]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath:backport: openvswitch: use flow protocol when recalculating ipv6 checksums
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/dsfield.h>
38 #include <net/mpls.h>
39 #include <net/sctp/checksum.h>
40
41 #include "datapath.h"
42 #include "conntrack.h"
43 #include "gso.h"
44 #include "vport.h"
45
46 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
47 struct sw_flow_key *key,
48 const struct nlattr *attr, int len);
49
50 struct deferred_action {
51 struct sk_buff *skb;
52 const struct nlattr *actions;
53
54 /* Store pkt_key clone when creating deferred action. */
55 struct sw_flow_key pkt_key;
56 };
57
58 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
59 struct ovs_frag_data {
60 unsigned long dst;
61 struct vport *vport;
62 struct ovs_gso_cb cb;
63 __be16 inner_protocol;
64 __u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 l2_data[MAX_L2_LEN];
68 };
69
70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
71
72 #define DEFERRED_ACTION_FIFO_SIZE 10
73 struct action_fifo {
74 int head;
75 int tail;
76 /* Deferred action fifo queue storage. */
77 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
78 };
79
80 static struct action_fifo __percpu *action_fifos;
81 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
82 * looping by the network stack
83 */
84 static DEFINE_PER_CPU(int, exec_actions_level);
85
86 static void action_fifo_init(struct action_fifo *fifo)
87 {
88 fifo->head = 0;
89 fifo->tail = 0;
90 }
91
92 static bool action_fifo_is_empty(const struct action_fifo *fifo)
93 {
94 return (fifo->head == fifo->tail);
95 }
96
97 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
98 {
99 if (action_fifo_is_empty(fifo))
100 return NULL;
101
102 return &fifo->fifo[fifo->tail++];
103 }
104
105 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
106 {
107 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
108 return NULL;
109
110 return &fifo->fifo[fifo->head++];
111 }
112
113 /* Return queue entry if fifo is not full */
114 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
115 const struct sw_flow_key *key,
116 const struct nlattr *attr)
117 {
118 struct action_fifo *fifo;
119 struct deferred_action *da;
120
121 fifo = this_cpu_ptr(action_fifos);
122 da = action_fifo_put(fifo);
123 if (da) {
124 da->skb = skb;
125 da->actions = attr;
126 da->pkt_key = *key;
127 }
128
129 return da;
130 }
131
132 static void invalidate_flow_key(struct sw_flow_key *key)
133 {
134 key->eth.type = htons(0);
135 }
136
137 static bool is_flow_key_valid(const struct sw_flow_key *key)
138 {
139 return !!key->eth.type;
140 }
141
142 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
143 const struct ovs_action_push_mpls *mpls)
144 {
145 __be32 *new_mpls_lse;
146 struct ethhdr *hdr;
147
148 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
149 if (skb->encapsulation)
150 return -ENOTSUPP;
151
152 if (skb_cow_head(skb, MPLS_HLEN) < 0)
153 return -ENOMEM;
154
155 skb_push(skb, MPLS_HLEN);
156 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
157 skb->mac_len);
158 skb_reset_mac_header(skb);
159
160 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
161 *new_mpls_lse = mpls->mpls_lse;
162
163 if (skb->ip_summed == CHECKSUM_COMPLETE)
164 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
165 MPLS_HLEN, 0));
166
167 hdr = eth_hdr(skb);
168 hdr->h_proto = mpls->mpls_ethertype;
169 if (!ovs_skb_get_inner_protocol(skb))
170 ovs_skb_set_inner_protocol(skb, skb->protocol);
171 skb->protocol = mpls->mpls_ethertype;
172
173 invalidate_flow_key(key);
174 return 0;
175 }
176
177 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
178 const __be16 ethertype)
179 {
180 struct ethhdr *hdr;
181 int err;
182
183 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
184 if (unlikely(err))
185 return err;
186
187 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
188
189 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
190 skb->mac_len);
191
192 __skb_pull(skb, MPLS_HLEN);
193 skb_reset_mac_header(skb);
194
195 /* skb_mpls_header() is used to locate the ethertype
196 * field correctly in the presence of VLAN tags.
197 */
198 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
199 hdr->h_proto = ethertype;
200 if (eth_p_mpls(skb->protocol))
201 skb->protocol = ethertype;
202
203 invalidate_flow_key(key);
204 return 0;
205 }
206
207 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
208 const __be32 *mpls_lse, const __be32 *mask)
209 {
210 __be32 *stack;
211 __be32 lse;
212 int err;
213
214 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
215 if (unlikely(err))
216 return err;
217
218 stack = (__be32 *)skb_mpls_header(skb);
219 lse = OVS_MASKED(*stack, *mpls_lse, *mask);
220 if (skb->ip_summed == CHECKSUM_COMPLETE) {
221 __be32 diff[] = { ~(*stack), lse };
222
223 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
224 ~skb->csum);
225 }
226
227 *stack = lse;
228 flow_key->mpls.top_lse = lse;
229 return 0;
230 }
231
232 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
233 {
234 int err;
235
236 err = skb_vlan_pop(skb);
237 if (skb_vlan_tag_present(skb))
238 invalidate_flow_key(key);
239 else
240 key->eth.tci = 0;
241 return err;
242 }
243
244 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
245 const struct ovs_action_push_vlan *vlan)
246 {
247 if (skb_vlan_tag_present(skb))
248 invalidate_flow_key(key);
249 else
250 key->eth.tci = vlan->vlan_tci;
251 return skb_vlan_push(skb, vlan->vlan_tpid,
252 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
253 }
254
255 /* 'src' is already properly masked. */
256 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
257 {
258 u16 *dst = (u16 *)dst_;
259 const u16 *src = (const u16 *)src_;
260 const u16 *mask = (const u16 *)mask_;
261
262 OVS_SET_MASKED(dst[0], src[0], mask[0]);
263 OVS_SET_MASKED(dst[1], src[1], mask[1]);
264 OVS_SET_MASKED(dst[2], src[2], mask[2]);
265 }
266
267 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
268 const struct ovs_key_ethernet *key,
269 const struct ovs_key_ethernet *mask)
270 {
271 int err;
272
273 err = skb_ensure_writable(skb, ETH_HLEN);
274 if (unlikely(err))
275 return err;
276
277 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
278
279 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
280 mask->eth_src);
281 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
282 mask->eth_dst);
283
284 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
285
286 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
287 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
288 return 0;
289 }
290
291 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
292 __be32 addr, __be32 new_addr)
293 {
294 int transport_len = skb->len - skb_transport_offset(skb);
295
296 if (nh->frag_off & htons(IP_OFFSET))
297 return;
298
299 if (nh->protocol == IPPROTO_TCP) {
300 if (likely(transport_len >= sizeof(struct tcphdr)))
301 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
302 addr, new_addr, true);
303 } else if (nh->protocol == IPPROTO_UDP) {
304 if (likely(transport_len >= sizeof(struct udphdr))) {
305 struct udphdr *uh = udp_hdr(skb);
306
307 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
308 inet_proto_csum_replace4(&uh->check, skb,
309 addr, new_addr, true);
310 if (!uh->check)
311 uh->check = CSUM_MANGLED_0;
312 }
313 }
314 }
315
316 }
317
318 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
319 __be32 *addr, __be32 new_addr)
320 {
321 update_ip_l4_checksum(skb, nh, *addr, new_addr);
322 csum_replace4(&nh->check, *addr, new_addr);
323 skb_clear_hash(skb);
324 *addr = new_addr;
325 }
326
327 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
328 __be32 addr[4], const __be32 new_addr[4])
329 {
330 int transport_len = skb->len - skb_transport_offset(skb);
331
332 if (l4_proto == NEXTHDR_TCP) {
333 if (likely(transport_len >= sizeof(struct tcphdr)))
334 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
335 addr, new_addr, true);
336 } else if (l4_proto == NEXTHDR_UDP) {
337 if (likely(transport_len >= sizeof(struct udphdr))) {
338 struct udphdr *uh = udp_hdr(skb);
339
340 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
341 inet_proto_csum_replace16(&uh->check, skb,
342 addr, new_addr, true);
343 if (!uh->check)
344 uh->check = CSUM_MANGLED_0;
345 }
346 }
347 } else if (l4_proto == NEXTHDR_ICMP) {
348 if (likely(transport_len >= sizeof(struct icmp6hdr)))
349 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
350 skb, addr, new_addr, true);
351 }
352 }
353
354 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
355 const __be32 mask[4], __be32 masked[4])
356 {
357 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
358 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
359 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
360 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
361 }
362
363 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
364 __be32 addr[4], const __be32 new_addr[4],
365 bool recalculate_csum)
366 {
367 if (likely(recalculate_csum))
368 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
369
370 skb_clear_hash(skb);
371 memcpy(addr, new_addr, sizeof(__be32[4]));
372 }
373
374 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
375 {
376 /* Bits 21-24 are always unmasked, so this retains their values. */
377 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
378 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
379 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
380 }
381
382 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
383 u8 mask)
384 {
385 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
386
387 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
388 nh->ttl = new_ttl;
389 }
390
391 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
392 const struct ovs_key_ipv4 *key,
393 const struct ovs_key_ipv4 *mask)
394 {
395 struct iphdr *nh;
396 __be32 new_addr;
397 int err;
398
399 err = skb_ensure_writable(skb, skb_network_offset(skb) +
400 sizeof(struct iphdr));
401 if (unlikely(err))
402 return err;
403
404 nh = ip_hdr(skb);
405
406 /* Setting an IP addresses is typically only a side effect of
407 * matching on them in the current userspace implementation, so it
408 * makes sense to check if the value actually changed.
409 */
410 if (mask->ipv4_src) {
411 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
412
413 if (unlikely(new_addr != nh->saddr)) {
414 set_ip_addr(skb, nh, &nh->saddr, new_addr);
415 flow_key->ipv4.addr.src = new_addr;
416 }
417 }
418 if (mask->ipv4_dst) {
419 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
420
421 if (unlikely(new_addr != nh->daddr)) {
422 set_ip_addr(skb, nh, &nh->daddr, new_addr);
423 flow_key->ipv4.addr.dst = new_addr;
424 }
425 }
426 if (mask->ipv4_tos) {
427 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
428 flow_key->ip.tos = nh->tos;
429 }
430 if (mask->ipv4_ttl) {
431 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
432 flow_key->ip.ttl = nh->ttl;
433 }
434
435 return 0;
436 }
437
438 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
439 {
440 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
441 }
442
443 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
444 const struct ovs_key_ipv6 *key,
445 const struct ovs_key_ipv6 *mask)
446 {
447 struct ipv6hdr *nh;
448 int err;
449
450 err = skb_ensure_writable(skb, skb_network_offset(skb) +
451 sizeof(struct ipv6hdr));
452 if (unlikely(err))
453 return err;
454
455 nh = ipv6_hdr(skb);
456
457 /* Setting an IP addresses is typically only a side effect of
458 * matching on them in the current userspace implementation, so it
459 * makes sense to check if the value actually changed.
460 */
461 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
462 __be32 *saddr = (__be32 *)&nh->saddr;
463 __be32 masked[4];
464
465 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
466
467 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
468 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
469 true);
470 memcpy(&flow_key->ipv6.addr.src, masked,
471 sizeof(flow_key->ipv6.addr.src));
472 }
473 }
474 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
475 unsigned int offset = 0;
476 int flags = IP6_FH_F_SKIP_RH;
477 bool recalc_csum = true;
478 __be32 *daddr = (__be32 *)&nh->daddr;
479 __be32 masked[4];
480
481 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
482
483 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
484 if (ipv6_ext_hdr(nh->nexthdr))
485 recalc_csum = (ipv6_find_hdr(skb, &offset,
486 NEXTHDR_ROUTING,
487 NULL, &flags)
488 != NEXTHDR_ROUTING);
489
490 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
491 recalc_csum);
492 memcpy(&flow_key->ipv6.addr.dst, masked,
493 sizeof(flow_key->ipv6.addr.dst));
494 }
495 }
496 if (mask->ipv6_tclass) {
497 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
498 flow_key->ip.tos = ipv6_get_dsfield(nh);
499 }
500 if (mask->ipv6_label) {
501 set_ipv6_fl(nh, ntohl(key->ipv6_label),
502 ntohl(mask->ipv6_label));
503 flow_key->ipv6.label =
504 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
505 }
506 if (mask->ipv6_hlimit) {
507 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
508 mask->ipv6_hlimit);
509 flow_key->ip.ttl = nh->hop_limit;
510 }
511 return 0;
512 }
513
514 /* Must follow skb_ensure_writable() since that can move the skb data. */
515 static void set_tp_port(struct sk_buff *skb, __be16 *port,
516 __be16 new_port, __sum16 *check)
517 {
518 inet_proto_csum_replace2(check, skb, *port, new_port, false);
519 *port = new_port;
520 }
521
522 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
523 const struct ovs_key_udp *key,
524 const struct ovs_key_udp *mask)
525 {
526 struct udphdr *uh;
527 __be16 src, dst;
528 int err;
529
530 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
531 sizeof(struct udphdr));
532 if (unlikely(err))
533 return err;
534
535 uh = udp_hdr(skb);
536 /* Either of the masks is non-zero, so do not bother checking them. */
537 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
538 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
539
540 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
541 if (likely(src != uh->source)) {
542 set_tp_port(skb, &uh->source, src, &uh->check);
543 flow_key->tp.src = src;
544 }
545 if (likely(dst != uh->dest)) {
546 set_tp_port(skb, &uh->dest, dst, &uh->check);
547 flow_key->tp.dst = dst;
548 }
549
550 if (unlikely(!uh->check))
551 uh->check = CSUM_MANGLED_0;
552 } else {
553 uh->source = src;
554 uh->dest = dst;
555 flow_key->tp.src = src;
556 flow_key->tp.dst = dst;
557 }
558
559 skb_clear_hash(skb);
560
561 return 0;
562 }
563
564 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
565 const struct ovs_key_tcp *key,
566 const struct ovs_key_tcp *mask)
567 {
568 struct tcphdr *th;
569 __be16 src, dst;
570 int err;
571
572 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
573 sizeof(struct tcphdr));
574 if (unlikely(err))
575 return err;
576
577 th = tcp_hdr(skb);
578 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
579 if (likely(src != th->source)) {
580 set_tp_port(skb, &th->source, src, &th->check);
581 flow_key->tp.src = src;
582 }
583 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
584 if (likely(dst != th->dest)) {
585 set_tp_port(skb, &th->dest, dst, &th->check);
586 flow_key->tp.dst = dst;
587 }
588 skb_clear_hash(skb);
589
590 return 0;
591 }
592
593 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
594 const struct ovs_key_sctp *key,
595 const struct ovs_key_sctp *mask)
596 {
597 unsigned int sctphoff = skb_transport_offset(skb);
598 struct sctphdr *sh;
599 __le32 old_correct_csum, new_csum, old_csum;
600 int err;
601
602 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
603 if (unlikely(err))
604 return err;
605
606 sh = sctp_hdr(skb);
607 old_csum = sh->checksum;
608 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
609
610 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
611 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
612
613 new_csum = sctp_compute_cksum(skb, sctphoff);
614
615 /* Carry any checksum errors through. */
616 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
617
618 skb_clear_hash(skb);
619 flow_key->tp.src = sh->source;
620 flow_key->tp.dst = sh->dest;
621
622 return 0;
623 }
624
625 static int ovs_vport_output(OVS_VPORT_OUTPUT_PARAMS)
626 {
627 struct ovs_frag_data *data = get_pcpu_ptr(ovs_frag_data_storage);
628 struct vport *vport = data->vport;
629
630 if (skb_cow_head(skb, data->l2_len) < 0) {
631 kfree_skb(skb);
632 return -ENOMEM;
633 }
634
635 __skb_dst_copy(skb, data->dst);
636 *OVS_GSO_CB(skb) = data->cb;
637 ovs_skb_set_inner_protocol(skb, data->inner_protocol);
638 skb->vlan_tci = data->vlan_tci;
639 skb->vlan_proto = data->vlan_proto;
640
641 /* Reconstruct the MAC header. */
642 skb_push(skb, data->l2_len);
643 memcpy(skb->data, &data->l2_data, data->l2_len);
644 ovs_skb_postpush_rcsum(skb, skb->data, data->l2_len);
645 skb_reset_mac_header(skb);
646
647 ovs_vport_send(vport, skb);
648 return 0;
649 }
650
651 static unsigned int
652 ovs_dst_get_mtu(const struct dst_entry *dst)
653 {
654 return dst->dev->mtu;
655 }
656
657 static struct dst_ops ovs_dst_ops = {
658 .family = AF_UNSPEC,
659 .mtu = ovs_dst_get_mtu,
660 };
661
662 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
663 * ovs_vport_output(), which is called once per fragmented packet.
664 */
665 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
666 {
667 unsigned int hlen = skb_network_offset(skb);
668 struct ovs_frag_data *data;
669
670 data = get_pcpu_ptr(ovs_frag_data_storage);
671 data->dst = (unsigned long) skb_dst(skb);
672 data->vport = vport;
673 data->cb = *OVS_GSO_CB(skb);
674 data->inner_protocol = ovs_skb_get_inner_protocol(skb);
675 data->vlan_tci = skb->vlan_tci;
676 data->vlan_proto = skb->vlan_proto;
677 data->l2_len = hlen;
678 memcpy(&data->l2_data, skb->data, hlen);
679
680 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
681 skb_pull(skb, hlen);
682 }
683
684 static void ovs_fragment(struct vport *vport, struct sk_buff *skb, u16 mru,
685 __be16 ethertype)
686 {
687 if (skb_network_offset(skb) > MAX_L2_LEN) {
688 OVS_NLERR(1, "L2 header too long to fragment");
689 goto err;
690 }
691
692 if (ethertype == htons(ETH_P_IP)) {
693 struct dst_entry ovs_dst;
694 unsigned long orig_dst;
695
696 prepare_frag(vport, skb);
697 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
698 DST_OBSOLETE_NONE, DST_NOCOUNT);
699 ovs_dst.dev = vport->dev;
700
701 orig_dst = (unsigned long) skb_dst(skb);
702 skb_dst_set_noref(skb, &ovs_dst);
703 IPCB(skb)->frag_max_size = mru;
704
705 ip_do_fragment(skb->sk, skb, ovs_vport_output);
706 refdst_drop(orig_dst);
707 } else if (ethertype == htons(ETH_P_IPV6)) {
708 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
709 unsigned long orig_dst;
710 struct rt6_info ovs_rt;
711
712 if (!v6ops) {
713 goto err;
714 }
715
716 prepare_frag(vport, skb);
717 memset(&ovs_rt, 0, sizeof(ovs_rt));
718 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
719 DST_OBSOLETE_NONE, DST_NOCOUNT);
720 ovs_rt.dst.dev = vport->dev;
721
722 orig_dst = (unsigned long) skb_dst(skb);
723 skb_dst_set_noref(skb, &ovs_rt.dst);
724 IP6CB(skb)->frag_max_size = mru;
725
726 v6ops->fragment(skb->sk, skb, ovs_vport_output);
727 refdst_drop(orig_dst);
728 } else {
729 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
730 ovs_vport_name(vport), ntohs(ethertype), mru,
731 vport->dev->mtu);
732 goto err;
733 }
734
735 return;
736 err:
737 kfree_skb(skb);
738 }
739
740 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
741 struct sw_flow_key *key)
742 {
743 struct vport *vport = ovs_vport_rcu(dp, out_port);
744
745 if (likely(vport)) {
746 u16 mru = OVS_CB(skb)->mru;
747
748 if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
749 ovs_vport_send(vport, skb);
750 } else if (mru <= vport->dev->mtu) {
751 __be16 ethertype = key->eth.type;
752
753 if (!is_flow_key_valid(key)) {
754 if (eth_p_mpls(skb->protocol))
755 ethertype = ovs_skb_get_inner_protocol(skb);
756 else
757 ethertype = vlan_get_protocol(skb);
758 }
759
760 ovs_fragment(vport, skb, mru, ethertype);
761 } else {
762 OVS_NLERR(true, "Cannot fragment IP frames");
763 kfree_skb(skb);
764 }
765 } else {
766 kfree_skb(skb);
767 }
768 }
769 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
770 struct sw_flow_key *key, const struct nlattr *attr,
771 const struct nlattr *actions, int actions_len)
772 {
773 struct ip_tunnel_info info;
774 struct dp_upcall_info upcall;
775 const struct nlattr *a;
776 int rem;
777
778 memset(&upcall, 0, sizeof(upcall));
779 upcall.cmd = OVS_PACKET_CMD_ACTION;
780 upcall.mru = OVS_CB(skb)->mru;
781
782 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
783 a = nla_next(a, &rem)) {
784 switch (nla_type(a)) {
785 case OVS_USERSPACE_ATTR_USERDATA:
786 upcall.userdata = a;
787 break;
788
789 case OVS_USERSPACE_ATTR_PID:
790 upcall.portid = nla_get_u32(a);
791 break;
792
793 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
794 /* Get out tunnel info. */
795 struct vport *vport;
796
797 vport = ovs_vport_rcu(dp, nla_get_u32(a));
798 if (vport) {
799 int err;
800
801 upcall.egress_tun_info = &info;
802 err = ovs_vport_get_egress_tun_info(vport, skb,
803 &upcall);
804 if (err)
805 upcall.egress_tun_info = NULL;
806 }
807
808 break;
809 }
810
811 case OVS_USERSPACE_ATTR_ACTIONS: {
812 /* Include actions. */
813 upcall.actions = actions;
814 upcall.actions_len = actions_len;
815 break;
816 }
817
818 } /* End of switch. */
819 }
820
821 return ovs_dp_upcall(dp, skb, key, &upcall);
822 }
823
824 static int sample(struct datapath *dp, struct sk_buff *skb,
825 struct sw_flow_key *key, const struct nlattr *attr,
826 const struct nlattr *actions, int actions_len)
827 {
828 const struct nlattr *acts_list = NULL;
829 const struct nlattr *a;
830 int rem;
831
832 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
833 a = nla_next(a, &rem)) {
834 u32 probability;
835
836 switch (nla_type(a)) {
837 case OVS_SAMPLE_ATTR_PROBABILITY:
838 probability = nla_get_u32(a);
839 if (!probability || prandom_u32() > probability)
840 return 0;
841 break;
842
843 case OVS_SAMPLE_ATTR_ACTIONS:
844 acts_list = a;
845 break;
846 }
847 }
848
849 rem = nla_len(acts_list);
850 a = nla_data(acts_list);
851
852 /* Actions list is empty, do nothing */
853 if (unlikely(!rem))
854 return 0;
855
856 /* The only known usage of sample action is having a single user-space
857 * action. Treat this usage as a special case.
858 * The output_userspace() should clone the skb to be sent to the
859 * user space. This skb will be consumed by its caller.
860 */
861 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
862 nla_is_last(a, rem)))
863 return output_userspace(dp, skb, key, a, actions, actions_len);
864
865 skb = skb_clone(skb, GFP_ATOMIC);
866 if (!skb)
867 /* Skip the sample action when out of memory. */
868 return 0;
869
870 if (!add_deferred_actions(skb, key, a)) {
871 if (net_ratelimit())
872 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
873 ovs_dp_name(dp));
874
875 kfree_skb(skb);
876 }
877 return 0;
878 }
879
880 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
881 const struct nlattr *attr)
882 {
883 struct ovs_action_hash *hash_act = nla_data(attr);
884 u32 hash = 0;
885
886 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
887 hash = skb_get_hash(skb);
888 hash = jhash_1word(hash, hash_act->hash_basis);
889 if (!hash)
890 hash = 0x1;
891
892 key->ovs_flow_hash = hash;
893 }
894
895 static int execute_set_action(struct sk_buff *skb,
896 struct sw_flow_key *flow_key,
897 const struct nlattr *a)
898 {
899 /* Only tunnel set execution is supported without a mask. */
900 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
901 struct ovs_tunnel_info *tun = nla_data(a);
902
903 ovs_skb_dst_drop(skb);
904 ovs_dst_hold((struct dst_entry *)tun->tun_dst);
905 ovs_skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
906 return 0;
907 }
908
909 return -EINVAL;
910 }
911
912 /* Mask is at the midpoint of the data. */
913 #define get_mask(a, type) ((const type)nla_data(a) + 1)
914
915 static int execute_masked_set_action(struct sk_buff *skb,
916 struct sw_flow_key *flow_key,
917 const struct nlattr *a)
918 {
919 int err = 0;
920
921 switch (nla_type(a)) {
922 case OVS_KEY_ATTR_PRIORITY:
923 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
924 *get_mask(a, u32 *));
925 flow_key->phy.priority = skb->priority;
926 break;
927
928 case OVS_KEY_ATTR_SKB_MARK:
929 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
930 flow_key->phy.skb_mark = skb->mark;
931 break;
932
933 case OVS_KEY_ATTR_TUNNEL_INFO:
934 /* Masked data not supported for tunnel. */
935 err = -EINVAL;
936 break;
937
938 case OVS_KEY_ATTR_ETHERNET:
939 err = set_eth_addr(skb, flow_key, nla_data(a),
940 get_mask(a, struct ovs_key_ethernet *));
941 break;
942
943 case OVS_KEY_ATTR_IPV4:
944 err = set_ipv4(skb, flow_key, nla_data(a),
945 get_mask(a, struct ovs_key_ipv4 *));
946 break;
947
948 case OVS_KEY_ATTR_IPV6:
949 err = set_ipv6(skb, flow_key, nla_data(a),
950 get_mask(a, struct ovs_key_ipv6 *));
951 break;
952
953 case OVS_KEY_ATTR_TCP:
954 err = set_tcp(skb, flow_key, nla_data(a),
955 get_mask(a, struct ovs_key_tcp *));
956 break;
957
958 case OVS_KEY_ATTR_UDP:
959 err = set_udp(skb, flow_key, nla_data(a),
960 get_mask(a, struct ovs_key_udp *));
961 break;
962
963 case OVS_KEY_ATTR_SCTP:
964 err = set_sctp(skb, flow_key, nla_data(a),
965 get_mask(a, struct ovs_key_sctp *));
966 break;
967
968 case OVS_KEY_ATTR_MPLS:
969 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
970 __be32 *));
971 break;
972
973 case OVS_KEY_ATTR_CT_STATE:
974 case OVS_KEY_ATTR_CT_ZONE:
975 case OVS_KEY_ATTR_CT_MARK:
976 case OVS_KEY_ATTR_CT_LABELS:
977 err = -EINVAL;
978 break;
979 }
980
981 return err;
982 }
983
984 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
985 struct sw_flow_key *key,
986 const struct nlattr *a, int rem)
987 {
988 struct deferred_action *da;
989
990 if (!is_flow_key_valid(key)) {
991 int err;
992
993 err = ovs_flow_key_update(skb, key);
994 if (err)
995 return err;
996 }
997 BUG_ON(!is_flow_key_valid(key));
998
999 if (!nla_is_last(a, rem)) {
1000 /* Recirc action is the not the last action
1001 * of the action list, need to clone the skb.
1002 */
1003 skb = skb_clone(skb, GFP_ATOMIC);
1004
1005 /* Skip the recirc action when out of memory, but
1006 * continue on with the rest of the action list.
1007 */
1008 if (!skb)
1009 return 0;
1010 }
1011
1012 da = add_deferred_actions(skb, key, NULL);
1013 if (da) {
1014 da->pkt_key.recirc_id = nla_get_u32(a);
1015 } else {
1016 kfree_skb(skb);
1017
1018 if (net_ratelimit())
1019 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1020 ovs_dp_name(dp));
1021 }
1022
1023 return 0;
1024 }
1025
1026 /* Execute a list of actions against 'skb'. */
1027 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1028 struct sw_flow_key *key,
1029 const struct nlattr *attr, int len)
1030 {
1031 /* Every output action needs a separate clone of 'skb', but the common
1032 * case is just a single output action, so that doing a clone and
1033 * then freeing the original skbuff is wasteful. So the following code
1034 * is slightly obscure just to avoid that.
1035 */
1036 int prev_port = -1;
1037 const struct nlattr *a;
1038 int rem;
1039
1040 for (a = attr, rem = len; rem > 0;
1041 a = nla_next(a, &rem)) {
1042 int err = 0;
1043
1044 if (unlikely(prev_port != -1)) {
1045 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1046
1047 if (out_skb)
1048 do_output(dp, out_skb, prev_port, key);
1049
1050 prev_port = -1;
1051 }
1052
1053 switch (nla_type(a)) {
1054 case OVS_ACTION_ATTR_OUTPUT:
1055 prev_port = nla_get_u32(a);
1056 break;
1057
1058 case OVS_ACTION_ATTR_USERSPACE:
1059 output_userspace(dp, skb, key, a, attr, len);
1060 break;
1061
1062 case OVS_ACTION_ATTR_HASH:
1063 execute_hash(skb, key, a);
1064 break;
1065
1066 case OVS_ACTION_ATTR_PUSH_MPLS:
1067 err = push_mpls(skb, key, nla_data(a));
1068 break;
1069
1070 case OVS_ACTION_ATTR_POP_MPLS:
1071 err = pop_mpls(skb, key, nla_get_be16(a));
1072 break;
1073
1074 case OVS_ACTION_ATTR_PUSH_VLAN:
1075 err = push_vlan(skb, key, nla_data(a));
1076 break;
1077
1078 case OVS_ACTION_ATTR_POP_VLAN:
1079 err = pop_vlan(skb, key);
1080 break;
1081
1082 case OVS_ACTION_ATTR_RECIRC:
1083 err = execute_recirc(dp, skb, key, a, rem);
1084 if (nla_is_last(a, rem)) {
1085 /* If this is the last action, the skb has
1086 * been consumed or freed.
1087 * Return immediately.
1088 */
1089 return err;
1090 }
1091 break;
1092
1093 case OVS_ACTION_ATTR_SET:
1094 err = execute_set_action(skb, key, nla_data(a));
1095 break;
1096
1097 case OVS_ACTION_ATTR_SET_MASKED:
1098 case OVS_ACTION_ATTR_SET_TO_MASKED:
1099 err = execute_masked_set_action(skb, key, nla_data(a));
1100 break;
1101
1102 case OVS_ACTION_ATTR_SAMPLE:
1103 err = sample(dp, skb, key, a, attr, len);
1104 break;
1105
1106 case OVS_ACTION_ATTR_CT:
1107 if (!is_flow_key_valid(key)) {
1108 err = ovs_flow_key_update(skb, key);
1109 if (err)
1110 return err;
1111 }
1112
1113 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1114 nla_data(a));
1115
1116 /* Hide stolen IP fragments from user space. */
1117 if (err)
1118 return err == -EINPROGRESS ? 0 : err;
1119 break;
1120 }
1121
1122 if (unlikely(err)) {
1123 kfree_skb(skb);
1124 return err;
1125 }
1126 }
1127
1128 if (prev_port != -1)
1129 do_output(dp, skb, prev_port, key);
1130 else
1131 consume_skb(skb);
1132
1133 return 0;
1134 }
1135
1136 static void process_deferred_actions(struct datapath *dp)
1137 {
1138 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1139
1140 /* Do not touch the FIFO in case there is no deferred actions. */
1141 if (action_fifo_is_empty(fifo))
1142 return;
1143
1144 /* Finishing executing all deferred actions. */
1145 do {
1146 struct deferred_action *da = action_fifo_get(fifo);
1147 struct sk_buff *skb = da->skb;
1148 struct sw_flow_key *key = &da->pkt_key;
1149 const struct nlattr *actions = da->actions;
1150
1151 if (actions)
1152 do_execute_actions(dp, skb, key, actions,
1153 nla_len(actions));
1154 else
1155 ovs_dp_process_packet(skb, key);
1156 } while (!action_fifo_is_empty(fifo));
1157
1158 /* Reset FIFO for the next packet. */
1159 action_fifo_init(fifo);
1160 }
1161
1162 /* Execute a list of actions against 'skb'. */
1163 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1164 const struct sw_flow_actions *acts,
1165 struct sw_flow_key *key)
1166 {
1167 int level = this_cpu_read(exec_actions_level);
1168 int err;
1169
1170 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
1171 if (net_ratelimit())
1172 pr_warn("%s: packet loop detected, dropping.\n",
1173 ovs_dp_name(dp));
1174
1175 kfree_skb(skb);
1176 return -ELOOP;
1177 }
1178
1179 this_cpu_inc(exec_actions_level);
1180 err = do_execute_actions(dp, skb, key,
1181 acts->actions, acts->actions_len);
1182
1183 if (!level)
1184 process_deferred_actions(dp);
1185
1186 this_cpu_dec(exec_actions_level);
1187
1188 /* This return status currently does not reflect the errors
1189 * encounted during deferred actions execution. Probably needs to
1190 * be fixed in the future.
1191 */
1192 return err;
1193 }
1194
1195 int action_fifos_init(void)
1196 {
1197 action_fifos = alloc_percpu(struct action_fifo);
1198 if (!action_fifos)
1199 return -ENOMEM;
1200
1201 return 0;
1202 }
1203
1204 void action_fifos_exit(void)
1205 {
1206 free_percpu(action_fifos);
1207 }