 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
218 ~skb->csum);
219 }
220
221 *stack = *mpls_lse;
222 key->mpls.top_lse = *mpls_lse;
223 return 0;
224 }
225
226 /* remove VLAN header from packet and update csum accordingly. */
227 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
228 {
229 struct vlan_hdr *vhdr;
230 int err;
231
232 err = make_writable(skb, VLAN_ETH_HLEN);
233 if (unlikely(err))
234 return err;
235
236 if (skb->ip_summed == CHECKSUM_COMPLETE)
237 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
238 + (2 * ETH_ALEN), VLAN_HLEN, 0));
239
240 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
241 *current_tci = vhdr->h_vlan_TCI;
242
243 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
244 __skb_pull(skb, VLAN_HLEN);
245
246 vlan_set_encap_proto(skb, vhdr);
247 skb->mac_header += VLAN_HLEN;
248 /* Update mac_len for subsequent MPLS actions */
249 skb->mac_len -= VLAN_HLEN;
250
251 return 0;
252 }
253
254 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256 __be16 tci;
257 int err;
258
259 if (likely(vlan_tx_tag_present(skb))) {
260 vlan_set_tci(skb, 0);
261 } else {
262 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
263 skb->len < VLAN_ETH_HLEN))
264 return 0;
265
266 err = __pop_vlan_tci(skb, &tci);
267 if (err)
268 return err;
269 }
270 /* move next vlan tag to hw accel tag */
271 if (likely(skb->protocol != htons(ETH_P_8021Q) ||
272 skb->len < VLAN_ETH_HLEN)) {
273 key->eth.tci = 0;
274 return 0;
275 }
276
277 invalidate_flow_key(key);
278 err = __pop_vlan_tci(skb, &tci);
279 if (unlikely(err))
280 return err;
281
282 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
283 return 0;
284 }
285
286 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
287 const struct ovs_action_push_vlan *vlan)
288 {
289 if (unlikely(vlan_tx_tag_present(skb))) {
290 u16 current_tag;
291
292 /* push down current VLAN tag */
293 current_tag = vlan_tx_tag_get(skb);
294
295 if (!vlan_insert_tag_set_proto(skb, skb->vlan_proto, current_tag))
296 return -ENOMEM;
297 /* Update mac_len for subsequent MPLS actions */
298 skb->mac_len += VLAN_HLEN;
299
300 if (skb->ip_summed == CHECKSUM_COMPLETE)
301 skb->csum = csum_add(skb->csum, csum_partial(skb->data
302 + (2 * ETH_ALEN), VLAN_HLEN, 0));
303
304 invalidate_flow_key(key);
305 } else {
306 key->eth.tci = vlan->vlan_tci;
307 }
308 __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
309 return 0;
310 }
311
312 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
313 const struct ovs_key_ethernet *eth_key)
314 {
315 int err;
316 err = make_writable(skb, ETH_HLEN);
317 if (unlikely(err))
318 return err;
319
320 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
321
322 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
323 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
324
325 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
326
327 ether_addr_copy(key->eth.src, eth_key->eth_src);
328 ether_addr_copy(key->eth.dst, eth_key->eth_dst);
329 return 0;
330 }
331
332 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
333 __be32 *addr, __be32 new_addr)
334 {
335 int transport_len = skb->len - skb_transport_offset(skb);
336
337 if (nh->protocol == IPPROTO_TCP) {
338 if (likely(transport_len >= sizeof(struct tcphdr)))
339 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
340 *addr, new_addr, 1);
341 } else if (nh->protocol == IPPROTO_UDP) {
342 if (likely(transport_len >= sizeof(struct udphdr))) {
343 struct udphdr *uh = udp_hdr(skb);
344
345 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
346 inet_proto_csum_replace4(&uh->check, skb,
347 *addr, new_addr, 1);
348 if (!uh->check)
349 uh->check = CSUM_MANGLED_0;
350 }
351 }
352 }
353
354 csum_replace4(&nh->check, *addr, new_addr);
355 skb_clear_hash(skb);
356 *addr = new_addr;
357 }
358
359 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
360 __be32 addr[4], const __be32 new_addr[4])
361 {
362 int transport_len = skb->len - skb_transport_offset(skb);
363
364 if (l4_proto == NEXTHDR_TCP) {
365 if (likely(transport_len >= sizeof(struct tcphdr)))
366 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
367 addr, new_addr, 1);
368 } else if (l4_proto == NEXTHDR_UDP) {
369 if (likely(transport_len >= sizeof(struct udphdr))) {
370 struct udphdr *uh = udp_hdr(skb);
371
372 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
373 inet_proto_csum_replace16(&uh->check, skb,
374 addr, new_addr, 1);
375 if (!uh->check)
376 uh->check = CSUM_MANGLED_0;
377 }
378 }
379 } else if (l4_proto == NEXTHDR_ICMP) {
380 if (likely(transport_len >= sizeof(struct icmp6hdr)))
381 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
382 skb, addr, new_addr, 1);
383 }
384 }
385
386 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
387 __be32 addr[4], const __be32 new_addr[4],
388 bool recalculate_csum)
389 {
390 if (likely(recalculate_csum))
391 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
392
393 skb_clear_hash(skb);
394 memcpy(addr, new_addr, sizeof(__be32[4]));
395 }
396
397 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
398 {
399 nh->priority = tc >> 4;
400 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
401 }
402
403 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
404 {
405 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
406 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
407 nh->flow_lbl[2] = fl & 0x000000FF;
408 }
409
410 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
411 {
412 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
413 nh->ttl = new_ttl;
414 }
415
416 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
417 const struct ovs_key_ipv4 *ipv4_key)
418 {
419 struct iphdr *nh;
420 int err;
421
422 err = make_writable(skb, skb_network_offset(skb) +
423 sizeof(struct iphdr));
424 if (unlikely(err))
425 return err;
426
427 nh = ip_hdr(skb);
428
429 if (ipv4_key->ipv4_src != nh->saddr) {
430 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
431 key->ipv4.addr.src = ipv4_key->ipv4_src;
432 }
433
434 if (ipv4_key->ipv4_dst != nh->daddr) {
435 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
436 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
437 }
438
439 if (ipv4_key->ipv4_tos != nh->tos) {
440 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
441 key->ip.tos = nh->tos;
442 }
443
444 if (ipv4_key->ipv4_ttl != nh->ttl) {
445 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
446 key->ip.ttl = ipv4_key->ipv4_ttl;
447 }
448
449 return 0;
450 }
451
452 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
453 const struct ovs_key_ipv6 *ipv6_key)
454 {
455 struct ipv6hdr *nh;
456 int err;
457 __be32 *saddr;
458 __be32 *daddr;
459
460 err = make_writable(skb, skb_network_offset(skb) +
461 sizeof(struct ipv6hdr));
462 if (unlikely(err))
463 return err;
464
465 nh = ipv6_hdr(skb);
466 saddr = (__be32 *)&nh->saddr;
467 daddr = (__be32 *)&nh->daddr;
468
469 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
470 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
471 ipv6_key->ipv6_src, true);
472 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
473 sizeof(ipv6_key->ipv6_src));
474 }
475
476 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
477 unsigned int offset = 0;
478 int flags = IP6_FH_F_SKIP_RH;
479 bool recalc_csum = true;
480
481 if (ipv6_ext_hdr(nh->nexthdr))
482 recalc_csum = ipv6_find_hdr(skb, &offset,
483 NEXTHDR_ROUTING, NULL,
484 &flags) != NEXTHDR_ROUTING;
485
486 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
487 ipv6_key->ipv6_dst, recalc_csum);
488 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
489 sizeof(ipv6_key->ipv6_dst));
490 }
491
492 set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
493 key->ip.tos = ipv6_get_dsfield(nh);
494
495 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
496 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
497
498 nh->hop_limit = ipv6_key->ipv6_hlimit;
499 key->ip.ttl = ipv6_key->ipv6_hlimit;
500 return 0;
501 }
502
503 /* Must follow make_writable() since that can move the skb data. */
504 static void set_tp_port(struct sk_buff *skb, __be16 *port,
505 __be16 new_port, __sum16 *check)
506 {
507 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
508 *port = new_port;
509 skb_clear_hash(skb);
510 }
511
512 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
513 {
514 struct udphdr *uh = udp_hdr(skb);
515
516 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
517 set_tp_port(skb, port, new_port, &uh->check);
518
519 if (!uh->check)
520 uh->check = CSUM_MANGLED_0;
521 } else {
522 *port = new_port;
523 skb_clear_hash(skb);
524 }
525 }
526
527 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
528 const struct ovs_key_udp *udp_port_key)
529 {
530 struct udphdr *uh;
531 int err;
532
533 err = make_writable(skb, skb_transport_offset(skb) +
534 sizeof(struct udphdr));
535 if (unlikely(err))
536 return err;
537
538 uh = udp_hdr(skb);
539 if (udp_port_key->udp_src != uh->source) {
540 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
541 key->tp.src = udp_port_key->udp_src;
542 }
543
544 if (udp_port_key->udp_dst != uh->dest) {
545 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
546 key->tp.dst = udp_port_key->udp_dst;
547 }
548
549 return 0;
550 }
551
552 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
553 const struct ovs_key_tcp *tcp_port_key)
554 {
555 struct tcphdr *th;
556 int err;
557
558 err = make_writable(skb, skb_transport_offset(skb) +
559 sizeof(struct tcphdr));
560 if (unlikely(err))
561 return err;
562
563 th = tcp_hdr(skb);
564 if (tcp_port_key->tcp_src != th->source) {
565 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
566 key->tp.src = tcp_port_key->tcp_src;
567 }
568
569 if (tcp_port_key->tcp_dst != th->dest) {
570 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
571 key->tp.dst = tcp_port_key->tcp_dst;
572 }
573
574 return 0;
575 }
576
577 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
578 const struct ovs_key_sctp *sctp_port_key)
579 {
580 struct sctphdr *sh;
581 int err;
582 unsigned int sctphoff = skb_transport_offset(skb);
583
584 err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
585 if (unlikely(err))
586 return err;
587
588 sh = sctp_hdr(skb);
589 if (sctp_port_key->sctp_src != sh->source ||
590 sctp_port_key->sctp_dst != sh->dest) {
591 __le32 old_correct_csum, new_csum, old_csum;
592
593 old_csum = sh->checksum;
594 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
595
596 sh->source = sctp_port_key->sctp_src;
597 sh->dest = sctp_port_key->sctp_dst;
598
599 new_csum = sctp_compute_cksum(skb, sctphoff);
600
601 /* Carry any checksum errors through. */
602 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
603
604 skb_clear_hash(skb);
605 key->tp.src = sctp_port_key->sctp_src;
606 key->tp.dst = sctp_port_key->sctp_dst;
607 }
608
609 return 0;
610 }
611
612 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
613 {
614 struct vport *vport = ovs_vport_rcu(dp, out_port);
615
616 if (likely(vport))
617 ovs_vport_send(vport, skb);
618 else
619 kfree_skb(skb);
620 }
621
622 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
623 struct sw_flow_key *key, const struct nlattr *attr)
624 {
625 struct ovs_tunnel_info info;
626 struct dp_upcall_info upcall;
627 const struct nlattr *a;
628 int rem;
629
630 upcall.cmd = OVS_PACKET_CMD_ACTION;
631 upcall.userdata = NULL;
632 upcall.portid = 0;
633 upcall.egress_tun_info = NULL;
634
635 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
636 a = nla_next(a, &rem)) {
637 switch (nla_type(a)) {
638 case OVS_USERSPACE_ATTR_USERDATA:
639 upcall.userdata = a;
640 break;
641
642 case OVS_USERSPACE_ATTR_PID:
643 upcall.portid = nla_get_u32(a);
644 break;
645
646 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
647 /* Get out tunnel info. */
648 struct vport *vport;
649
650 vport = ovs_vport_rcu(dp, nla_get_u32(a));
651 if (vport) {
652 int err;
653
654 err = ovs_vport_get_egress_tun_info(vport, skb,
655 &info);
656 if (!err)
657 upcall.egress_tun_info = &info;
658 }
659 break;
660 }
661
662 } /* End of switch. */
663 }
664
665 return ovs_dp_upcall(dp, skb, key, &upcall);
666 }
667
668 static int sample(struct datapath *dp, struct sk_buff *skb,
669 struct sw_flow_key *key, const struct nlattr *attr)
670 {
671 const struct nlattr *acts_list = NULL;
672 const struct nlattr *a;
673 int rem;
674
675 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
676 a = nla_next(a, &rem)) {
677 switch (nla_type(a)) {
678 case OVS_SAMPLE_ATTR_PROBABILITY:
679 if (prandom_u32() >= nla_get_u32(a))
680 return 0;
681 break;
682
683 case OVS_SAMPLE_ATTR_ACTIONS:
684 acts_list = a;
685 break;
686 }
687 }
688
689 rem = nla_len(acts_list);
690 a = nla_data(acts_list);
691
692 /* Actions list is empty, do nothing */
693 if (unlikely(!rem))
694 return 0;
695
696 /* The only known usage of sample action is having a single user-space
697 * action. Treat this usage as a special case.
698 * The output_userspace() should clone the skb to be sent to the
699 * user space. This skb will be consumed by its caller.
700 */
701 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
702 nla_is_last(a, rem)))
703 return output_userspace(dp, skb, key, a);
704
705 skb = skb_clone(skb, GFP_ATOMIC);
706 if (!skb)
707 /* Skip the sample action when out of memory. */
708 return 0;
709
710 if (!add_deferred_actions(skb, key, a)) {
711 if (net_ratelimit())
712 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
713 ovs_dp_name(dp));
714
715 kfree_skb(skb);
716 }
717 return 0;
718 }
719
720 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
721 const struct nlattr *attr)
722 {
723 struct ovs_action_hash *hash_act = nla_data(attr);
724 u32 hash = 0;
725
726 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
727 hash = skb_get_hash(skb);
728 hash = jhash_1word(hash, hash_act->hash_basis);
729 if (!hash)
730 hash = 0x1;
731
732 key->ovs_flow_hash = hash;
733 }
734
735 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
736 const struct nlattr *nested_attr)
737 {
738 int err = 0;
739
740 switch (nla_type(nested_attr)) {
741 case OVS_KEY_ATTR_PRIORITY:
742 skb->priority = nla_get_u32(nested_attr);
743 key->phy.priority = skb->priority;
744 break;
745
746 case OVS_KEY_ATTR_SKB_MARK:
747 skb->mark = nla_get_u32(nested_attr);
748 key->phy.skb_mark = skb->mark;
749 break;
750
751 case OVS_KEY_ATTR_TUNNEL_INFO:
752 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
753 break;
754
755 case OVS_KEY_ATTR_ETHERNET:
756 err = set_eth_addr(skb, key, nla_data(nested_attr));
757 break;
758
759 case OVS_KEY_ATTR_IPV4:
760 err = set_ipv4(skb, key, nla_data(nested_attr));
761 break;
762
763 case OVS_KEY_ATTR_IPV6:
764 err = set_ipv6(skb, key, nla_data(nested_attr));
765 break;
766
767 case OVS_KEY_ATTR_TCP:
768 err = set_tcp(skb, key, nla_data(nested_attr));
769 break;
770
771 case OVS_KEY_ATTR_UDP:
772 err = set_udp(skb, key, nla_data(nested_attr));
773 break;
774
775 case OVS_KEY_ATTR_SCTP:
776 err = set_sctp(skb, key, nla_data(nested_attr));
777 break;
778
779 case OVS_KEY_ATTR_MPLS:
780 err = set_mpls(skb, key, nla_data(nested_attr));
781 break;
782 }
783
784 return err;
785 }
786
787 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
788 struct sw_flow_key *key,
789 const struct nlattr *a, int rem)
790 {
791 struct deferred_action *da;
792
793 if (!is_flow_key_valid(key)) {
794 int err;
795
796 err = ovs_flow_key_update(skb, key);
797 if (err)
798 return err;
799 }
800 BUG_ON(!is_flow_key_valid(key));
801
802 if (!nla_is_last(a, rem)) {
803 /* Recirc action is the not the last action
804 * of the action list, need to clone the skb.
805 */
806 skb = skb_clone(skb, GFP_ATOMIC);
807
808 /* Skip the recirc action when out of memory, but
809 * continue on with the rest of the action list.
810 */
811 if (!skb)
812 return 0;
813 }
814
815 da = add_deferred_actions(skb, key, NULL);
816 if (da) {
817 da->pkt_key.recirc_id = nla_get_u32(a);
818 } else {
819 kfree_skb(skb);
820
821 if (net_ratelimit())
822 pr_warn("%s: deferred action limit reached, drop recirc action\n",
823 ovs_dp_name(dp));
824 }
825
826 return 0;
827 }
828
829 /* Execute a list of actions against 'skb'. */
830 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
831 struct sw_flow_key *key,
832 const struct nlattr *attr, int len)
833 {
834 /* Every output action needs a separate clone of 'skb', but the common
835 * case is just a single output action, so that doing a clone and
836 * then freeing the original skbuff is wasteful. So the following code
837 * is slightly obscure just to avoid that.
838 */
839 int prev_port = -1;
840 const struct nlattr *a;
841 int rem;
842
843 for (a = attr, rem = len; rem > 0;
844 a = nla_next(a, &rem)) {
845 int err = 0;
846
847 if (unlikely(prev_port != -1)) {
848 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
849
850 if (out_skb)
851 do_output(dp, out_skb, prev_port);
852
853 prev_port = -1;
854 }
855
856 switch (nla_type(a)) {
857 case OVS_ACTION_ATTR_OUTPUT:
858 prev_port = nla_get_u32(a);
859 break;
860
861 case OVS_ACTION_ATTR_USERSPACE:
862 output_userspace(dp, skb, key, a);
863 break;
864
865 case OVS_ACTION_ATTR_HASH:
866 execute_hash(skb, key, a);
867 break;
868
869 case OVS_ACTION_ATTR_PUSH_MPLS:
870 err = push_mpls(skb, key, nla_data(a));
871 break;
872
873 case OVS_ACTION_ATTR_POP_MPLS:
874 err = pop_mpls(skb, key, nla_get_be16(a));
875 break;
876
877 case OVS_ACTION_ATTR_PUSH_VLAN:
878 err = push_vlan(skb, key, nla_data(a));
879 if (unlikely(err)) /* skb already freed. */
880 return err;
881 break;
882
883 case OVS_ACTION_ATTR_POP_VLAN:
884 err = pop_vlan(skb, key);
885 break;
886
887 case OVS_ACTION_ATTR_RECIRC:
888 err = execute_recirc(dp, skb, key, a, rem);
889 if (nla_is_last(a, rem)) {
890 /* If this is the last action, the skb has
891 * been consumed or freed.
892 * Return immediately.
893 */
894 return err;
895 }
896 break;
897
898 case OVS_ACTION_ATTR_SET:
899 err = execute_set_action(skb, key, nla_data(a));
900 break;
901
902 case OVS_ACTION_ATTR_SAMPLE:
903 err = sample(dp, skb, key, a);
904 break;
905 }
906
907 if (unlikely(err)) {
908 kfree_skb(skb);
909 return err;
910 }
911 }
912
913 if (prev_port != -1)
914 do_output(dp, skb, prev_port);
915 else
916 consume_skb(skb);
917
918 return 0;
919 }
920
921 static void process_deferred_actions(struct datapath *dp)
922 {
923 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
924
925 /* Do not touch the FIFO in case there is no deferred actions. */
926 if (action_fifo_is_empty(fifo))
927 return;
928
929 /* Finishing executing all deferred actions. */
930 do {
931 struct deferred_action *da = action_fifo_get(fifo);
932 struct sk_buff *skb = da->skb;
933 struct sw_flow_key *key = &da->pkt_key;
934 const struct nlattr *actions = da->actions;
935
936 if (actions)
937 do_execute_actions(dp, skb, key, actions,
938 nla_len(actions));
939 else
940 ovs_dp_process_packet(skb, key);
941 } while (!action_fifo_is_empty(fifo));
942
943 /* Reset FIFO for the next packet. */
944 action_fifo_init(fifo);
945 }
946
947 /* Execute a list of actions against 'skb'. */
948 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
949 const struct sw_flow_actions *acts,
950 struct sw_flow_key *key)
951 {
952 int level = this_cpu_read(exec_actions_level);
953 int err;
954
955 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
956 if (net_ratelimit())
957 pr_warn("%s: packet loop detected, dropping.\n",
958 ovs_dp_name(dp));
959
960 kfree_skb(skb);
961 return -ELOOP;
962 }
963
964 this_cpu_inc(exec_actions_level);
965 err = do_execute_actions(dp, skb, key,
966 acts->actions, acts->actions_len);
967
968 if (!level)
969 process_deferred_actions(dp);
970
971 this_cpu_dec(exec_actions_level);
972
973 /* This return status currently does not reflect the errors
974 * encounted during deferred actions execution. Probably needs to
975 * be fixed in the future.
976 */
977 return err;
978 }
979
980 int action_fifos_init(void)
981 {
982 action_fifos = alloc_percpu(struct action_fifo);
983 if (!action_fifos)
984 return -ENOMEM;
985
986 return 0;
987 }
988
989 void action_fifos_exit(void)
990 {
991 free_percpu(action_fifos);
992 }