]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: Account for "rename vlan_tx_* helpers since "tx" is misleading there"
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/mpls.h>
36 #include <net/sctp/checksum.h>
37
38 #include "datapath.h"
39 #include "gso.h"
40 #include "vlan.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
65 * looping by the network stack
66 */
67 static DEFINE_PER_CPU(int, exec_actions_level);
68
69 static void action_fifo_init(struct action_fifo *fifo)
70 {
71 fifo->head = 0;
72 fifo->tail = 0;
73 }
74
75 static bool action_fifo_is_empty(const struct action_fifo *fifo)
76 {
77 return (fifo->head == fifo->tail);
78 }
79
80 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
81 {
82 if (action_fifo_is_empty(fifo))
83 return NULL;
84
85 return &fifo->fifo[fifo->tail++];
86 }
87
88 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
89 {
90 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
91 return NULL;
92
93 return &fifo->fifo[fifo->head++];
94 }
95
96 /* Return queue entry if fifo is not full */
97 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
98 const struct sw_flow_key *key,
99 const struct nlattr *attr)
100 {
101 struct action_fifo *fifo;
102 struct deferred_action *da;
103
104 fifo = this_cpu_ptr(action_fifos);
105 da = action_fifo_put(fifo);
106 if (da) {
107 da->skb = skb;
108 da->actions = attr;
109 da->pkt_key = *key;
110 }
111
112 return da;
113 }
114
115 static void invalidate_flow_key(struct sw_flow_key *key)
116 {
117 key->eth.type = htons(0);
118 }
119
120 static bool is_flow_key_valid(const struct sw_flow_key *key)
121 {
122 return !!key->eth.type;
123 }
124
125 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
126 const struct ovs_action_push_mpls *mpls)
127 {
128 __be32 *new_mpls_lse;
129 struct ethhdr *hdr;
130
131 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
132 if (skb_encapsulation(skb))
133 return -ENOTSUPP;
134
135 if (skb_cow_head(skb, MPLS_HLEN) < 0)
136 return -ENOMEM;
137
138 skb_push(skb, MPLS_HLEN);
139 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
140 skb->mac_len);
141 skb_reset_mac_header(skb);
142
143 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
144 *new_mpls_lse = mpls->mpls_lse;
145
146 if (skb->ip_summed == CHECKSUM_COMPLETE)
147 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
148 MPLS_HLEN, 0));
149
150 hdr = eth_hdr(skb);
151 hdr->h_proto = mpls->mpls_ethertype;
152 if (!ovs_skb_get_inner_protocol(skb))
153 ovs_skb_set_inner_protocol(skb, skb->protocol);
154 skb->protocol = mpls->mpls_ethertype;
155
156 invalidate_flow_key(key);
157 return 0;
158 }
159
160 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
161 const __be16 ethertype)
162 {
163 struct ethhdr *hdr;
164 int err;
165
166 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
167 if (unlikely(err))
168 return err;
169
170 if (skb->ip_summed == CHECKSUM_COMPLETE)
171 skb->csum = csum_sub(skb->csum,
172 csum_partial(skb_mpls_header(skb),
173 MPLS_HLEN, 0));
174
175 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
176 skb->mac_len);
177
178 __skb_pull(skb, MPLS_HLEN);
179 skb_reset_mac_header(skb);
180
181 /* skb_mpls_header() is used to locate the ethertype
182 * field correctly in the presence of VLAN tags.
183 */
184 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
185 hdr->h_proto = ethertype;
186 if (eth_p_mpls(skb->protocol))
187 skb->protocol = ethertype;
188
189 invalidate_flow_key(key);
190 return 0;
191 }
192
193 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
194 const __be32 *mpls_lse)
195 {
196 __be32 *stack;
197 int err;
198
199 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
200 if (unlikely(err))
201 return err;
202
203 stack = (__be32 *)skb_mpls_header(skb);
204 if (skb->ip_summed == CHECKSUM_COMPLETE) {
205 __be32 diff[] = { ~(*stack), *mpls_lse };
206 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
207 ~skb->csum);
208 }
209
210 *stack = *mpls_lse;
211 key->mpls.top_lse = *mpls_lse;
212 return 0;
213 }
214
215 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
216 {
217 int err;
218
219 err = skb_vlan_pop(skb);
220 if (skb_vlan_tag_present(skb))
221 invalidate_flow_key(key);
222 else
223 key->eth.tci = 0;
224
225 return err;
226 }
227
228 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
229 const struct ovs_action_push_vlan *vlan)
230 {
231 if (skb_vlan_tag_present(skb))
232 invalidate_flow_key(key);
233 else
234 key->eth.tci = vlan->vlan_tci;
235
236 return skb_vlan_push(skb, vlan->vlan_tpid,
237 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
238 }
239
240 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
241 const struct ovs_key_ethernet *eth_key)
242 {
243 int err;
244 err = skb_ensure_writable(skb, ETH_HLEN);
245 if (unlikely(err))
246 return err;
247
248 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
249
250 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
251 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
252
253 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
254
255 ether_addr_copy(key->eth.src, eth_key->eth_src);
256 ether_addr_copy(key->eth.dst, eth_key->eth_dst);
257 return 0;
258 }
259
260 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
261 __be32 *addr, __be32 new_addr)
262 {
263 int transport_len = skb->len - skb_transport_offset(skb);
264
265 if (nh->protocol == IPPROTO_TCP) {
266 if (likely(transport_len >= sizeof(struct tcphdr)))
267 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
268 *addr, new_addr, 1);
269 } else if (nh->protocol == IPPROTO_UDP) {
270 if (likely(transport_len >= sizeof(struct udphdr))) {
271 struct udphdr *uh = udp_hdr(skb);
272
273 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
274 inet_proto_csum_replace4(&uh->check, skb,
275 *addr, new_addr, 1);
276 if (!uh->check)
277 uh->check = CSUM_MANGLED_0;
278 }
279 }
280 }
281
282 csum_replace4(&nh->check, *addr, new_addr);
283 skb_clear_hash(skb);
284 *addr = new_addr;
285 }
286
287 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
288 __be32 addr[4], const __be32 new_addr[4])
289 {
290 int transport_len = skb->len - skb_transport_offset(skb);
291
292 if (l4_proto == NEXTHDR_TCP) {
293 if (likely(transport_len >= sizeof(struct tcphdr)))
294 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
295 addr, new_addr, 1);
296 } else if (l4_proto == NEXTHDR_UDP) {
297 if (likely(transport_len >= sizeof(struct udphdr))) {
298 struct udphdr *uh = udp_hdr(skb);
299
300 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
301 inet_proto_csum_replace16(&uh->check, skb,
302 addr, new_addr, 1);
303 if (!uh->check)
304 uh->check = CSUM_MANGLED_0;
305 }
306 }
307 } else if (l4_proto == NEXTHDR_ICMP) {
308 if (likely(transport_len >= sizeof(struct icmp6hdr)))
309 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
310 skb, addr, new_addr, 1);
311 }
312 }
313
314 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
315 __be32 addr[4], const __be32 new_addr[4],
316 bool recalculate_csum)
317 {
318 if (likely(recalculate_csum))
319 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
320
321 skb_clear_hash(skb);
322 memcpy(addr, new_addr, sizeof(__be32[4]));
323 }
324
325 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
326 {
327 nh->priority = tc >> 4;
328 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
329 }
330
331 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
332 {
333 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
334 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
335 nh->flow_lbl[2] = fl & 0x000000FF;
336 }
337
338 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
339 {
340 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
341 nh->ttl = new_ttl;
342 }
343
344 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
345 const struct ovs_key_ipv4 *ipv4_key)
346 {
347 struct iphdr *nh;
348 int err;
349
350 err = skb_ensure_writable(skb, skb_network_offset(skb) +
351 sizeof(struct iphdr));
352 if (unlikely(err))
353 return err;
354
355 nh = ip_hdr(skb);
356
357 if (ipv4_key->ipv4_src != nh->saddr) {
358 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
359 key->ipv4.addr.src = ipv4_key->ipv4_src;
360 }
361
362 if (ipv4_key->ipv4_dst != nh->daddr) {
363 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
364 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
365 }
366
367 if (ipv4_key->ipv4_tos != nh->tos) {
368 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
369 key->ip.tos = nh->tos;
370 }
371
372 if (ipv4_key->ipv4_ttl != nh->ttl) {
373 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
374 key->ip.ttl = ipv4_key->ipv4_ttl;
375 }
376
377 return 0;
378 }
379
380 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
381 const struct ovs_key_ipv6 *ipv6_key)
382 {
383 struct ipv6hdr *nh;
384 int err;
385 __be32 *saddr;
386 __be32 *daddr;
387
388 err = skb_ensure_writable(skb, skb_network_offset(skb) +
389 sizeof(struct ipv6hdr));
390 if (unlikely(err))
391 return err;
392
393 nh = ipv6_hdr(skb);
394 saddr = (__be32 *)&nh->saddr;
395 daddr = (__be32 *)&nh->daddr;
396
397 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
398 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
399 ipv6_key->ipv6_src, true);
400 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
401 sizeof(ipv6_key->ipv6_src));
402 }
403
404 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
405 unsigned int offset = 0;
406 int flags = IP6_FH_F_SKIP_RH;
407 bool recalc_csum = true;
408
409 if (ipv6_ext_hdr(nh->nexthdr))
410 recalc_csum = ipv6_find_hdr(skb, &offset,
411 NEXTHDR_ROUTING, NULL,
412 &flags) != NEXTHDR_ROUTING;
413
414 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
415 ipv6_key->ipv6_dst, recalc_csum);
416 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
417 sizeof(ipv6_key->ipv6_dst));
418 }
419
420 set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
421 key->ip.tos = ipv6_get_dsfield(nh);
422
423 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
424 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
425
426 nh->hop_limit = ipv6_key->ipv6_hlimit;
427 key->ip.ttl = ipv6_key->ipv6_hlimit;
428 return 0;
429 }
430
431 /* Must follow skb_ensure_writable() since that can move the skb data. */
432 static void set_tp_port(struct sk_buff *skb, __be16 *port,
433 __be16 new_port, __sum16 *check)
434 {
435 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
436 *port = new_port;
437 skb_clear_hash(skb);
438 }
439
440 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
441 {
442 struct udphdr *uh = udp_hdr(skb);
443
444 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
445 set_tp_port(skb, port, new_port, &uh->check);
446
447 if (!uh->check)
448 uh->check = CSUM_MANGLED_0;
449 } else {
450 *port = new_port;
451 skb_clear_hash(skb);
452 }
453 }
454
455 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
456 const struct ovs_key_udp *udp_port_key)
457 {
458 struct udphdr *uh;
459 int err;
460
461 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
462 sizeof(struct udphdr));
463 if (unlikely(err))
464 return err;
465
466 uh = udp_hdr(skb);
467 if (udp_port_key->udp_src != uh->source) {
468 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
469 key->tp.src = udp_port_key->udp_src;
470 }
471
472 if (udp_port_key->udp_dst != uh->dest) {
473 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
474 key->tp.dst = udp_port_key->udp_dst;
475 }
476
477 return 0;
478 }
479
480 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
481 const struct ovs_key_tcp *tcp_port_key)
482 {
483 struct tcphdr *th;
484 int err;
485
486 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
487 sizeof(struct tcphdr));
488 if (unlikely(err))
489 return err;
490
491 th = tcp_hdr(skb);
492 if (tcp_port_key->tcp_src != th->source) {
493 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
494 key->tp.src = tcp_port_key->tcp_src;
495 }
496
497 if (tcp_port_key->tcp_dst != th->dest) {
498 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
499 key->tp.dst = tcp_port_key->tcp_dst;
500 }
501
502 return 0;
503 }
504
505 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
506 const struct ovs_key_sctp *sctp_port_key)
507 {
508 struct sctphdr *sh;
509 int err;
510 unsigned int sctphoff = skb_transport_offset(skb);
511
512 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
513 if (unlikely(err))
514 return err;
515
516 sh = sctp_hdr(skb);
517 if (sctp_port_key->sctp_src != sh->source ||
518 sctp_port_key->sctp_dst != sh->dest) {
519 __le32 old_correct_csum, new_csum, old_csum;
520
521 old_csum = sh->checksum;
522 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
523
524 sh->source = sctp_port_key->sctp_src;
525 sh->dest = sctp_port_key->sctp_dst;
526
527 new_csum = sctp_compute_cksum(skb, sctphoff);
528
529 /* Carry any checksum errors through. */
530 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
531
532 skb_clear_hash(skb);
533 key->tp.src = sctp_port_key->sctp_src;
534 key->tp.dst = sctp_port_key->sctp_dst;
535 }
536
537 return 0;
538 }
539
540 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
541 {
542 struct vport *vport = ovs_vport_rcu(dp, out_port);
543
544 if (likely(vport))
545 ovs_vport_send(vport, skb);
546 else
547 kfree_skb(skb);
548 }
549
550 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
551 struct sw_flow_key *key, const struct nlattr *attr)
552 {
553 struct ovs_tunnel_info info;
554 struct dp_upcall_info upcall;
555 const struct nlattr *a;
556 int rem;
557
558 upcall.cmd = OVS_PACKET_CMD_ACTION;
559 upcall.userdata = NULL;
560 upcall.portid = 0;
561 upcall.egress_tun_info = NULL;
562
563 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
564 a = nla_next(a, &rem)) {
565 switch (nla_type(a)) {
566 case OVS_USERSPACE_ATTR_USERDATA:
567 upcall.userdata = a;
568 break;
569
570 case OVS_USERSPACE_ATTR_PID:
571 upcall.portid = nla_get_u32(a);
572 break;
573
574 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
575 /* Get out tunnel info. */
576 struct vport *vport;
577
578 vport = ovs_vport_rcu(dp, nla_get_u32(a));
579 if (vport) {
580 int err;
581
582 err = ovs_vport_get_egress_tun_info(vport, skb,
583 &info);
584 if (!err)
585 upcall.egress_tun_info = &info;
586 }
587 break;
588 }
589
590 } /* End of switch. */
591 }
592
593 return ovs_dp_upcall(dp, skb, key, &upcall);
594 }
595
596 static int sample(struct datapath *dp, struct sk_buff *skb,
597 struct sw_flow_key *key, const struct nlattr *attr)
598 {
599 const struct nlattr *acts_list = NULL;
600 const struct nlattr *a;
601 int rem;
602
603 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
604 a = nla_next(a, &rem)) {
605 switch (nla_type(a)) {
606 case OVS_SAMPLE_ATTR_PROBABILITY:
607 if (prandom_u32() >= nla_get_u32(a))
608 return 0;
609 break;
610
611 case OVS_SAMPLE_ATTR_ACTIONS:
612 acts_list = a;
613 break;
614 }
615 }
616
617 rem = nla_len(acts_list);
618 a = nla_data(acts_list);
619
620 /* Actions list is empty, do nothing */
621 if (unlikely(!rem))
622 return 0;
623
624 /* The only known usage of sample action is having a single user-space
625 * action. Treat this usage as a special case.
626 * The output_userspace() should clone the skb to be sent to the
627 * user space. This skb will be consumed by its caller.
628 */
629 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
630 nla_is_last(a, rem)))
631 return output_userspace(dp, skb, key, a);
632
633 skb = skb_clone(skb, GFP_ATOMIC);
634 if (!skb)
635 /* Skip the sample action when out of memory. */
636 return 0;
637
638 if (!add_deferred_actions(skb, key, a)) {
639 if (net_ratelimit())
640 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
641 ovs_dp_name(dp));
642
643 kfree_skb(skb);
644 }
645 return 0;
646 }
647
648 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
649 const struct nlattr *attr)
650 {
651 struct ovs_action_hash *hash_act = nla_data(attr);
652 u32 hash = 0;
653
654 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
655 hash = skb_get_hash(skb);
656 hash = jhash_1word(hash, hash_act->hash_basis);
657 if (!hash)
658 hash = 0x1;
659
660 key->ovs_flow_hash = hash;
661 }
662
663 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
664 const struct nlattr *nested_attr)
665 {
666 int err = 0;
667
668 switch (nla_type(nested_attr)) {
669 case OVS_KEY_ATTR_PRIORITY:
670 skb->priority = nla_get_u32(nested_attr);
671 key->phy.priority = skb->priority;
672 break;
673
674 case OVS_KEY_ATTR_SKB_MARK:
675 skb->mark = nla_get_u32(nested_attr);
676 key->phy.skb_mark = skb->mark;
677 break;
678
679 case OVS_KEY_ATTR_TUNNEL_INFO:
680 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
681 break;
682
683 case OVS_KEY_ATTR_ETHERNET:
684 err = set_eth_addr(skb, key, nla_data(nested_attr));
685 break;
686
687 case OVS_KEY_ATTR_IPV4:
688 err = set_ipv4(skb, key, nla_data(nested_attr));
689 break;
690
691 case OVS_KEY_ATTR_IPV6:
692 err = set_ipv6(skb, key, nla_data(nested_attr));
693 break;
694
695 case OVS_KEY_ATTR_TCP:
696 err = set_tcp(skb, key, nla_data(nested_attr));
697 break;
698
699 case OVS_KEY_ATTR_UDP:
700 err = set_udp(skb, key, nla_data(nested_attr));
701 break;
702
703 case OVS_KEY_ATTR_SCTP:
704 err = set_sctp(skb, key, nla_data(nested_attr));
705 break;
706
707 case OVS_KEY_ATTR_MPLS:
708 err = set_mpls(skb, key, nla_data(nested_attr));
709 break;
710 }
711
712 return err;
713 }
714
715 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
716 struct sw_flow_key *key,
717 const struct nlattr *a, int rem)
718 {
719 struct deferred_action *da;
720
721 if (!is_flow_key_valid(key)) {
722 int err;
723
724 err = ovs_flow_key_update(skb, key);
725 if (err)
726 return err;
727 }
728 BUG_ON(!is_flow_key_valid(key));
729
730 if (!nla_is_last(a, rem)) {
731 /* Recirc action is the not the last action
732 * of the action list, need to clone the skb.
733 */
734 skb = skb_clone(skb, GFP_ATOMIC);
735
736 /* Skip the recirc action when out of memory, but
737 * continue on with the rest of the action list.
738 */
739 if (!skb)
740 return 0;
741 }
742
743 da = add_deferred_actions(skb, key, NULL);
744 if (da) {
745 da->pkt_key.recirc_id = nla_get_u32(a);
746 } else {
747 kfree_skb(skb);
748
749 if (net_ratelimit())
750 pr_warn("%s: deferred action limit reached, drop recirc action\n",
751 ovs_dp_name(dp));
752 }
753
754 return 0;
755 }
756
757 /* Execute a list of actions against 'skb'. */
758 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
759 struct sw_flow_key *key,
760 const struct nlattr *attr, int len)
761 {
762 /* Every output action needs a separate clone of 'skb', but the common
763 * case is just a single output action, so that doing a clone and
764 * then freeing the original skbuff is wasteful. So the following code
765 * is slightly obscure just to avoid that.
766 */
767 int prev_port = -1;
768 const struct nlattr *a;
769 int rem;
770
771 for (a = attr, rem = len; rem > 0;
772 a = nla_next(a, &rem)) {
773 int err = 0;
774
775 if (unlikely(prev_port != -1)) {
776 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
777
778 if (out_skb)
779 do_output(dp, out_skb, prev_port);
780
781 prev_port = -1;
782 }
783
784 switch (nla_type(a)) {
785 case OVS_ACTION_ATTR_OUTPUT:
786 prev_port = nla_get_u32(a);
787 break;
788
789 case OVS_ACTION_ATTR_USERSPACE:
790 output_userspace(dp, skb, key, a);
791 break;
792
793 case OVS_ACTION_ATTR_HASH:
794 execute_hash(skb, key, a);
795 break;
796
797 case OVS_ACTION_ATTR_PUSH_MPLS:
798 err = push_mpls(skb, key, nla_data(a));
799 break;
800
801 case OVS_ACTION_ATTR_POP_MPLS:
802 err = pop_mpls(skb, key, nla_get_be16(a));
803 break;
804
805 case OVS_ACTION_ATTR_PUSH_VLAN:
806 err = push_vlan(skb, key, nla_data(a));
807 break;
808
809 case OVS_ACTION_ATTR_POP_VLAN:
810 err = pop_vlan(skb, key);
811 break;
812
813 case OVS_ACTION_ATTR_RECIRC:
814 err = execute_recirc(dp, skb, key, a, rem);
815 if (nla_is_last(a, rem)) {
816 /* If this is the last action, the skb has
817 * been consumed or freed.
818 * Return immediately.
819 */
820 return err;
821 }
822 break;
823
824 case OVS_ACTION_ATTR_SET:
825 err = execute_set_action(skb, key, nla_data(a));
826 break;
827
828 case OVS_ACTION_ATTR_SAMPLE:
829 err = sample(dp, skb, key, a);
830 break;
831 }
832
833 if (unlikely(err)) {
834 kfree_skb(skb);
835 return err;
836 }
837 }
838
839 if (prev_port != -1)
840 do_output(dp, skb, prev_port);
841 else
842 consume_skb(skb);
843
844 return 0;
845 }
846
847 static void process_deferred_actions(struct datapath *dp)
848 {
849 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
850
851 /* Do not touch the FIFO in case there is no deferred actions. */
852 if (action_fifo_is_empty(fifo))
853 return;
854
855 /* Finishing executing all deferred actions. */
856 do {
857 struct deferred_action *da = action_fifo_get(fifo);
858 struct sk_buff *skb = da->skb;
859 struct sw_flow_key *key = &da->pkt_key;
860 const struct nlattr *actions = da->actions;
861
862 if (actions)
863 do_execute_actions(dp, skb, key, actions,
864 nla_len(actions));
865 else
866 ovs_dp_process_packet(skb, key);
867 } while (!action_fifo_is_empty(fifo));
868
869 /* Reset FIFO for the next packet. */
870 action_fifo_init(fifo);
871 }
872
873 /* Execute a list of actions against 'skb'. */
874 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
875 const struct sw_flow_actions *acts,
876 struct sw_flow_key *key)
877 {
878 int level = this_cpu_read(exec_actions_level);
879 int err;
880
881 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
882 if (net_ratelimit())
883 pr_warn("%s: packet loop detected, dropping.\n",
884 ovs_dp_name(dp));
885
886 kfree_skb(skb);
887 return -ELOOP;
888 }
889
890 this_cpu_inc(exec_actions_level);
891 err = do_execute_actions(dp, skb, key,
892 acts->actions, acts->actions_len);
893
894 if (!level)
895 process_deferred_actions(dp);
896
897 this_cpu_dec(exec_actions_level);
898
899 /* This return status currently does not reflect the errors
900 * encounted during deferred actions execution. Probably needs to
901 * be fixed in the future.
902 */
903 return err;
904 }
905
906 int action_fifos_init(void)
907 {
908 action_fifos = alloc_percpu(struct action_fifo);
909 if (!action_fifos)
910 return -ENOMEM;
911
912 return 0;
913 }
914
915 void action_fifos_exit(void)
916 {
917 free_percpu(action_fifos);
918 }