]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: 802.1AD Flow handling, actions, vlan parsing, netlink attributes
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/dsfield.h>
38 #include <net/mpls.h>
39 #include <net/sctp/checksum.h>
40
41 #include "datapath.h"
42 #include "conntrack.h"
43 #include "gso.h"
44 #include "vport.h"
45
46 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
47 struct sw_flow_key *key,
48 const struct nlattr *attr, int len);
49
50 struct deferred_action {
51 struct sk_buff *skb;
52 const struct nlattr *actions;
53
54 /* Store pkt_key clone when creating deferred action. */
55 struct sw_flow_key pkt_key;
56 };
57
58 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
59 struct ovs_frag_data {
60 unsigned long dst;
61 struct vport *vport;
62 struct ovs_gso_cb cb;
63 __be16 inner_protocol;
64 __u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 l2_data[MAX_L2_LEN];
68 };
69
70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
71
72 #define DEFERRED_ACTION_FIFO_SIZE 10
73 #define OVS_RECURSION_LIMIT 4
74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
75 struct action_fifo {
76 int head;
77 int tail;
78 /* Deferred action fifo queue storage. */
79 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
80 };
81
82 struct recirc_keys {
83 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
84 };
85
86 static struct action_fifo __percpu *action_fifos;
87 static struct recirc_keys __percpu *recirc_keys;
88 static DEFINE_PER_CPU(int, exec_actions_level);
89
90 static void action_fifo_init(struct action_fifo *fifo)
91 {
92 fifo->head = 0;
93 fifo->tail = 0;
94 }
95
96 static bool action_fifo_is_empty(const struct action_fifo *fifo)
97 {
98 return (fifo->head == fifo->tail);
99 }
100
101 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
102 {
103 if (action_fifo_is_empty(fifo))
104 return NULL;
105
106 return &fifo->fifo[fifo->tail++];
107 }
108
109 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
110 {
111 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
112 return NULL;
113
114 return &fifo->fifo[fifo->head++];
115 }
116
117 /* Return queue entry if fifo is not full */
118 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
119 const struct sw_flow_key *key,
120 const struct nlattr *attr)
121 {
122 struct action_fifo *fifo;
123 struct deferred_action *da;
124
125 fifo = this_cpu_ptr(action_fifos);
126 da = action_fifo_put(fifo);
127 if (da) {
128 da->skb = skb;
129 da->actions = attr;
130 da->pkt_key = *key;
131 }
132
133 return da;
134 }
135
136 static void invalidate_flow_key(struct sw_flow_key *key)
137 {
138 key->eth.type = htons(0);
139 }
140
141 static bool is_flow_key_valid(const struct sw_flow_key *key)
142 {
143 return !!key->eth.type;
144 }
145
146 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
147 __be16 ethertype)
148 {
149 if (skb->ip_summed == CHECKSUM_COMPLETE) {
150 __be16 diff[] = { ~(hdr->h_proto), ethertype };
151
152 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
153 ~skb->csum);
154 }
155
156 hdr->h_proto = ethertype;
157 }
158
159 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
160 const struct ovs_action_push_mpls *mpls)
161 {
162 __be32 *new_mpls_lse;
163
164 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
165 if (skb->encapsulation)
166 return -ENOTSUPP;
167
168 if (skb_cow_head(skb, MPLS_HLEN) < 0)
169 return -ENOMEM;
170
171 skb_push(skb, MPLS_HLEN);
172 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
173 skb->mac_len);
174 skb_reset_mac_header(skb);
175
176 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
177 *new_mpls_lse = mpls->mpls_lse;
178
179 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
180
181 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
182 if (!ovs_skb_get_inner_protocol(skb))
183 ovs_skb_set_inner_protocol(skb, skb->protocol);
184 skb->protocol = mpls->mpls_ethertype;
185
186 invalidate_flow_key(key);
187 return 0;
188 }
189
190 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
191 const __be16 ethertype)
192 {
193 struct ethhdr *hdr;
194 int err;
195
196 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
197 if (unlikely(err))
198 return err;
199
200 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
201
202 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
203 skb->mac_len);
204
205 __skb_pull(skb, MPLS_HLEN);
206 skb_reset_mac_header(skb);
207
208 /* skb_mpls_header() is used to locate the ethertype
209 * field correctly in the presence of VLAN tags.
210 */
211 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
212 update_ethertype(skb, hdr, ethertype);
213 if (eth_p_mpls(skb->protocol))
214 skb->protocol = ethertype;
215
216 invalidate_flow_key(key);
217 return 0;
218 }
219
220 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
221 const __be32 *mpls_lse, const __be32 *mask)
222 {
223 __be32 *stack;
224 __be32 lse;
225 int err;
226
227 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
228 if (unlikely(err))
229 return err;
230
231 stack = (__be32 *)skb_mpls_header(skb);
232 lse = OVS_MASKED(*stack, *mpls_lse, *mask);
233 if (skb->ip_summed == CHECKSUM_COMPLETE) {
234 __be32 diff[] = { ~(*stack), lse };
235
236 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
237 ~skb->csum);
238 }
239
240 *stack = lse;
241 flow_key->mpls.top_lse = lse;
242 return 0;
243 }
244
245 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
246 {
247 int err;
248
249 err = skb_vlan_pop(skb);
250 if (skb_vlan_tag_present(skb)) {
251 invalidate_flow_key(key);
252 } else {
253 key->eth.vlan.tci = 0;
254 key->eth.vlan.tpid = 0;
255 }
256 return err;
257 }
258
259 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
260 const struct ovs_action_push_vlan *vlan)
261 {
262 if (skb_vlan_tag_present(skb)) {
263 invalidate_flow_key(key);
264 } else {
265 key->eth.vlan.tci = vlan->vlan_tci;
266 key->eth.vlan.tpid = vlan->vlan_tpid;
267 }
268 return skb_vlan_push(skb, vlan->vlan_tpid,
269 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
270 }
271
272 /* 'src' is already properly masked. */
273 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
274 {
275 u16 *dst = (u16 *)dst_;
276 const u16 *src = (const u16 *)src_;
277 const u16 *mask = (const u16 *)mask_;
278
279 OVS_SET_MASKED(dst[0], src[0], mask[0]);
280 OVS_SET_MASKED(dst[1], src[1], mask[1]);
281 OVS_SET_MASKED(dst[2], src[2], mask[2]);
282 }
283
284 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
285 const struct ovs_key_ethernet *key,
286 const struct ovs_key_ethernet *mask)
287 {
288 int err;
289
290 err = skb_ensure_writable(skb, ETH_HLEN);
291 if (unlikely(err))
292 return err;
293
294 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
295
296 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
297 mask->eth_src);
298 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
299 mask->eth_dst);
300
301 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
302
303 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
304 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
305 return 0;
306 }
307
308 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
309 __be32 addr, __be32 new_addr)
310 {
311 int transport_len = skb->len - skb_transport_offset(skb);
312
313 if (nh->frag_off & htons(IP_OFFSET))
314 return;
315
316 if (nh->protocol == IPPROTO_TCP) {
317 if (likely(transport_len >= sizeof(struct tcphdr)))
318 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
319 addr, new_addr, true);
320 } else if (nh->protocol == IPPROTO_UDP) {
321 if (likely(transport_len >= sizeof(struct udphdr))) {
322 struct udphdr *uh = udp_hdr(skb);
323
324 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
325 inet_proto_csum_replace4(&uh->check, skb,
326 addr, new_addr, true);
327 if (!uh->check)
328 uh->check = CSUM_MANGLED_0;
329 }
330 }
331 }
332
333 }
334
335 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
336 __be32 *addr, __be32 new_addr)
337 {
338 update_ip_l4_checksum(skb, nh, *addr, new_addr);
339 csum_replace4(&nh->check, *addr, new_addr);
340 skb_clear_hash(skb);
341 *addr = new_addr;
342 }
343
344 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
345 __be32 addr[4], const __be32 new_addr[4])
346 {
347 int transport_len = skb->len - skb_transport_offset(skb);
348
349 if (l4_proto == NEXTHDR_TCP) {
350 if (likely(transport_len >= sizeof(struct tcphdr)))
351 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
352 addr, new_addr, true);
353 } else if (l4_proto == NEXTHDR_UDP) {
354 if (likely(transport_len >= sizeof(struct udphdr))) {
355 struct udphdr *uh = udp_hdr(skb);
356
357 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
358 inet_proto_csum_replace16(&uh->check, skb,
359 addr, new_addr, true);
360 if (!uh->check)
361 uh->check = CSUM_MANGLED_0;
362 }
363 }
364 } else if (l4_proto == NEXTHDR_ICMP) {
365 if (likely(transport_len >= sizeof(struct icmp6hdr)))
366 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
367 skb, addr, new_addr, true);
368 }
369 }
370
371 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
372 const __be32 mask[4], __be32 masked[4])
373 {
374 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
375 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
376 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
377 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
378 }
379
380 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
381 __be32 addr[4], const __be32 new_addr[4],
382 bool recalculate_csum)
383 {
384 if (likely(recalculate_csum))
385 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
386
387 skb_clear_hash(skb);
388 memcpy(addr, new_addr, sizeof(__be32[4]));
389 }
390
391 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
392 {
393 /* Bits 21-24 are always unmasked, so this retains their values. */
394 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
395 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
396 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
397 }
398
399 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
400 u8 mask)
401 {
402 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
403
404 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
405 nh->ttl = new_ttl;
406 }
407
408 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
409 const struct ovs_key_ipv4 *key,
410 const struct ovs_key_ipv4 *mask)
411 {
412 struct iphdr *nh;
413 __be32 new_addr;
414 int err;
415
416 err = skb_ensure_writable(skb, skb_network_offset(skb) +
417 sizeof(struct iphdr));
418 if (unlikely(err))
419 return err;
420
421 nh = ip_hdr(skb);
422
423 /* Setting an IP addresses is typically only a side effect of
424 * matching on them in the current userspace implementation, so it
425 * makes sense to check if the value actually changed.
426 */
427 if (mask->ipv4_src) {
428 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
429
430 if (unlikely(new_addr != nh->saddr)) {
431 set_ip_addr(skb, nh, &nh->saddr, new_addr);
432 flow_key->ipv4.addr.src = new_addr;
433 }
434 }
435 if (mask->ipv4_dst) {
436 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
437
438 if (unlikely(new_addr != nh->daddr)) {
439 set_ip_addr(skb, nh, &nh->daddr, new_addr);
440 flow_key->ipv4.addr.dst = new_addr;
441 }
442 }
443 if (mask->ipv4_tos) {
444 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
445 flow_key->ip.tos = nh->tos;
446 }
447 if (mask->ipv4_ttl) {
448 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
449 flow_key->ip.ttl = nh->ttl;
450 }
451
452 return 0;
453 }
454
455 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
456 {
457 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
458 }
459
460 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
461 const struct ovs_key_ipv6 *key,
462 const struct ovs_key_ipv6 *mask)
463 {
464 struct ipv6hdr *nh;
465 int err;
466
467 err = skb_ensure_writable(skb, skb_network_offset(skb) +
468 sizeof(struct ipv6hdr));
469 if (unlikely(err))
470 return err;
471
472 nh = ipv6_hdr(skb);
473
474 /* Setting an IP addresses is typically only a side effect of
475 * matching on them in the current userspace implementation, so it
476 * makes sense to check if the value actually changed.
477 */
478 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
479 __be32 *saddr = (__be32 *)&nh->saddr;
480 __be32 masked[4];
481
482 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
483
484 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
485 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
486 true);
487 memcpy(&flow_key->ipv6.addr.src, masked,
488 sizeof(flow_key->ipv6.addr.src));
489 }
490 }
491 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
492 unsigned int offset = 0;
493 int flags = IP6_FH_F_SKIP_RH;
494 bool recalc_csum = true;
495 __be32 *daddr = (__be32 *)&nh->daddr;
496 __be32 masked[4];
497
498 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
499
500 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
501 if (ipv6_ext_hdr(nh->nexthdr))
502 recalc_csum = (ipv6_find_hdr(skb, &offset,
503 NEXTHDR_ROUTING,
504 NULL, &flags)
505 != NEXTHDR_ROUTING);
506
507 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
508 recalc_csum);
509 memcpy(&flow_key->ipv6.addr.dst, masked,
510 sizeof(flow_key->ipv6.addr.dst));
511 }
512 }
513 if (mask->ipv6_tclass) {
514 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
515 flow_key->ip.tos = ipv6_get_dsfield(nh);
516 }
517 if (mask->ipv6_label) {
518 set_ipv6_fl(nh, ntohl(key->ipv6_label),
519 ntohl(mask->ipv6_label));
520 flow_key->ipv6.label =
521 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
522 }
523 if (mask->ipv6_hlimit) {
524 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
525 mask->ipv6_hlimit);
526 flow_key->ip.ttl = nh->hop_limit;
527 }
528 return 0;
529 }
530
531 /* Must follow skb_ensure_writable() since that can move the skb data. */
532 static void set_tp_port(struct sk_buff *skb, __be16 *port,
533 __be16 new_port, __sum16 *check)
534 {
535 inet_proto_csum_replace2(check, skb, *port, new_port, false);
536 *port = new_port;
537 }
538
539 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
540 const struct ovs_key_udp *key,
541 const struct ovs_key_udp *mask)
542 {
543 struct udphdr *uh;
544 __be16 src, dst;
545 int err;
546
547 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
548 sizeof(struct udphdr));
549 if (unlikely(err))
550 return err;
551
552 uh = udp_hdr(skb);
553 /* Either of the masks is non-zero, so do not bother checking them. */
554 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
555 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
556
557 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
558 if (likely(src != uh->source)) {
559 set_tp_port(skb, &uh->source, src, &uh->check);
560 flow_key->tp.src = src;
561 }
562 if (likely(dst != uh->dest)) {
563 set_tp_port(skb, &uh->dest, dst, &uh->check);
564 flow_key->tp.dst = dst;
565 }
566
567 if (unlikely(!uh->check))
568 uh->check = CSUM_MANGLED_0;
569 } else {
570 uh->source = src;
571 uh->dest = dst;
572 flow_key->tp.src = src;
573 flow_key->tp.dst = dst;
574 }
575
576 skb_clear_hash(skb);
577
578 return 0;
579 }
580
581 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
582 const struct ovs_key_tcp *key,
583 const struct ovs_key_tcp *mask)
584 {
585 struct tcphdr *th;
586 __be16 src, dst;
587 int err;
588
589 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
590 sizeof(struct tcphdr));
591 if (unlikely(err))
592 return err;
593
594 th = tcp_hdr(skb);
595 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
596 if (likely(src != th->source)) {
597 set_tp_port(skb, &th->source, src, &th->check);
598 flow_key->tp.src = src;
599 }
600 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
601 if (likely(dst != th->dest)) {
602 set_tp_port(skb, &th->dest, dst, &th->check);
603 flow_key->tp.dst = dst;
604 }
605 skb_clear_hash(skb);
606
607 return 0;
608 }
609
610 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
611 const struct ovs_key_sctp *key,
612 const struct ovs_key_sctp *mask)
613 {
614 unsigned int sctphoff = skb_transport_offset(skb);
615 struct sctphdr *sh;
616 __le32 old_correct_csum, new_csum, old_csum;
617 int err;
618
619 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
620 if (unlikely(err))
621 return err;
622
623 sh = sctp_hdr(skb);
624 old_csum = sh->checksum;
625 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
626
627 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
628 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
629
630 new_csum = sctp_compute_cksum(skb, sctphoff);
631
632 /* Carry any checksum errors through. */
633 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
634
635 skb_clear_hash(skb);
636 flow_key->tp.src = sh->source;
637 flow_key->tp.dst = sh->dest;
638
639 return 0;
640 }
641
642 static int ovs_vport_output(OVS_VPORT_OUTPUT_PARAMS)
643 {
644 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
645 struct vport *vport = data->vport;
646
647 if (skb_cow_head(skb, data->l2_len) < 0) {
648 kfree_skb(skb);
649 return -ENOMEM;
650 }
651
652 __skb_dst_copy(skb, data->dst);
653 *OVS_GSO_CB(skb) = data->cb;
654 ovs_skb_set_inner_protocol(skb, data->inner_protocol);
655 skb->vlan_tci = data->vlan_tci;
656 skb->vlan_proto = data->vlan_proto;
657
658 /* Reconstruct the MAC header. */
659 skb_push(skb, data->l2_len);
660 memcpy(skb->data, &data->l2_data, data->l2_len);
661 skb_postpush_rcsum(skb, skb->data, data->l2_len);
662 skb_reset_mac_header(skb);
663
664 ovs_vport_send(vport, skb);
665 return 0;
666 }
667
668 static unsigned int
669 ovs_dst_get_mtu(const struct dst_entry *dst)
670 {
671 return dst->dev->mtu;
672 }
673
674 static struct dst_ops ovs_dst_ops = {
675 .family = AF_UNSPEC,
676 .mtu = ovs_dst_get_mtu,
677 };
678
679 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
680 * ovs_vport_output(), which is called once per fragmented packet.
681 */
682 static void prepare_frag(struct vport *vport, struct sk_buff *skb)
683 {
684 unsigned int hlen = skb_network_offset(skb);
685 struct ovs_frag_data *data;
686
687 data = this_cpu_ptr(&ovs_frag_data_storage);
688 data->dst = (unsigned long) skb_dst(skb);
689 data->vport = vport;
690 data->cb = *OVS_GSO_CB(skb);
691 data->inner_protocol = ovs_skb_get_inner_protocol(skb);
692 data->vlan_tci = skb->vlan_tci;
693 data->vlan_proto = skb->vlan_proto;
694 data->l2_len = hlen;
695 memcpy(&data->l2_data, skb->data, hlen);
696
697 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
698 skb_pull(skb, hlen);
699 }
700
701 static void ovs_fragment(struct net *net, struct vport *vport,
702 struct sk_buff *skb, u16 mru, __be16 ethertype)
703 {
704 if (skb_network_offset(skb) > MAX_L2_LEN) {
705 OVS_NLERR(1, "L2 header too long to fragment");
706 goto err;
707 }
708
709 if (ethertype == htons(ETH_P_IP)) {
710 struct dst_entry ovs_dst;
711 unsigned long orig_dst;
712
713 prepare_frag(vport, skb);
714 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
715 DST_OBSOLETE_NONE, DST_NOCOUNT);
716 ovs_dst.dev = vport->dev;
717
718 orig_dst = (unsigned long) skb_dst(skb);
719 skb_dst_set_noref(skb, &ovs_dst);
720 IPCB(skb)->frag_max_size = mru;
721
722 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
723 refdst_drop(orig_dst);
724 } else if (ethertype == htons(ETH_P_IPV6)) {
725 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
726 unsigned long orig_dst;
727 struct rt6_info ovs_rt;
728
729 if (!v6ops) {
730 goto err;
731 }
732
733 prepare_frag(vport, skb);
734 memset(&ovs_rt, 0, sizeof(ovs_rt));
735 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
736 DST_OBSOLETE_NONE, DST_NOCOUNT);
737 ovs_rt.dst.dev = vport->dev;
738
739 orig_dst = (unsigned long) skb_dst(skb);
740 skb_dst_set_noref(skb, &ovs_rt.dst);
741 IP6CB(skb)->frag_max_size = mru;
742 #ifdef HAVE_IP_LOCAL_OUT_TAKES_NET
743 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
744 #else
745 v6ops->fragment(skb->sk, skb, ovs_vport_output);
746 #endif
747 refdst_drop(orig_dst);
748 } else {
749 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
750 ovs_vport_name(vport), ntohs(ethertype), mru,
751 vport->dev->mtu);
752 goto err;
753 }
754
755 return;
756 err:
757 kfree_skb(skb);
758 }
759
760 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
761 struct sw_flow_key *key)
762 {
763 struct vport *vport = ovs_vport_rcu(dp, out_port);
764
765 if (likely(vport)) {
766 u16 mru = OVS_CB(skb)->mru;
767 u32 cutlen = OVS_CB(skb)->cutlen;
768
769 if (unlikely(cutlen > 0)) {
770 if (skb->len - cutlen > ETH_HLEN)
771 pskb_trim(skb, skb->len - cutlen);
772 else
773 pskb_trim(skb, ETH_HLEN);
774 }
775
776 if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
777 ovs_vport_send(vport, skb);
778 } else if (mru <= vport->dev->mtu) {
779 struct net *net = ovs_dp_get_net(dp);
780 __be16 ethertype = key->eth.type;
781
782 if (!is_flow_key_valid(key)) {
783 if (eth_p_mpls(skb->protocol))
784 ethertype = ovs_skb_get_inner_protocol(skb);
785 else
786 ethertype = vlan_get_protocol(skb);
787 }
788
789 ovs_fragment(net, vport, skb, mru, ethertype);
790 } else {
791 OVS_NLERR(true, "Cannot fragment IP frames");
792 kfree_skb(skb);
793 }
794 } else {
795 kfree_skb(skb);
796 }
797 }
798
799 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
800 struct sw_flow_key *key, const struct nlattr *attr,
801 const struct nlattr *actions, int actions_len,
802 uint32_t cutlen)
803 {
804 struct dp_upcall_info upcall;
805 const struct nlattr *a;
806 int rem, err;
807
808 memset(&upcall, 0, sizeof(upcall));
809 upcall.cmd = OVS_PACKET_CMD_ACTION;
810 upcall.mru = OVS_CB(skb)->mru;
811
812 SKB_INIT_FILL_METADATA_DST(skb);
813 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
814 a = nla_next(a, &rem)) {
815 switch (nla_type(a)) {
816 case OVS_USERSPACE_ATTR_USERDATA:
817 upcall.userdata = a;
818 break;
819
820 case OVS_USERSPACE_ATTR_PID:
821 upcall.portid = nla_get_u32(a);
822 break;
823
824 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
825 /* Get out tunnel info. */
826 struct vport *vport;
827
828 vport = ovs_vport_rcu(dp, nla_get_u32(a));
829 if (vport) {
830 err = dev_fill_metadata_dst(vport->dev, skb);
831 if (!err)
832 upcall.egress_tun_info = skb_tunnel_info(skb);
833 }
834
835 break;
836 }
837
838 case OVS_USERSPACE_ATTR_ACTIONS: {
839 /* Include actions. */
840 upcall.actions = actions;
841 upcall.actions_len = actions_len;
842 break;
843 }
844
845 } /* End of switch. */
846 }
847
848 err = ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
849 SKB_RESTORE_FILL_METADATA_DST(skb);
850 return err;
851 }
852
853 static int sample(struct datapath *dp, struct sk_buff *skb,
854 struct sw_flow_key *key, const struct nlattr *attr,
855 const struct nlattr *actions, int actions_len)
856 {
857 const struct nlattr *acts_list = NULL;
858 const struct nlattr *a;
859 int rem;
860 u32 cutlen = 0;
861
862 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
863 a = nla_next(a, &rem)) {
864 u32 probability;
865
866 switch (nla_type(a)) {
867 case OVS_SAMPLE_ATTR_PROBABILITY:
868 probability = nla_get_u32(a);
869 if (!probability || prandom_u32() > probability)
870 return 0;
871 break;
872
873 case OVS_SAMPLE_ATTR_ACTIONS:
874 acts_list = a;
875 break;
876 }
877 }
878
879 rem = nla_len(acts_list);
880 a = nla_data(acts_list);
881
882 /* Actions list is empty, do nothing */
883 if (unlikely(!rem))
884 return 0;
885
886 /* The only known usage of sample action is having a single user-space
887 * action, or having a truncate action followed by a single user-space
888 * action. Treat this usage as a special case.
889 * The output_userspace() should clone the skb to be sent to the
890 * user space. This skb will be consumed by its caller.
891 */
892 if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
893 struct ovs_action_trunc *trunc = nla_data(a);
894
895 if (skb->len > trunc->max_len)
896 cutlen = skb->len - trunc->max_len;
897
898 a = nla_next(a, &rem);
899 }
900
901 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
902 nla_is_last(a, rem)))
903 return output_userspace(dp, skb, key, a, actions,
904 actions_len, cutlen);
905
906 skb = skb_clone(skb, GFP_ATOMIC);
907 if (!skb)
908 /* Skip the sample action when out of memory. */
909 return 0;
910
911 if (!add_deferred_actions(skb, key, a)) {
912 if (net_ratelimit())
913 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
914 ovs_dp_name(dp));
915
916 kfree_skb(skb);
917 }
918 return 0;
919 }
920
921 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
922 const struct nlattr *attr)
923 {
924 struct ovs_action_hash *hash_act = nla_data(attr);
925 u32 hash = 0;
926
927 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
928 hash = skb_get_hash(skb);
929 hash = jhash_1word(hash, hash_act->hash_basis);
930 if (!hash)
931 hash = 0x1;
932
933 key->ovs_flow_hash = hash;
934 }
935
936 static int execute_set_action(struct sk_buff *skb,
937 struct sw_flow_key *flow_key,
938 const struct nlattr *a)
939 {
940 /* Only tunnel set execution is supported without a mask. */
941 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
942 struct ovs_tunnel_info *tun = nla_data(a);
943
944 ovs_skb_dst_drop(skb);
945 ovs_dst_hold((struct dst_entry *)tun->tun_dst);
946 ovs_skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
947 return 0;
948 }
949
950 return -EINVAL;
951 }
952
953 /* Mask is at the midpoint of the data. */
954 #define get_mask(a, type) ((const type)nla_data(a) + 1)
955
956 static int execute_masked_set_action(struct sk_buff *skb,
957 struct sw_flow_key *flow_key,
958 const struct nlattr *a)
959 {
960 int err = 0;
961
962 switch (nla_type(a)) {
963 case OVS_KEY_ATTR_PRIORITY:
964 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
965 *get_mask(a, u32 *));
966 flow_key->phy.priority = skb->priority;
967 break;
968
969 case OVS_KEY_ATTR_SKB_MARK:
970 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
971 flow_key->phy.skb_mark = skb->mark;
972 break;
973
974 case OVS_KEY_ATTR_TUNNEL_INFO:
975 /* Masked data not supported for tunnel. */
976 err = -EINVAL;
977 break;
978
979 case OVS_KEY_ATTR_ETHERNET:
980 err = set_eth_addr(skb, flow_key, nla_data(a),
981 get_mask(a, struct ovs_key_ethernet *));
982 break;
983
984 case OVS_KEY_ATTR_IPV4:
985 err = set_ipv4(skb, flow_key, nla_data(a),
986 get_mask(a, struct ovs_key_ipv4 *));
987 break;
988
989 case OVS_KEY_ATTR_IPV6:
990 err = set_ipv6(skb, flow_key, nla_data(a),
991 get_mask(a, struct ovs_key_ipv6 *));
992 break;
993
994 case OVS_KEY_ATTR_TCP:
995 err = set_tcp(skb, flow_key, nla_data(a),
996 get_mask(a, struct ovs_key_tcp *));
997 break;
998
999 case OVS_KEY_ATTR_UDP:
1000 err = set_udp(skb, flow_key, nla_data(a),
1001 get_mask(a, struct ovs_key_udp *));
1002 break;
1003
1004 case OVS_KEY_ATTR_SCTP:
1005 err = set_sctp(skb, flow_key, nla_data(a),
1006 get_mask(a, struct ovs_key_sctp *));
1007 break;
1008
1009 case OVS_KEY_ATTR_MPLS:
1010 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1011 __be32 *));
1012 break;
1013
1014 case OVS_KEY_ATTR_CT_STATE:
1015 case OVS_KEY_ATTR_CT_ZONE:
1016 case OVS_KEY_ATTR_CT_MARK:
1017 case OVS_KEY_ATTR_CT_LABELS:
1018 err = -EINVAL;
1019 break;
1020 }
1021
1022 return err;
1023 }
1024
1025 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1026 struct sw_flow_key *key,
1027 const struct nlattr *a, int rem)
1028 {
1029 struct deferred_action *da;
1030 int level;
1031
1032 if (!is_flow_key_valid(key)) {
1033 int err;
1034
1035 err = ovs_flow_key_update(skb, key);
1036 if (err)
1037 return err;
1038 }
1039 BUG_ON(!is_flow_key_valid(key));
1040
1041 if (!nla_is_last(a, rem)) {
1042 /* Recirc action is the not the last action
1043 * of the action list, need to clone the skb.
1044 */
1045 skb = skb_clone(skb, GFP_ATOMIC);
1046
1047 /* Skip the recirc action when out of memory, but
1048 * continue on with the rest of the action list.
1049 */
1050 if (!skb)
1051 return 0;
1052 }
1053
1054 level = this_cpu_read(exec_actions_level);
1055 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1056 struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1057 struct sw_flow_key *recirc_key = &rks->key[level - 1];
1058
1059 *recirc_key = *key;
1060 recirc_key->recirc_id = nla_get_u32(a);
1061 ovs_dp_process_packet(skb, recirc_key);
1062
1063 return 0;
1064 }
1065
1066 da = add_deferred_actions(skb, key, NULL);
1067 if (da) {
1068 da->pkt_key.recirc_id = nla_get_u32(a);
1069 } else {
1070 kfree_skb(skb);
1071
1072 if (net_ratelimit())
1073 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1074 ovs_dp_name(dp));
1075 }
1076
1077 return 0;
1078 }
1079
1080 /* Execute a list of actions against 'skb'. */
1081 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1082 struct sw_flow_key *key,
1083 const struct nlattr *attr, int len)
1084 {
1085 /* Every output action needs a separate clone of 'skb', but the common
1086 * case is just a single output action, so that doing a clone and
1087 * then freeing the original skbuff is wasteful. So the following code
1088 * is slightly obscure just to avoid that.
1089 */
1090 int prev_port = -1;
1091 const struct nlattr *a;
1092 int rem;
1093
1094 for (a = attr, rem = len; rem > 0;
1095 a = nla_next(a, &rem)) {
1096 int err = 0;
1097
1098 if (unlikely(prev_port != -1)) {
1099 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1100
1101 if (out_skb)
1102 do_output(dp, out_skb, prev_port, key);
1103
1104 OVS_CB(skb)->cutlen = 0;
1105 prev_port = -1;
1106 }
1107
1108 switch (nla_type(a)) {
1109 case OVS_ACTION_ATTR_OUTPUT:
1110 prev_port = nla_get_u32(a);
1111 break;
1112
1113 case OVS_ACTION_ATTR_TRUNC: {
1114 struct ovs_action_trunc *trunc = nla_data(a);
1115
1116 if (skb->len > trunc->max_len)
1117 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1118 break;
1119 }
1120
1121 case OVS_ACTION_ATTR_USERSPACE:
1122 output_userspace(dp, skb, key, a, attr,
1123 len, OVS_CB(skb)->cutlen);
1124 OVS_CB(skb)->cutlen = 0;
1125 break;
1126
1127 case OVS_ACTION_ATTR_HASH:
1128 execute_hash(skb, key, a);
1129 break;
1130
1131 case OVS_ACTION_ATTR_PUSH_MPLS:
1132 err = push_mpls(skb, key, nla_data(a));
1133 break;
1134
1135 case OVS_ACTION_ATTR_POP_MPLS:
1136 err = pop_mpls(skb, key, nla_get_be16(a));
1137 break;
1138
1139 case OVS_ACTION_ATTR_PUSH_VLAN:
1140 err = push_vlan(skb, key, nla_data(a));
1141 break;
1142
1143 case OVS_ACTION_ATTR_POP_VLAN:
1144 err = pop_vlan(skb, key);
1145 break;
1146
1147 case OVS_ACTION_ATTR_RECIRC:
1148 err = execute_recirc(dp, skb, key, a, rem);
1149 if (nla_is_last(a, rem)) {
1150 /* If this is the last action, the skb has
1151 * been consumed or freed.
1152 * Return immediately.
1153 */
1154 return err;
1155 }
1156 break;
1157
1158 case OVS_ACTION_ATTR_SET:
1159 err = execute_set_action(skb, key, nla_data(a));
1160 break;
1161
1162 case OVS_ACTION_ATTR_SET_MASKED:
1163 case OVS_ACTION_ATTR_SET_TO_MASKED:
1164 err = execute_masked_set_action(skb, key, nla_data(a));
1165 break;
1166
1167 case OVS_ACTION_ATTR_SAMPLE:
1168 err = sample(dp, skb, key, a, attr, len);
1169 break;
1170
1171 case OVS_ACTION_ATTR_CT:
1172 if (!is_flow_key_valid(key)) {
1173 err = ovs_flow_key_update(skb, key);
1174 if (err)
1175 return err;
1176 }
1177
1178 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1179 nla_data(a));
1180
1181 /* Hide stolen IP fragments from user space. */
1182 if (err)
1183 return err == -EINPROGRESS ? 0 : err;
1184 break;
1185 }
1186
1187 if (unlikely(err)) {
1188 kfree_skb(skb);
1189 return err;
1190 }
1191 }
1192
1193 if (prev_port != -1)
1194 do_output(dp, skb, prev_port, key);
1195 else
1196 consume_skb(skb);
1197
1198 return 0;
1199 }
1200
1201 static void process_deferred_actions(struct datapath *dp)
1202 {
1203 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1204
1205 /* Do not touch the FIFO in case there is no deferred actions. */
1206 if (action_fifo_is_empty(fifo))
1207 return;
1208
1209 /* Finishing executing all deferred actions. */
1210 do {
1211 struct deferred_action *da = action_fifo_get(fifo);
1212 struct sk_buff *skb = da->skb;
1213 struct sw_flow_key *key = &da->pkt_key;
1214 const struct nlattr *actions = da->actions;
1215
1216 if (actions)
1217 do_execute_actions(dp, skb, key, actions,
1218 nla_len(actions));
1219 else
1220 ovs_dp_process_packet(skb, key);
1221 } while (!action_fifo_is_empty(fifo));
1222
1223 /* Reset FIFO for the next packet. */
1224 action_fifo_init(fifo);
1225 }
1226
1227 /* Execute a list of actions against 'skb'. */
1228 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1229 const struct sw_flow_actions *acts,
1230 struct sw_flow_key *key)
1231 {
1232 int err, level;
1233
1234 level = __this_cpu_inc_return(exec_actions_level);
1235 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1236 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1237 ovs_dp_name(dp));
1238 kfree_skb(skb);
1239 err = -ENETDOWN;
1240 goto out;
1241 }
1242
1243 err = do_execute_actions(dp, skb, key,
1244 acts->actions, acts->actions_len);
1245
1246 if (level == 1)
1247 process_deferred_actions(dp);
1248
1249 out:
1250 __this_cpu_dec(exec_actions_level);
1251 return err;
1252 }
1253
1254 int action_fifos_init(void)
1255 {
1256 action_fifos = alloc_percpu(struct action_fifo);
1257 if (!action_fifos)
1258 return -ENOMEM;
1259
1260 recirc_keys = alloc_percpu(struct recirc_keys);
1261 if (!recirc_keys) {
1262 free_percpu(action_fifos);
1263 return -ENOMEM;
1264 }
1265
1266 return 0;
1267 }
1268
1269 void action_fifos_exit(void)
1270 {
1271 free_percpu(action_fifos);
1272 free_percpu(recirc_keys);
1273 }