]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: Fix comment style.
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/sctp/checksum.h>
36
37 #include "datapath.h"
38 #include "gso.h"
39 #include "mpls.h"
40 #include "vlan.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
65 * looping by the network stack
66 */
67 static DEFINE_PER_CPU(int, exec_actions_level);
68
69 static void action_fifo_init(struct action_fifo *fifo)
70 {
71 fifo->head = 0;
72 fifo->tail = 0;
73 }
74
75 static bool action_fifo_is_empty(const struct action_fifo *fifo)
76 {
77 return (fifo->head == fifo->tail);
78 }
79
80 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
81 {
82 if (action_fifo_is_empty(fifo))
83 return NULL;
84
85 return &fifo->fifo[fifo->tail++];
86 }
87
88 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
89 {
90 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
91 return NULL;
92
93 return &fifo->fifo[fifo->head++];
94 }
95
96 /* Return queue entry if fifo is not full */
97 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
98 const struct sw_flow_key *key,
99 const struct nlattr *attr)
100 {
101 struct action_fifo *fifo;
102 struct deferred_action *da;
103
104 fifo = this_cpu_ptr(action_fifos);
105 da = action_fifo_put(fifo);
106 if (da) {
107 da->skb = skb;
108 da->actions = attr;
109 da->pkt_key = *key;
110 }
111
112 return da;
113 }
114
115 static void invalidate_flow_key(struct sw_flow_key *key)
116 {
117 key->eth.type = htons(0);
118 }
119
120 static bool is_flow_key_valid(const struct sw_flow_key *key)
121 {
122 return !!key->eth.type;
123 }
124
125 static int make_writable(struct sk_buff *skb, int write_len)
126 {
127 if (!pskb_may_pull(skb, write_len))
128 return -ENOMEM;
129
130 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
131 return 0;
132
133 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
134 }
135
136 /* The end of the mac header.
137 *
138 * For non-MPLS skbs this will correspond to the network header.
139 * For MPLS skbs it will be before the network_header as the MPLS
140 * label stack lies between the end of the mac header and the network
141 * header. That is, for MPLS skbs the end of the mac header
142 * is the top of the MPLS label stack.
143 */
144 static unsigned char *mac_header_end(const struct sk_buff *skb)
145 {
146 return skb_mac_header(skb) + skb->mac_len;
147 }
148
149 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
150 const struct ovs_action_push_mpls *mpls)
151 {
152 __be32 *new_mpls_lse;
153 struct ethhdr *hdr;
154
155 if (skb_cow_head(skb, MPLS_HLEN) < 0)
156 return -ENOMEM;
157
158 skb_push(skb, MPLS_HLEN);
159 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
160 skb->mac_len);
161 skb_reset_mac_header(skb);
162
163 new_mpls_lse = (__be32 *)mac_header_end(skb);
164 *new_mpls_lse = mpls->mpls_lse;
165
166 if (skb->ip_summed == CHECKSUM_COMPLETE)
167 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
168 MPLS_HLEN, 0));
169
170 hdr = eth_hdr(skb);
171 hdr->h_proto = mpls->mpls_ethertype;
172 if (!ovs_skb_get_inner_protocol(skb))
173 ovs_skb_set_inner_protocol(skb, skb->protocol);
174 skb->protocol = mpls->mpls_ethertype;
175 invalidate_flow_key(key);
176 return 0;
177 }
178
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 const __be16 ethertype)
181 {
182 struct ethhdr *hdr;
183 int err;
184
185 err = make_writable(skb, skb->mac_len + MPLS_HLEN);
186 if (unlikely(err))
187 return err;
188
189 if (skb->ip_summed == CHECKSUM_COMPLETE)
190 skb->csum = csum_sub(skb->csum,
191 csum_partial(mac_header_end(skb),
192 MPLS_HLEN, 0));
193
194 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
195 skb->mac_len);
196
197 __skb_pull(skb, MPLS_HLEN);
198 skb_reset_mac_header(skb);
199
200 /* mac_header_end() is used to locate the ethertype
201 * field correctly in the presence of VLAN tags.
202 */
203 hdr = (struct ethhdr *)(mac_header_end(skb) - ETH_HLEN);
204 hdr->h_proto = ethertype;
205 if (eth_p_mpls(skb->protocol))
206 skb->protocol = ethertype;
207 invalidate_flow_key(key);
208 return 0;
209 }
210
211 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
212 const __be32 *mpls_lse)
213 {
214 __be32 *stack = (__be32 *)mac_header_end(skb);
215 int err;
216
217 err = make_writable(skb, skb->mac_len + MPLS_HLEN);
218 if (unlikely(err))
219 return err;
220
221 if (skb->ip_summed == CHECKSUM_COMPLETE) {
222 __be32 diff[] = { ~(*stack), *mpls_lse };
223 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
224 ~skb->csum);
225 }
226
227 *stack = *mpls_lse;
228 key->mpls.top_lse = *mpls_lse;
229 return 0;
230 }
231
232 /* remove VLAN header from packet and update csum accordingly. */
233 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
234 {
235 struct vlan_hdr *vhdr;
236 int err;
237
238 err = make_writable(skb, VLAN_ETH_HLEN);
239 if (unlikely(err))
240 return err;
241
242 if (skb->ip_summed == CHECKSUM_COMPLETE)
243 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
244 + (2 * ETH_ALEN), VLAN_HLEN, 0));
245
246 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
247 *current_tci = vhdr->h_vlan_TCI;
248
249 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
250 __skb_pull(skb, VLAN_HLEN);
251
252 vlan_set_encap_proto(skb, vhdr);
253 skb->mac_header += VLAN_HLEN;
254 /* Update mac_len for subsequent MPLS actions */
255 skb->mac_len -= VLAN_HLEN;
256
257 return 0;
258 }
259
260 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
261 {
262 __be16 tci;
263 int err;
264
265 if (likely(vlan_tx_tag_present(skb))) {
266 vlan_set_tci(skb, 0);
267 } else {
268 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
269 skb->len < VLAN_ETH_HLEN))
270 return 0;
271
272 err = __pop_vlan_tci(skb, &tci);
273 if (err)
274 return err;
275 }
276 /* move next vlan tag to hw accel tag */
277 if (likely(skb->protocol != htons(ETH_P_8021Q) ||
278 skb->len < VLAN_ETH_HLEN)) {
279 key->eth.tci = 0;
280 return 0;
281 }
282
283 invalidate_flow_key(key);
284 err = __pop_vlan_tci(skb, &tci);
285 if (unlikely(err))
286 return err;
287
288 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
289 return 0;
290 }
291
292 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
293 const struct ovs_action_push_vlan *vlan)
294 {
295 if (unlikely(vlan_tx_tag_present(skb))) {
296 u16 current_tag;
297
298 /* push down current VLAN tag */
299 current_tag = vlan_tx_tag_get(skb);
300
301 if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
302 return -ENOMEM;
303
304 /* Update mac_len for subsequent MPLS actions */
305 skb->mac_len += VLAN_HLEN;
306
307 if (skb->ip_summed == CHECKSUM_COMPLETE)
308 skb->csum = csum_add(skb->csum, csum_partial(skb->data
309 + (2 * ETH_ALEN), VLAN_HLEN, 0));
310
311 invalidate_flow_key(key);
312 } else {
313 key->eth.tci = vlan->vlan_tci;
314 }
315 __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
316 return 0;
317 }
318
319 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
320 const struct ovs_key_ethernet *eth_key)
321 {
322 int err;
323 err = make_writable(skb, ETH_HLEN);
324 if (unlikely(err))
325 return err;
326
327 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
328
329 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
330 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
331
332 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
333
334 ether_addr_copy(key->eth.src, eth_key->eth_src);
335 ether_addr_copy(key->eth.dst, eth_key->eth_dst);
336 return 0;
337 }
338
339 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
340 __be32 *addr, __be32 new_addr)
341 {
342 int transport_len = skb->len - skb_transport_offset(skb);
343
344 if (nh->protocol == IPPROTO_TCP) {
345 if (likely(transport_len >= sizeof(struct tcphdr)))
346 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
347 *addr, new_addr, 1);
348 } else if (nh->protocol == IPPROTO_UDP) {
349 if (likely(transport_len >= sizeof(struct udphdr))) {
350 struct udphdr *uh = udp_hdr(skb);
351
352 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
353 inet_proto_csum_replace4(&uh->check, skb,
354 *addr, new_addr, 1);
355 if (!uh->check)
356 uh->check = CSUM_MANGLED_0;
357 }
358 }
359 }
360
361 csum_replace4(&nh->check, *addr, new_addr);
362 skb_clear_hash(skb);
363 *addr = new_addr;
364 }
365
366 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
367 __be32 addr[4], const __be32 new_addr[4])
368 {
369 int transport_len = skb->len - skb_transport_offset(skb);
370
371 if (l4_proto == NEXTHDR_TCP) {
372 if (likely(transport_len >= sizeof(struct tcphdr)))
373 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
374 addr, new_addr, 1);
375 } else if (l4_proto == NEXTHDR_UDP) {
376 if (likely(transport_len >= sizeof(struct udphdr))) {
377 struct udphdr *uh = udp_hdr(skb);
378
379 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
380 inet_proto_csum_replace16(&uh->check, skb,
381 addr, new_addr, 1);
382 if (!uh->check)
383 uh->check = CSUM_MANGLED_0;
384 }
385 }
386 } else if (l4_proto == NEXTHDR_ICMP) {
387 if (likely(transport_len >= sizeof(struct icmp6hdr)))
388 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
389 skb, addr, new_addr, 1);
390 }
391 }
392
393 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
394 __be32 addr[4], const __be32 new_addr[4],
395 bool recalculate_csum)
396 {
397 if (likely(recalculate_csum))
398 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
399
400 skb_clear_hash(skb);
401 memcpy(addr, new_addr, sizeof(__be32[4]));
402 }
403
404 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
405 {
406 nh->priority = tc >> 4;
407 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
408 }
409
410 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
411 {
412 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
413 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
414 nh->flow_lbl[2] = fl & 0x000000FF;
415 }
416
417 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
418 {
419 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
420 nh->ttl = new_ttl;
421 }
422
423 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
424 const struct ovs_key_ipv4 *ipv4_key)
425 {
426 struct iphdr *nh;
427 int err;
428
429 err = make_writable(skb, skb_network_offset(skb) +
430 sizeof(struct iphdr));
431 if (unlikely(err))
432 return err;
433
434 nh = ip_hdr(skb);
435
436 if (ipv4_key->ipv4_src != nh->saddr) {
437 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
438 key->ipv4.addr.src = ipv4_key->ipv4_src;
439 }
440
441 if (ipv4_key->ipv4_dst != nh->daddr) {
442 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
443 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
444 }
445
446 if (ipv4_key->ipv4_tos != nh->tos) {
447 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
448 key->ip.tos = nh->tos;
449 }
450
451 if (ipv4_key->ipv4_ttl != nh->ttl) {
452 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
453 key->ip.ttl = ipv4_key->ipv4_ttl;
454 }
455
456 return 0;
457 }
458
459 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
460 const struct ovs_key_ipv6 *ipv6_key)
461 {
462 struct ipv6hdr *nh;
463 int err;
464 __be32 *saddr;
465 __be32 *daddr;
466
467 err = make_writable(skb, skb_network_offset(skb) +
468 sizeof(struct ipv6hdr));
469 if (unlikely(err))
470 return err;
471
472 nh = ipv6_hdr(skb);
473 saddr = (__be32 *)&nh->saddr;
474 daddr = (__be32 *)&nh->daddr;
475
476 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
477 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
478 ipv6_key->ipv6_src, true);
479 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
480 sizeof(ipv6_key->ipv6_src));
481 }
482
483 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
484 unsigned int offset = 0;
485 int flags = OVS_IP6T_FH_F_SKIP_RH;
486 bool recalc_csum = true;
487
488 if (ipv6_ext_hdr(nh->nexthdr))
489 recalc_csum = ipv6_find_hdr(skb, &offset,
490 NEXTHDR_ROUTING, NULL,
491 &flags) != NEXTHDR_ROUTING;
492
493 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
494 ipv6_key->ipv6_dst, recalc_csum);
495 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
496 sizeof(ipv6_key->ipv6_dst));
497 }
498
499 set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
500 key->ip.tos = ipv6_get_dsfield(nh);
501
502 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
503 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
504
505 nh->hop_limit = ipv6_key->ipv6_hlimit;
506 key->ip.ttl = ipv6_key->ipv6_hlimit;
507 return 0;
508 }
509
510 /* Must follow make_writable() since that can move the skb data. */
511 static void set_tp_port(struct sk_buff *skb, __be16 *port,
512 __be16 new_port, __sum16 *check)
513 {
514 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
515 *port = new_port;
516 skb_clear_hash(skb);
517 }
518
519 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
520 {
521 struct udphdr *uh = udp_hdr(skb);
522
523 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
524 set_tp_port(skb, port, new_port, &uh->check);
525
526 if (!uh->check)
527 uh->check = CSUM_MANGLED_0;
528 } else {
529 *port = new_port;
530 skb_clear_hash(skb);
531 }
532 }
533
534 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
535 const struct ovs_key_udp *udp_port_key)
536 {
537 struct udphdr *uh;
538 int err;
539
540 err = make_writable(skb, skb_transport_offset(skb) +
541 sizeof(struct udphdr));
542 if (unlikely(err))
543 return err;
544
545 uh = udp_hdr(skb);
546 if (udp_port_key->udp_src != uh->source) {
547 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
548 key->tp.src = udp_port_key->udp_src;
549 }
550
551 if (udp_port_key->udp_dst != uh->dest) {
552 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
553 key->tp.dst = udp_port_key->udp_dst;
554 }
555
556 return 0;
557 }
558
559 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
560 const struct ovs_key_tcp *tcp_port_key)
561 {
562 struct tcphdr *th;
563 int err;
564
565 err = make_writable(skb, skb_transport_offset(skb) +
566 sizeof(struct tcphdr));
567 if (unlikely(err))
568 return err;
569
570 th = tcp_hdr(skb);
571 if (tcp_port_key->tcp_src != th->source) {
572 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
573 key->tp.src = tcp_port_key->tcp_src;
574 }
575
576 if (tcp_port_key->tcp_dst != th->dest) {
577 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
578 key->tp.dst = tcp_port_key->tcp_dst;
579 }
580
581 return 0;
582 }
583
584 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
585 const struct ovs_key_sctp *sctp_port_key)
586 {
587 struct sctphdr *sh;
588 int err;
589 unsigned int sctphoff = skb_transport_offset(skb);
590
591 err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
592 if (unlikely(err))
593 return err;
594
595 sh = sctp_hdr(skb);
596 if (sctp_port_key->sctp_src != sh->source ||
597 sctp_port_key->sctp_dst != sh->dest) {
598 __le32 old_correct_csum, new_csum, old_csum;
599
600 old_csum = sh->checksum;
601 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
602
603 sh->source = sctp_port_key->sctp_src;
604 sh->dest = sctp_port_key->sctp_dst;
605
606 new_csum = sctp_compute_cksum(skb, sctphoff);
607
608 /* Carry any checksum errors through. */
609 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
610
611 skb_clear_hash(skb);
612 key->tp.src = sctp_port_key->sctp_src;
613 key->tp.dst = sctp_port_key->sctp_dst;
614 }
615
616 return 0;
617 }
618
619 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
620 {
621 struct vport *vport = ovs_vport_rcu(dp, out_port);
622
623 if (likely(vport))
624 ovs_vport_send(vport, skb);
625 else
626 kfree_skb(skb);
627 }
628
629 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
630 struct sw_flow_key *key, const struct nlattr *attr)
631 {
632 struct dp_upcall_info upcall;
633 const struct nlattr *a;
634 int rem;
635 struct ovs_tunnel_info info;
636
637 upcall.cmd = OVS_PACKET_CMD_ACTION;
638 upcall.userdata = NULL;
639 upcall.portid = 0;
640 upcall.egress_tun_info = NULL;
641
642 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
643 a = nla_next(a, &rem)) {
644 switch (nla_type(a)) {
645 case OVS_USERSPACE_ATTR_USERDATA:
646 upcall.userdata = a;
647 break;
648
649 case OVS_USERSPACE_ATTR_PID:
650 upcall.portid = nla_get_u32(a);
651 break;
652
653 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
654 /* Get out tunnel info. */
655 struct vport *vport;
656
657 vport = ovs_vport_rcu(dp, nla_get_u32(a));
658 if (vport) {
659 int err;
660
661 err = ovs_vport_get_egress_tun_info(vport, skb,
662 &info);
663 if (!err)
664 upcall.egress_tun_info = &info;
665 }
666 break;
667 }
668
669 } /* End of switch. */
670 }
671
672 return ovs_dp_upcall(dp, skb, key, &upcall);
673 }
674
675 static bool last_action(const struct nlattr *a, int rem)
676 {
677 return a->nla_len == rem;
678 }
679
680 static int sample(struct datapath *dp, struct sk_buff *skb,
681 struct sw_flow_key *key, const struct nlattr *attr)
682 {
683 const struct nlattr *acts_list = NULL;
684 const struct nlattr *a;
685 int rem;
686
687 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
688 a = nla_next(a, &rem)) {
689 switch (nla_type(a)) {
690 case OVS_SAMPLE_ATTR_PROBABILITY:
691 if (prandom_u32() >= nla_get_u32(a))
692 return 0;
693 break;
694
695 case OVS_SAMPLE_ATTR_ACTIONS:
696 acts_list = a;
697 break;
698 }
699 }
700
701 rem = nla_len(acts_list);
702 a = nla_data(acts_list);
703
704 /* Actions list is empty, do nothing */
705 if (unlikely(!rem))
706 return 0;
707
708 /* The only known usage of sample action is having a single user-space
709 * action. Treat this usage as a special case.
710 * The output_userspace() should clone the skb to be sent to the
711 * user space. This skb will be consumed by its caller.
712 */
713 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
714 last_action(a, rem)))
715 return output_userspace(dp, skb, key, a);
716
717 skb = skb_clone(skb, GFP_ATOMIC);
718 if (!skb)
719 /* Skip the sample action when out of memory. */
720 return 0;
721
722 if (!add_deferred_actions(skb, key, a)) {
723 if (net_ratelimit())
724 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
725 ovs_dp_name(dp));
726
727 kfree_skb(skb);
728 }
729 return 0;
730 }
731
732 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
733 const struct nlattr *attr)
734 {
735 struct ovs_action_hash *hash_act = nla_data(attr);
736 u32 hash = 0;
737
738 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
739 hash = skb_get_hash(skb);
740 hash = jhash_1word(hash, hash_act->hash_basis);
741 if (!hash)
742 hash = 0x1;
743
744 key->ovs_flow_hash = hash;
745 }
746
747 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
748 const struct nlattr *nested_attr)
749 {
750 int err = 0;
751
752 switch (nla_type(nested_attr)) {
753 case OVS_KEY_ATTR_PRIORITY:
754 skb->priority = nla_get_u32(nested_attr);
755 key->phy.priority = skb->priority;
756 break;
757
758 case OVS_KEY_ATTR_SKB_MARK:
759 skb->mark = nla_get_u32(nested_attr);
760 key->phy.skb_mark = skb->mark;
761 break;
762
763 case OVS_KEY_ATTR_TUNNEL_INFO:
764 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
765 break;
766
767 case OVS_KEY_ATTR_ETHERNET:
768 err = set_eth_addr(skb, key, nla_data(nested_attr));
769 break;
770
771 case OVS_KEY_ATTR_IPV4:
772 err = set_ipv4(skb, key, nla_data(nested_attr));
773 break;
774
775 case OVS_KEY_ATTR_IPV6:
776 err = set_ipv6(skb, key, nla_data(nested_attr));
777 break;
778
779 case OVS_KEY_ATTR_TCP:
780 err = set_tcp(skb, key, nla_data(nested_attr));
781 break;
782
783 case OVS_KEY_ATTR_UDP:
784 err = set_udp(skb, key, nla_data(nested_attr));
785 break;
786
787 case OVS_KEY_ATTR_SCTP:
788 err = set_sctp(skb, key, nla_data(nested_attr));
789 break;
790
791 case OVS_KEY_ATTR_MPLS:
792 err = set_mpls(skb, key, nla_data(nested_attr));
793 break;
794 }
795
796 return err;
797 }
798
799 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
800 struct sw_flow_key *key, const struct nlattr *a, int rem)
801 {
802 struct deferred_action *da;
803
804 if (!is_flow_key_valid(key)) {
805 int err;
806
807 err = ovs_flow_key_update(skb, key);
808 if (err)
809 return err;
810
811 }
812 BUG_ON(!is_flow_key_valid(key));
813
814 if (!last_action(a, rem)) {
815 /* Recirc action is the not the last action
816 * of the action list, need to clone the skb.
817 */
818 skb = skb_clone(skb, GFP_ATOMIC);
819
820 /* Skip the recirc action when out of memory, but
821 * continue on with the rest of the action list.
822 */
823 if (!skb)
824 return 0;
825 }
826
827 da = add_deferred_actions(skb, key, NULL);
828 if (da) {
829 da->pkt_key.recirc_id = nla_get_u32(a);
830 } else {
831 kfree_skb(skb);
832
833 if (net_ratelimit())
834 pr_warn("%s: deferred action limit reached, drop recirc action\n",
835 ovs_dp_name(dp));
836 }
837
838 return 0;
839 }
840
841 /* Execute a list of actions against 'skb'. */
842 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
843 struct sw_flow_key *key,
844 const struct nlattr *attr, int len)
845 {
846 /* Every output action needs a separate clone of 'skb', but the common
847 * case is just a single output action, so that doing a clone and
848 * then freeing the original skbuff is wasteful. So the following code
849 * is slightly obscure just to avoid that.
850 */
851 int prev_port = -1;
852 const struct nlattr *a;
853 int rem;
854
855 for (a = attr, rem = len; rem > 0;
856 a = nla_next(a, &rem)) {
857 int err = 0;
858
859 if (unlikely(prev_port != -1)) {
860 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
861
862 if (out_skb)
863 do_output(dp, out_skb, prev_port);
864
865 prev_port = -1;
866 }
867
868 switch (nla_type(a)) {
869 case OVS_ACTION_ATTR_OUTPUT:
870 prev_port = nla_get_u32(a);
871 break;
872
873 case OVS_ACTION_ATTR_USERSPACE:
874 output_userspace(dp, skb, key, a);
875 break;
876
877 case OVS_ACTION_ATTR_HASH:
878 execute_hash(skb, key, a);
879 break;
880
881 case OVS_ACTION_ATTR_PUSH_MPLS:
882 err = push_mpls(skb, key, nla_data(a));
883 break;
884
885 case OVS_ACTION_ATTR_POP_MPLS:
886 err = pop_mpls(skb, key, nla_get_be16(a));
887 break;
888
889 case OVS_ACTION_ATTR_PUSH_VLAN:
890 err = push_vlan(skb, key, nla_data(a));
891 if (unlikely(err)) /* skb already freed. */
892 return err;
893 break;
894
895 case OVS_ACTION_ATTR_POP_VLAN:
896 err = pop_vlan(skb, key);
897 break;
898
899 case OVS_ACTION_ATTR_RECIRC:
900 err = execute_recirc(dp, skb, key, a, rem);
901 if (last_action(a, rem)) {
902 /* If this is the last action, the skb has
903 * been consumed or freed.
904 * Return immediately.
905 */
906 return err;
907 }
908 break;
909
910 case OVS_ACTION_ATTR_SET:
911 err = execute_set_action(skb, key, nla_data(a));
912 break;
913
914 case OVS_ACTION_ATTR_SAMPLE:
915 err = sample(dp, skb, key, a);
916 break;
917 }
918
919 if (unlikely(err)) {
920 kfree_skb(skb);
921 return err;
922 }
923 }
924
925 if (prev_port != -1)
926 do_output(dp, skb, prev_port);
927 else
928 consume_skb(skb);
929
930 return 0;
931 }
932
933 static void process_deferred_actions(struct datapath *dp)
934 {
935 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
936
937 /* Do not touch the FIFO in case there is no deferred actions. */
938 if (action_fifo_is_empty(fifo))
939 return;
940
941 /* Finishing executing all deferred actions. */
942 do {
943 struct deferred_action *da = action_fifo_get(fifo);
944 struct sk_buff *skb = da->skb;
945 const struct nlattr *actions = da->actions;
946
947 if (actions)
948 do_execute_actions(dp, skb, &da->pkt_key, actions,
949 nla_len(actions));
950 else
951 ovs_dp_process_packet(skb, &da->pkt_key);
952 } while (!action_fifo_is_empty(fifo));
953
954 /* Reset FIFO for the next packet. */
955 action_fifo_init(fifo);
956 }
957
958 /* Execute a list of actions against 'skb'. */
959 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
960 struct sw_flow_key *key,
961 const struct sw_flow_actions *acts)
962 {
963 int level = this_cpu_read(exec_actions_level);
964 int err;
965
966 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
967 if (net_ratelimit())
968 pr_warn("%s: packet loop detected, dropping.\n",
969 ovs_dp_name(dp));
970
971 kfree_skb(skb);
972 return -ELOOP;
973 }
974
975 this_cpu_inc(exec_actions_level);
976
977 err = do_execute_actions(dp, skb, key, acts->actions, acts->actions_len);
978
979 if (!level)
980 process_deferred_actions(dp);
981
982 this_cpu_dec(exec_actions_level);
983
984 /* This return status currently does not reflect the errors
985 * encounted during deferred actions execution. Probably needs to
986 * be fixed in the future.
987 */
988 return err;
989 }
990
991 int action_fifos_init(void)
992 {
993 action_fifos = alloc_percpu(struct action_fifo);
994 if (!action_fifos)
995 return -ENOMEM;
996
997 return 0;
998 }
999
1000 void action_fifos_exit(void)
1001 {
1002 free_percpu(action_fifos);
1003 }