]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: move make_writable helper into common code
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/mpls.h>
36 #include <net/sctp/checksum.h>
37
38 #include "datapath.h"
39 #include "gso.h"
40 #include "vlan.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
65 * looping by the network stack
66 */
67 static DEFINE_PER_CPU(int, exec_actions_level);
68
69 static void action_fifo_init(struct action_fifo *fifo)
70 {
71 fifo->head = 0;
72 fifo->tail = 0;
73 }
74
75 static bool action_fifo_is_empty(const struct action_fifo *fifo)
76 {
77 return (fifo->head == fifo->tail);
78 }
79
80 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
81 {
82 if (action_fifo_is_empty(fifo))
83 return NULL;
84
85 return &fifo->fifo[fifo->tail++];
86 }
87
88 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
89 {
90 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
91 return NULL;
92
93 return &fifo->fifo[fifo->head++];
94 }
95
96 /* Return queue entry if fifo is not full */
97 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
98 const struct sw_flow_key *key,
99 const struct nlattr *attr)
100 {
101 struct action_fifo *fifo;
102 struct deferred_action *da;
103
104 fifo = this_cpu_ptr(action_fifos);
105 da = action_fifo_put(fifo);
106 if (da) {
107 da->skb = skb;
108 da->actions = attr;
109 da->pkt_key = *key;
110 }
111
112 return da;
113 }
114
115 static void invalidate_flow_key(struct sw_flow_key *key)
116 {
117 key->eth.type = htons(0);
118 }
119
120 static bool is_flow_key_valid(const struct sw_flow_key *key)
121 {
122 return !!key->eth.type;
123 }
124
125 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
126 const struct ovs_action_push_mpls *mpls)
127 {
128 __be32 *new_mpls_lse;
129 struct ethhdr *hdr;
130
131 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
132 if (skb_encapsulation(skb))
133 return -ENOTSUPP;
134
135 if (skb_cow_head(skb, MPLS_HLEN) < 0)
136 return -ENOMEM;
137
138 skb_push(skb, MPLS_HLEN);
139 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
140 skb->mac_len);
141 skb_reset_mac_header(skb);
142
143 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
144 *new_mpls_lse = mpls->mpls_lse;
145
146 if (skb->ip_summed == CHECKSUM_COMPLETE)
147 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
148 MPLS_HLEN, 0));
149
150 hdr = eth_hdr(skb);
151 hdr->h_proto = mpls->mpls_ethertype;
152 if (!ovs_skb_get_inner_protocol(skb))
153 ovs_skb_set_inner_protocol(skb, skb->protocol);
154 skb->protocol = mpls->mpls_ethertype;
155
156 invalidate_flow_key(key);
157 return 0;
158 }
159
160 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
161 const __be16 ethertype)
162 {
163 struct ethhdr *hdr;
164 int err;
165
166 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
167 if (unlikely(err))
168 return err;
169
170 if (skb->ip_summed == CHECKSUM_COMPLETE)
171 skb->csum = csum_sub(skb->csum,
172 csum_partial(skb_mpls_header(skb),
173 MPLS_HLEN, 0));
174
175 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
176 skb->mac_len);
177
178 __skb_pull(skb, MPLS_HLEN);
179 skb_reset_mac_header(skb);
180
181 /* skb_mpls_header() is used to locate the ethertype
182 * field correctly in the presence of VLAN tags.
183 */
184 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
185 hdr->h_proto = ethertype;
186 if (eth_p_mpls(skb->protocol))
187 skb->protocol = ethertype;
188
189 invalidate_flow_key(key);
190 return 0;
191 }
192
193 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
194 const __be32 *mpls_lse)
195 {
196 __be32 *stack;
197 int err;
198
199 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
200 if (unlikely(err))
201 return err;
202
203 stack = (__be32 *)skb_mpls_header(skb);
204 if (skb->ip_summed == CHECKSUM_COMPLETE) {
205 __be32 diff[] = { ~(*stack), *mpls_lse };
206 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
207 ~skb->csum);
208 }
209
210 *stack = *mpls_lse;
211 key->mpls.top_lse = *mpls_lse;
212 return 0;
213 }
214
215 /* remove VLAN header from packet and update csum accordingly. */
216 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
217 {
218 struct vlan_hdr *vhdr;
219 int err;
220
221 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
222 if (unlikely(err))
223 return err;
224
225 if (skb->ip_summed == CHECKSUM_COMPLETE)
226 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
227 + (2 * ETH_ALEN), VLAN_HLEN, 0));
228
229 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
230 *current_tci = vhdr->h_vlan_TCI;
231
232 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
233 __skb_pull(skb, VLAN_HLEN);
234
235 vlan_set_encap_proto(skb, vhdr);
236 skb->mac_header += VLAN_HLEN;
237 /* Update mac_len for subsequent MPLS actions */
238 skb->mac_len -= VLAN_HLEN;
239
240 return 0;
241 }
242
243 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
244 {
245 __be16 tci;
246 int err;
247
248 if (likely(vlan_tx_tag_present(skb))) {
249 vlan_set_tci(skb, 0);
250 } else {
251 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
252 skb->len < VLAN_ETH_HLEN))
253 return 0;
254
255 err = __pop_vlan_tci(skb, &tci);
256 if (err)
257 return err;
258 }
259 /* move next vlan tag to hw accel tag */
260 if (likely(skb->protocol != htons(ETH_P_8021Q) ||
261 skb->len < VLAN_ETH_HLEN)) {
262 key->eth.tci = 0;
263 return 0;
264 }
265
266 invalidate_flow_key(key);
267 err = __pop_vlan_tci(skb, &tci);
268 if (unlikely(err))
269 return err;
270
271 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
272 return 0;
273 }
274
275 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
276 const struct ovs_action_push_vlan *vlan)
277 {
278 if (unlikely(vlan_tx_tag_present(skb))) {
279 u16 current_tag;
280
281 /* push down current VLAN tag */
282 current_tag = vlan_tx_tag_get(skb);
283
284 if (!vlan_insert_tag_set_proto(skb, skb->vlan_proto, current_tag))
285 return -ENOMEM;
286 /* Update mac_len for subsequent MPLS actions */
287 skb->mac_len += VLAN_HLEN;
288
289 if (skb->ip_summed == CHECKSUM_COMPLETE)
290 skb->csum = csum_add(skb->csum, csum_partial(skb->data
291 + (2 * ETH_ALEN), VLAN_HLEN, 0));
292
293 invalidate_flow_key(key);
294 } else {
295 key->eth.tci = vlan->vlan_tci;
296 }
297 __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
298 return 0;
299 }
300
301 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
302 const struct ovs_key_ethernet *eth_key)
303 {
304 int err;
305 err = skb_ensure_writable(skb, ETH_HLEN);
306 if (unlikely(err))
307 return err;
308
309 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
310
311 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
312 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
313
314 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
315
316 ether_addr_copy(key->eth.src, eth_key->eth_src);
317 ether_addr_copy(key->eth.dst, eth_key->eth_dst);
318 return 0;
319 }
320
321 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
322 __be32 *addr, __be32 new_addr)
323 {
324 int transport_len = skb->len - skb_transport_offset(skb);
325
326 if (nh->protocol == IPPROTO_TCP) {
327 if (likely(transport_len >= sizeof(struct tcphdr)))
328 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
329 *addr, new_addr, 1);
330 } else if (nh->protocol == IPPROTO_UDP) {
331 if (likely(transport_len >= sizeof(struct udphdr))) {
332 struct udphdr *uh = udp_hdr(skb);
333
334 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
335 inet_proto_csum_replace4(&uh->check, skb,
336 *addr, new_addr, 1);
337 if (!uh->check)
338 uh->check = CSUM_MANGLED_0;
339 }
340 }
341 }
342
343 csum_replace4(&nh->check, *addr, new_addr);
344 skb_clear_hash(skb);
345 *addr = new_addr;
346 }
347
348 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
349 __be32 addr[4], const __be32 new_addr[4])
350 {
351 int transport_len = skb->len - skb_transport_offset(skb);
352
353 if (l4_proto == NEXTHDR_TCP) {
354 if (likely(transport_len >= sizeof(struct tcphdr)))
355 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
356 addr, new_addr, 1);
357 } else if (l4_proto == NEXTHDR_UDP) {
358 if (likely(transport_len >= sizeof(struct udphdr))) {
359 struct udphdr *uh = udp_hdr(skb);
360
361 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
362 inet_proto_csum_replace16(&uh->check, skb,
363 addr, new_addr, 1);
364 if (!uh->check)
365 uh->check = CSUM_MANGLED_0;
366 }
367 }
368 } else if (l4_proto == NEXTHDR_ICMP) {
369 if (likely(transport_len >= sizeof(struct icmp6hdr)))
370 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
371 skb, addr, new_addr, 1);
372 }
373 }
374
375 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
376 __be32 addr[4], const __be32 new_addr[4],
377 bool recalculate_csum)
378 {
379 if (likely(recalculate_csum))
380 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
381
382 skb_clear_hash(skb);
383 memcpy(addr, new_addr, sizeof(__be32[4]));
384 }
385
386 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
387 {
388 nh->priority = tc >> 4;
389 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
390 }
391
392 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
393 {
394 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
395 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
396 nh->flow_lbl[2] = fl & 0x000000FF;
397 }
398
399 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
400 {
401 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
402 nh->ttl = new_ttl;
403 }
404
405 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
406 const struct ovs_key_ipv4 *ipv4_key)
407 {
408 struct iphdr *nh;
409 int err;
410
411 err = skb_ensure_writable(skb, skb_network_offset(skb) +
412 sizeof(struct iphdr));
413 if (unlikely(err))
414 return err;
415
416 nh = ip_hdr(skb);
417
418 if (ipv4_key->ipv4_src != nh->saddr) {
419 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
420 key->ipv4.addr.src = ipv4_key->ipv4_src;
421 }
422
423 if (ipv4_key->ipv4_dst != nh->daddr) {
424 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
425 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
426 }
427
428 if (ipv4_key->ipv4_tos != nh->tos) {
429 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
430 key->ip.tos = nh->tos;
431 }
432
433 if (ipv4_key->ipv4_ttl != nh->ttl) {
434 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
435 key->ip.ttl = ipv4_key->ipv4_ttl;
436 }
437
438 return 0;
439 }
440
441 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
442 const struct ovs_key_ipv6 *ipv6_key)
443 {
444 struct ipv6hdr *nh;
445 int err;
446 __be32 *saddr;
447 __be32 *daddr;
448
449 err = skb_ensure_writable(skb, skb_network_offset(skb) +
450 sizeof(struct ipv6hdr));
451 if (unlikely(err))
452 return err;
453
454 nh = ipv6_hdr(skb);
455 saddr = (__be32 *)&nh->saddr;
456 daddr = (__be32 *)&nh->daddr;
457
458 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
459 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
460 ipv6_key->ipv6_src, true);
461 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
462 sizeof(ipv6_key->ipv6_src));
463 }
464
465 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
466 unsigned int offset = 0;
467 int flags = IP6_FH_F_SKIP_RH;
468 bool recalc_csum = true;
469
470 if (ipv6_ext_hdr(nh->nexthdr))
471 recalc_csum = ipv6_find_hdr(skb, &offset,
472 NEXTHDR_ROUTING, NULL,
473 &flags) != NEXTHDR_ROUTING;
474
475 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
476 ipv6_key->ipv6_dst, recalc_csum);
477 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
478 sizeof(ipv6_key->ipv6_dst));
479 }
480
481 set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
482 key->ip.tos = ipv6_get_dsfield(nh);
483
484 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
485 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
486
487 nh->hop_limit = ipv6_key->ipv6_hlimit;
488 key->ip.ttl = ipv6_key->ipv6_hlimit;
489 return 0;
490 }
491
492 /* Must follow skb_ensure_writable() since that can move the skb data. */
493 static void set_tp_port(struct sk_buff *skb, __be16 *port,
494 __be16 new_port, __sum16 *check)
495 {
496 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
497 *port = new_port;
498 skb_clear_hash(skb);
499 }
500
501 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
502 {
503 struct udphdr *uh = udp_hdr(skb);
504
505 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
506 set_tp_port(skb, port, new_port, &uh->check);
507
508 if (!uh->check)
509 uh->check = CSUM_MANGLED_0;
510 } else {
511 *port = new_port;
512 skb_clear_hash(skb);
513 }
514 }
515
516 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
517 const struct ovs_key_udp *udp_port_key)
518 {
519 struct udphdr *uh;
520 int err;
521
522 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
523 sizeof(struct udphdr));
524 if (unlikely(err))
525 return err;
526
527 uh = udp_hdr(skb);
528 if (udp_port_key->udp_src != uh->source) {
529 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
530 key->tp.src = udp_port_key->udp_src;
531 }
532
533 if (udp_port_key->udp_dst != uh->dest) {
534 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
535 key->tp.dst = udp_port_key->udp_dst;
536 }
537
538 return 0;
539 }
540
541 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
542 const struct ovs_key_tcp *tcp_port_key)
543 {
544 struct tcphdr *th;
545 int err;
546
547 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
548 sizeof(struct tcphdr));
549 if (unlikely(err))
550 return err;
551
552 th = tcp_hdr(skb);
553 if (tcp_port_key->tcp_src != th->source) {
554 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
555 key->tp.src = tcp_port_key->tcp_src;
556 }
557
558 if (tcp_port_key->tcp_dst != th->dest) {
559 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
560 key->tp.dst = tcp_port_key->tcp_dst;
561 }
562
563 return 0;
564 }
565
566 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
567 const struct ovs_key_sctp *sctp_port_key)
568 {
569 struct sctphdr *sh;
570 int err;
571 unsigned int sctphoff = skb_transport_offset(skb);
572
573 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
574 if (unlikely(err))
575 return err;
576
577 sh = sctp_hdr(skb);
578 if (sctp_port_key->sctp_src != sh->source ||
579 sctp_port_key->sctp_dst != sh->dest) {
580 __le32 old_correct_csum, new_csum, old_csum;
581
582 old_csum = sh->checksum;
583 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
584
585 sh->source = sctp_port_key->sctp_src;
586 sh->dest = sctp_port_key->sctp_dst;
587
588 new_csum = sctp_compute_cksum(skb, sctphoff);
589
590 /* Carry any checksum errors through. */
591 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
592
593 skb_clear_hash(skb);
594 key->tp.src = sctp_port_key->sctp_src;
595 key->tp.dst = sctp_port_key->sctp_dst;
596 }
597
598 return 0;
599 }
600
601 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
602 {
603 struct vport *vport = ovs_vport_rcu(dp, out_port);
604
605 if (likely(vport))
606 ovs_vport_send(vport, skb);
607 else
608 kfree_skb(skb);
609 }
610
611 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
612 struct sw_flow_key *key, const struct nlattr *attr)
613 {
614 struct ovs_tunnel_info info;
615 struct dp_upcall_info upcall;
616 const struct nlattr *a;
617 int rem;
618
619 upcall.cmd = OVS_PACKET_CMD_ACTION;
620 upcall.userdata = NULL;
621 upcall.portid = 0;
622 upcall.egress_tun_info = NULL;
623
624 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
625 a = nla_next(a, &rem)) {
626 switch (nla_type(a)) {
627 case OVS_USERSPACE_ATTR_USERDATA:
628 upcall.userdata = a;
629 break;
630
631 case OVS_USERSPACE_ATTR_PID:
632 upcall.portid = nla_get_u32(a);
633 break;
634
635 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
636 /* Get out tunnel info. */
637 struct vport *vport;
638
639 vport = ovs_vport_rcu(dp, nla_get_u32(a));
640 if (vport) {
641 int err;
642
643 err = ovs_vport_get_egress_tun_info(vport, skb,
644 &info);
645 if (!err)
646 upcall.egress_tun_info = &info;
647 }
648 break;
649 }
650
651 } /* End of switch. */
652 }
653
654 return ovs_dp_upcall(dp, skb, key, &upcall);
655 }
656
657 static int sample(struct datapath *dp, struct sk_buff *skb,
658 struct sw_flow_key *key, const struct nlattr *attr)
659 {
660 const struct nlattr *acts_list = NULL;
661 const struct nlattr *a;
662 int rem;
663
664 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
665 a = nla_next(a, &rem)) {
666 switch (nla_type(a)) {
667 case OVS_SAMPLE_ATTR_PROBABILITY:
668 if (prandom_u32() >= nla_get_u32(a))
669 return 0;
670 break;
671
672 case OVS_SAMPLE_ATTR_ACTIONS:
673 acts_list = a;
674 break;
675 }
676 }
677
678 rem = nla_len(acts_list);
679 a = nla_data(acts_list);
680
681 /* Actions list is empty, do nothing */
682 if (unlikely(!rem))
683 return 0;
684
685 /* The only known usage of sample action is having a single user-space
686 * action. Treat this usage as a special case.
687 * The output_userspace() should clone the skb to be sent to the
688 * user space. This skb will be consumed by its caller.
689 */
690 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
691 nla_is_last(a, rem)))
692 return output_userspace(dp, skb, key, a);
693
694 skb = skb_clone(skb, GFP_ATOMIC);
695 if (!skb)
696 /* Skip the sample action when out of memory. */
697 return 0;
698
699 if (!add_deferred_actions(skb, key, a)) {
700 if (net_ratelimit())
701 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
702 ovs_dp_name(dp));
703
704 kfree_skb(skb);
705 }
706 return 0;
707 }
708
709 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
710 const struct nlattr *attr)
711 {
712 struct ovs_action_hash *hash_act = nla_data(attr);
713 u32 hash = 0;
714
715 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
716 hash = skb_get_hash(skb);
717 hash = jhash_1word(hash, hash_act->hash_basis);
718 if (!hash)
719 hash = 0x1;
720
721 key->ovs_flow_hash = hash;
722 }
723
724 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
725 const struct nlattr *nested_attr)
726 {
727 int err = 0;
728
729 switch (nla_type(nested_attr)) {
730 case OVS_KEY_ATTR_PRIORITY:
731 skb->priority = nla_get_u32(nested_attr);
732 key->phy.priority = skb->priority;
733 break;
734
735 case OVS_KEY_ATTR_SKB_MARK:
736 skb->mark = nla_get_u32(nested_attr);
737 key->phy.skb_mark = skb->mark;
738 break;
739
740 case OVS_KEY_ATTR_TUNNEL_INFO:
741 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
742 break;
743
744 case OVS_KEY_ATTR_ETHERNET:
745 err = set_eth_addr(skb, key, nla_data(nested_attr));
746 break;
747
748 case OVS_KEY_ATTR_IPV4:
749 err = set_ipv4(skb, key, nla_data(nested_attr));
750 break;
751
752 case OVS_KEY_ATTR_IPV6:
753 err = set_ipv6(skb, key, nla_data(nested_attr));
754 break;
755
756 case OVS_KEY_ATTR_TCP:
757 err = set_tcp(skb, key, nla_data(nested_attr));
758 break;
759
760 case OVS_KEY_ATTR_UDP:
761 err = set_udp(skb, key, nla_data(nested_attr));
762 break;
763
764 case OVS_KEY_ATTR_SCTP:
765 err = set_sctp(skb, key, nla_data(nested_attr));
766 break;
767
768 case OVS_KEY_ATTR_MPLS:
769 err = set_mpls(skb, key, nla_data(nested_attr));
770 break;
771 }
772
773 return err;
774 }
775
776 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
777 struct sw_flow_key *key,
778 const struct nlattr *a, int rem)
779 {
780 struct deferred_action *da;
781
782 if (!is_flow_key_valid(key)) {
783 int err;
784
785 err = ovs_flow_key_update(skb, key);
786 if (err)
787 return err;
788 }
789 BUG_ON(!is_flow_key_valid(key));
790
791 if (!nla_is_last(a, rem)) {
792 /* Recirc action is the not the last action
793 * of the action list, need to clone the skb.
794 */
795 skb = skb_clone(skb, GFP_ATOMIC);
796
797 /* Skip the recirc action when out of memory, but
798 * continue on with the rest of the action list.
799 */
800 if (!skb)
801 return 0;
802 }
803
804 da = add_deferred_actions(skb, key, NULL);
805 if (da) {
806 da->pkt_key.recirc_id = nla_get_u32(a);
807 } else {
808 kfree_skb(skb);
809
810 if (net_ratelimit())
811 pr_warn("%s: deferred action limit reached, drop recirc action\n",
812 ovs_dp_name(dp));
813 }
814
815 return 0;
816 }
817
818 /* Execute a list of actions against 'skb'. */
819 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
820 struct sw_flow_key *key,
821 const struct nlattr *attr, int len)
822 {
823 /* Every output action needs a separate clone of 'skb', but the common
824 * case is just a single output action, so that doing a clone and
825 * then freeing the original skbuff is wasteful. So the following code
826 * is slightly obscure just to avoid that.
827 */
828 int prev_port = -1;
829 const struct nlattr *a;
830 int rem;
831
832 for (a = attr, rem = len; rem > 0;
833 a = nla_next(a, &rem)) {
834 int err = 0;
835
836 if (unlikely(prev_port != -1)) {
837 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
838
839 if (out_skb)
840 do_output(dp, out_skb, prev_port);
841
842 prev_port = -1;
843 }
844
845 switch (nla_type(a)) {
846 case OVS_ACTION_ATTR_OUTPUT:
847 prev_port = nla_get_u32(a);
848 break;
849
850 case OVS_ACTION_ATTR_USERSPACE:
851 output_userspace(dp, skb, key, a);
852 break;
853
854 case OVS_ACTION_ATTR_HASH:
855 execute_hash(skb, key, a);
856 break;
857
858 case OVS_ACTION_ATTR_PUSH_MPLS:
859 err = push_mpls(skb, key, nla_data(a));
860 break;
861
862 case OVS_ACTION_ATTR_POP_MPLS:
863 err = pop_mpls(skb, key, nla_get_be16(a));
864 break;
865
866 case OVS_ACTION_ATTR_PUSH_VLAN:
867 err = push_vlan(skb, key, nla_data(a));
868 if (unlikely(err)) /* skb already freed. */
869 return err;
870 break;
871
872 case OVS_ACTION_ATTR_POP_VLAN:
873 err = pop_vlan(skb, key);
874 break;
875
876 case OVS_ACTION_ATTR_RECIRC:
877 err = execute_recirc(dp, skb, key, a, rem);
878 if (nla_is_last(a, rem)) {
879 /* If this is the last action, the skb has
880 * been consumed or freed.
881 * Return immediately.
882 */
883 return err;
884 }
885 break;
886
887 case OVS_ACTION_ATTR_SET:
888 err = execute_set_action(skb, key, nla_data(a));
889 break;
890
891 case OVS_ACTION_ATTR_SAMPLE:
892 err = sample(dp, skb, key, a);
893 break;
894 }
895
896 if (unlikely(err)) {
897 kfree_skb(skb);
898 return err;
899 }
900 }
901
902 if (prev_port != -1)
903 do_output(dp, skb, prev_port);
904 else
905 consume_skb(skb);
906
907 return 0;
908 }
909
910 static void process_deferred_actions(struct datapath *dp)
911 {
912 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
913
914 /* Do not touch the FIFO in case there is no deferred actions. */
915 if (action_fifo_is_empty(fifo))
916 return;
917
918 /* Finishing executing all deferred actions. */
919 do {
920 struct deferred_action *da = action_fifo_get(fifo);
921 struct sk_buff *skb = da->skb;
922 struct sw_flow_key *key = &da->pkt_key;
923 const struct nlattr *actions = da->actions;
924
925 if (actions)
926 do_execute_actions(dp, skb, key, actions,
927 nla_len(actions));
928 else
929 ovs_dp_process_packet(skb, key);
930 } while (!action_fifo_is_empty(fifo));
931
932 /* Reset FIFO for the next packet. */
933 action_fifo_init(fifo);
934 }
935
936 /* Execute a list of actions against 'skb'. */
937 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
938 const struct sw_flow_actions *acts,
939 struct sw_flow_key *key)
940 {
941 int level = this_cpu_read(exec_actions_level);
942 int err;
943
944 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
945 if (net_ratelimit())
946 pr_warn("%s: packet loop detected, dropping.\n",
947 ovs_dp_name(dp));
948
949 kfree_skb(skb);
950 return -ELOOP;
951 }
952
953 this_cpu_inc(exec_actions_level);
954 err = do_execute_actions(dp, skb, key,
955 acts->actions, acts->actions_len);
956
957 if (!level)
958 process_deferred_actions(dp);
959
960 this_cpu_dec(exec_actions_level);
961
962 /* This return status currently does not reflect the errors
963 * encounted during deferred actions execution. Probably needs to
964 * be fixed in the future.
965 */
966 return err;
967 }
968
969 int action_fifos_init(void)
970 {
971 action_fifos = alloc_percpu(struct action_fifo);
972 if (!action_fifos)
973 return -ENOMEM;
974
975 return 0;
976 }
977
978 void action_fifos_exit(void)
979 {
980 free_percpu(action_fifos);
981 }