]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: Fix L4 checksum handling when dealing with IP fragments
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "gso.h"
41 #include "vlan.h"
42 #include "vport.h"
43
44 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
45 struct sw_flow_key *key,
46 const struct nlattr *attr, int len);
47
48 struct deferred_action {
49 struct sk_buff *skb;
50 const struct nlattr *actions;
51
52 /* Store pkt_key clone when creating deferred action. */
53 struct sw_flow_key pkt_key;
54 };
55
56 #define DEFERRED_ACTION_FIFO_SIZE 10
57 struct action_fifo {
58 int head;
59 int tail;
60 /* Deferred action fifo queue storage. */
61 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
62 };
63
64 static struct action_fifo __percpu *action_fifos;
65 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
66 * looping by the network stack
67 */
68 static DEFINE_PER_CPU(int, exec_actions_level);
69
70 static void action_fifo_init(struct action_fifo *fifo)
71 {
72 fifo->head = 0;
73 fifo->tail = 0;
74 }
75
76 static bool action_fifo_is_empty(const struct action_fifo *fifo)
77 {
78 return (fifo->head == fifo->tail);
79 }
80
81 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
82 {
83 if (action_fifo_is_empty(fifo))
84 return NULL;
85
86 return &fifo->fifo[fifo->tail++];
87 }
88
89 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
90 {
91 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
92 return NULL;
93
94 return &fifo->fifo[fifo->head++];
95 }
96
97 /* Return queue entry if fifo is not full */
98 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
99 const struct sw_flow_key *key,
100 const struct nlattr *attr)
101 {
102 struct action_fifo *fifo;
103 struct deferred_action *da;
104
105 fifo = this_cpu_ptr(action_fifos);
106 da = action_fifo_put(fifo);
107 if (da) {
108 da->skb = skb;
109 da->actions = attr;
110 da->pkt_key = *key;
111 }
112
113 return da;
114 }
115
116 static void invalidate_flow_key(struct sw_flow_key *key)
117 {
118 key->eth.type = htons(0);
119 }
120
121 static bool is_flow_key_valid(const struct sw_flow_key *key)
122 {
123 return !!key->eth.type;
124 }
125
126 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
127 const struct ovs_action_push_mpls *mpls)
128 {
129 __be32 *new_mpls_lse;
130 struct ethhdr *hdr;
131
132 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
133 if (skb_encapsulation(skb))
134 return -ENOTSUPP;
135
136 if (skb_cow_head(skb, MPLS_HLEN) < 0)
137 return -ENOMEM;
138
139 skb_push(skb, MPLS_HLEN);
140 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
141 skb->mac_len);
142 skb_reset_mac_header(skb);
143
144 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
145 *new_mpls_lse = mpls->mpls_lse;
146
147 if (skb->ip_summed == CHECKSUM_COMPLETE)
148 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
149 MPLS_HLEN, 0));
150
151 hdr = eth_hdr(skb);
152 hdr->h_proto = mpls->mpls_ethertype;
153 if (!ovs_skb_get_inner_protocol(skb))
154 ovs_skb_set_inner_protocol(skb, skb->protocol);
155 skb->protocol = mpls->mpls_ethertype;
156
157 invalidate_flow_key(key);
158 return 0;
159 }
160
161 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
162 const __be16 ethertype)
163 {
164 struct ethhdr *hdr;
165 int err;
166
167 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
168 if (unlikely(err))
169 return err;
170
171 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
172
173 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
174 skb->mac_len);
175
176 __skb_pull(skb, MPLS_HLEN);
177 skb_reset_mac_header(skb);
178
179 /* skb_mpls_header() is used to locate the ethertype
180 * field correctly in the presence of VLAN tags.
181 */
182 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
183 hdr->h_proto = ethertype;
184 if (eth_p_mpls(skb->protocol))
185 skb->protocol = ethertype;
186
187 invalidate_flow_key(key);
188 return 0;
189 }
190
191 /* 'KEY' must not have any bits set outside of the 'MASK' */
192 #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
193 #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
194
195 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
196 const __be32 *mpls_lse, const __be32 *mask)
197 {
198 __be32 *stack;
199 __be32 lse;
200 int err;
201
202 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
203 if (unlikely(err))
204 return err;
205
206 stack = (__be32 *)skb_mpls_header(skb);
207 lse = MASKED(*stack, *mpls_lse, *mask);
208 if (skb->ip_summed == CHECKSUM_COMPLETE) {
209 __be32 diff[] = { ~(*stack), lse };
210
211 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
212 ~skb->csum);
213 }
214
215 *stack = lse;
216 flow_key->mpls.top_lse = lse;
217 return 0;
218 }
219
220 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
221 {
222 int err;
223
224 err = skb_vlan_pop(skb);
225 if (skb_vlan_tag_present(skb))
226 invalidate_flow_key(key);
227 else
228 key->eth.tci = 0;
229 return err;
230 }
231
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 const struct ovs_action_push_vlan *vlan)
234 {
235 if (skb_vlan_tag_present(skb))
236 invalidate_flow_key(key);
237 else
238 key->eth.tci = vlan->vlan_tci;
239 return skb_vlan_push(skb, vlan->vlan_tpid,
240 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
241 }
242
243 /* 'src' is already properly masked. */
244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 u16 *dst = (u16 *)dst_;
247 const u16 *src = (const u16 *)src_;
248 const u16 *mask = (const u16 *)mask_;
249
250 SET_MASKED(dst[0], src[0], mask[0]);
251 SET_MASKED(dst[1], src[1], mask[1]);
252 SET_MASKED(dst[2], src[2], mask[2]);
253 }
254
255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 const struct ovs_key_ethernet *key,
257 const struct ovs_key_ethernet *mask)
258 {
259 int err;
260
261 err = skb_ensure_writable(skb, ETH_HLEN);
262 if (unlikely(err))
263 return err;
264
265 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266
267 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 mask->eth_src);
269 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 mask->eth_dst);
271
272 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273
274 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 return 0;
277 }
278
279 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
280 __be32 addr, __be32 new_addr)
281 {
282 int transport_len = skb->len - skb_transport_offset(skb);
283
284 if (nh->frag_off & htons(IP_OFFSET))
285 return;
286
287 if (nh->protocol == IPPROTO_TCP) {
288 if (likely(transport_len >= sizeof(struct tcphdr)))
289 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
290 addr, new_addr, 1);
291 } else if (nh->protocol == IPPROTO_UDP) {
292 if (likely(transport_len >= sizeof(struct udphdr))) {
293 struct udphdr *uh = udp_hdr(skb);
294
295 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
296 inet_proto_csum_replace4(&uh->check, skb,
297 addr, new_addr, 1);
298 if (!uh->check)
299 uh->check = CSUM_MANGLED_0;
300 }
301 }
302 }
303
304 }
305
306 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
307 __be32 *addr, __be32 new_addr)
308 {
309 update_ip_l4_checksum(skb, nh, *addr, new_addr);
310 csum_replace4(&nh->check, *addr, new_addr);
311 skb_clear_hash(skb);
312 *addr = new_addr;
313 }
314
315 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
316 __be32 addr[4], const __be32 new_addr[4])
317 {
318 int transport_len = skb->len - skb_transport_offset(skb);
319
320 if (l4_proto == NEXTHDR_TCP) {
321 if (likely(transport_len >= sizeof(struct tcphdr)))
322 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
323 addr, new_addr, 1);
324 } else if (l4_proto == NEXTHDR_UDP) {
325 if (likely(transport_len >= sizeof(struct udphdr))) {
326 struct udphdr *uh = udp_hdr(skb);
327
328 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
329 inet_proto_csum_replace16(&uh->check, skb,
330 addr, new_addr, 1);
331 if (!uh->check)
332 uh->check = CSUM_MANGLED_0;
333 }
334 }
335 } else if (l4_proto == NEXTHDR_ICMP) {
336 if (likely(transport_len >= sizeof(struct icmp6hdr)))
337 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
338 skb, addr, new_addr, 1);
339 }
340 }
341
342 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
343 const __be32 mask[4], __be32 masked[4])
344 {
345 masked[0] = MASKED(old[0], addr[0], mask[0]);
346 masked[1] = MASKED(old[1], addr[1], mask[1]);
347 masked[2] = MASKED(old[2], addr[2], mask[2]);
348 masked[3] = MASKED(old[3], addr[3], mask[3]);
349 }
350
351 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
352 __be32 addr[4], const __be32 new_addr[4],
353 bool recalculate_csum)
354 {
355 if (likely(recalculate_csum))
356 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
357
358 skb_clear_hash(skb);
359 memcpy(addr, new_addr, sizeof(__be32[4]));
360 }
361
362 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
363 {
364 /* Bits 21-24 are always unmasked, so this retains their values. */
365 SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
366 SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
367 SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
368 }
369
370 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
371 u8 mask)
372 {
373 new_ttl = MASKED(nh->ttl, new_ttl, mask);
374
375 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
376 nh->ttl = new_ttl;
377 }
378
379 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
380 const struct ovs_key_ipv4 *key,
381 const struct ovs_key_ipv4 *mask)
382 {
383 struct iphdr *nh;
384 __be32 new_addr;
385 int err;
386
387 err = skb_ensure_writable(skb, skb_network_offset(skb) +
388 sizeof(struct iphdr));
389 if (unlikely(err))
390 return err;
391
392 nh = ip_hdr(skb);
393
394 /* Setting an IP addresses is typically only a side effect of
395 * matching on them in the current userspace implementation, so it
396 * makes sense to check if the value actually changed.
397 */
398 if (mask->ipv4_src) {
399 new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
400
401 if (unlikely(new_addr != nh->saddr)) {
402 set_ip_addr(skb, nh, &nh->saddr, new_addr);
403 flow_key->ipv4.addr.src = new_addr;
404 }
405 }
406 if (mask->ipv4_dst) {
407 new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
408
409 if (unlikely(new_addr != nh->daddr)) {
410 set_ip_addr(skb, nh, &nh->daddr, new_addr);
411 flow_key->ipv4.addr.dst = new_addr;
412 }
413 }
414 if (mask->ipv4_tos) {
415 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
416 flow_key->ip.tos = nh->tos;
417 }
418 if (mask->ipv4_ttl) {
419 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
420 flow_key->ip.ttl = nh->ttl;
421 }
422
423 return 0;
424 }
425
426 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
427 {
428 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
429 }
430
431 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
432 const struct ovs_key_ipv6 *key,
433 const struct ovs_key_ipv6 *mask)
434 {
435 struct ipv6hdr *nh;
436 int err;
437
438 err = skb_ensure_writable(skb, skb_network_offset(skb) +
439 sizeof(struct ipv6hdr));
440 if (unlikely(err))
441 return err;
442
443 nh = ipv6_hdr(skb);
444
445 /* Setting an IP addresses is typically only a side effect of
446 * matching on them in the current userspace implementation, so it
447 * makes sense to check if the value actually changed.
448 */
449 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
450 __be32 *saddr = (__be32 *)&nh->saddr;
451 __be32 masked[4];
452
453 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
454
455 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
456 set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
457 true);
458 memcpy(&flow_key->ipv6.addr.src, masked,
459 sizeof(flow_key->ipv6.addr.src));
460 }
461 }
462 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
463 unsigned int offset = 0;
464 int flags = IP6_FH_F_SKIP_RH;
465 bool recalc_csum = true;
466 __be32 *daddr = (__be32 *)&nh->daddr;
467 __be32 masked[4];
468
469 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
470
471 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
472 if (ipv6_ext_hdr(nh->nexthdr))
473 recalc_csum = (ipv6_find_hdr(skb, &offset,
474 NEXTHDR_ROUTING,
475 NULL, &flags)
476 != NEXTHDR_ROUTING);
477
478 set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
479 recalc_csum);
480 memcpy(&flow_key->ipv6.addr.dst, masked,
481 sizeof(flow_key->ipv6.addr.dst));
482 }
483 }
484 if (mask->ipv6_tclass) {
485 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
486 flow_key->ip.tos = ipv6_get_dsfield(nh);
487 }
488 if (mask->ipv6_label) {
489 set_ipv6_fl(nh, ntohl(key->ipv6_label),
490 ntohl(mask->ipv6_label));
491 flow_key->ipv6.label =
492 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
493 }
494 if (mask->ipv6_hlimit) {
495 SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
496 flow_key->ip.ttl = nh->hop_limit;
497 }
498 return 0;
499 }
500
501 /* Must follow skb_ensure_writable() since that can move the skb data. */
502 static void set_tp_port(struct sk_buff *skb, __be16 *port,
503 __be16 new_port, __sum16 *check)
504 {
505 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
506 *port = new_port;
507 }
508
509 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
510 const struct ovs_key_udp *key,
511 const struct ovs_key_udp *mask)
512 {
513 struct udphdr *uh;
514 __be16 src, dst;
515 int err;
516
517 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
518 sizeof(struct udphdr));
519 if (unlikely(err))
520 return err;
521
522 uh = udp_hdr(skb);
523 /* Either of the masks is non-zero, so do not bother checking them. */
524 src = MASKED(uh->source, key->udp_src, mask->udp_src);
525 dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
526
527 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
528 if (likely(src != uh->source)) {
529 set_tp_port(skb, &uh->source, src, &uh->check);
530 flow_key->tp.src = src;
531 }
532 if (likely(dst != uh->dest)) {
533 set_tp_port(skb, &uh->dest, dst, &uh->check);
534 flow_key->tp.dst = dst;
535 }
536
537 if (unlikely(!uh->check))
538 uh->check = CSUM_MANGLED_0;
539 } else {
540 uh->source = src;
541 uh->dest = dst;
542 flow_key->tp.src = src;
543 flow_key->tp.dst = dst;
544 }
545
546 skb_clear_hash(skb);
547
548 return 0;
549 }
550
551 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
552 const struct ovs_key_tcp *key,
553 const struct ovs_key_tcp *mask)
554 {
555 struct tcphdr *th;
556 __be16 src, dst;
557 int err;
558
559 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
560 sizeof(struct tcphdr));
561 if (unlikely(err))
562 return err;
563
564 th = tcp_hdr(skb);
565 src = MASKED(th->source, key->tcp_src, mask->tcp_src);
566 if (likely(src != th->source)) {
567 set_tp_port(skb, &th->source, src, &th->check);
568 flow_key->tp.src = src;
569 }
570 dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
571 if (likely(dst != th->dest)) {
572 set_tp_port(skb, &th->dest, dst, &th->check);
573 flow_key->tp.dst = dst;
574 }
575 skb_clear_hash(skb);
576
577 return 0;
578 }
579
580 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
581 const struct ovs_key_sctp *key,
582 const struct ovs_key_sctp *mask)
583 {
584 unsigned int sctphoff = skb_transport_offset(skb);
585 struct sctphdr *sh;
586 __le32 old_correct_csum, new_csum, old_csum;
587 int err;
588
589 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
590 if (unlikely(err))
591 return err;
592
593 sh = sctp_hdr(skb);
594 old_csum = sh->checksum;
595 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
596
597 sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
598 sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
599
600 new_csum = sctp_compute_cksum(skb, sctphoff);
601
602 /* Carry any checksum errors through. */
603 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
604
605 skb_clear_hash(skb);
606 flow_key->tp.src = sh->source;
607 flow_key->tp.dst = sh->dest;
608
609 return 0;
610 }
611
612 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
613 {
614 struct vport *vport = ovs_vport_rcu(dp, out_port);
615
616 if (likely(vport))
617 ovs_vport_send(vport, skb);
618 else
619 kfree_skb(skb);
620 }
621
622 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
623 struct sw_flow_key *key, const struct nlattr *attr,
624 const struct nlattr *actions, int actions_len)
625 {
626 struct ovs_tunnel_info info;
627 struct dp_upcall_info upcall;
628 const struct nlattr *a;
629 int rem;
630
631 memset(&upcall, 0, sizeof(upcall));
632 upcall.cmd = OVS_PACKET_CMD_ACTION;
633
634 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
635 a = nla_next(a, &rem)) {
636 switch (nla_type(a)) {
637 case OVS_USERSPACE_ATTR_USERDATA:
638 upcall.userdata = a;
639 break;
640
641 case OVS_USERSPACE_ATTR_PID:
642 upcall.portid = nla_get_u32(a);
643 break;
644
645 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
646 /* Get out tunnel info. */
647 struct vport *vport;
648
649 vport = ovs_vport_rcu(dp, nla_get_u32(a));
650 if (vport) {
651 int err;
652
653 err = ovs_vport_get_egress_tun_info(vport, skb,
654 &info);
655 if (!err)
656 upcall.egress_tun_info = &info;
657 }
658 break;
659 }
660
661 case OVS_USERSPACE_ATTR_ACTIONS: {
662 /* Include actions. */
663 upcall.actions = actions;
664 upcall.actions_len = actions_len;
665 break;
666 }
667
668 } /* End of switch. */
669 }
670
671 return ovs_dp_upcall(dp, skb, key, &upcall);
672 }
673
674 static int sample(struct datapath *dp, struct sk_buff *skb,
675 struct sw_flow_key *key, const struct nlattr *attr,
676 const struct nlattr *actions, int actions_len)
677 {
678 const struct nlattr *acts_list = NULL;
679 const struct nlattr *a;
680 int rem;
681
682 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
683 a = nla_next(a, &rem)) {
684 switch (nla_type(a)) {
685 case OVS_SAMPLE_ATTR_PROBABILITY:
686 if (prandom_u32() >= nla_get_u32(a))
687 return 0;
688 break;
689
690 case OVS_SAMPLE_ATTR_ACTIONS:
691 acts_list = a;
692 break;
693 }
694 }
695
696 rem = nla_len(acts_list);
697 a = nla_data(acts_list);
698
699 /* Actions list is empty, do nothing */
700 if (unlikely(!rem))
701 return 0;
702
703 /* The only known usage of sample action is having a single user-space
704 * action. Treat this usage as a special case.
705 * The output_userspace() should clone the skb to be sent to the
706 * user space. This skb will be consumed by its caller.
707 */
708 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
709 nla_is_last(a, rem)))
710 return output_userspace(dp, skb, key, a, actions, actions_len);
711
712 skb = skb_clone(skb, GFP_ATOMIC);
713 if (!skb)
714 /* Skip the sample action when out of memory. */
715 return 0;
716
717 if (!add_deferred_actions(skb, key, a)) {
718 if (net_ratelimit())
719 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
720 ovs_dp_name(dp));
721
722 kfree_skb(skb);
723 }
724 return 0;
725 }
726
727 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
728 const struct nlattr *attr)
729 {
730 struct ovs_action_hash *hash_act = nla_data(attr);
731 u32 hash = 0;
732
733 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
734 hash = skb_get_hash(skb);
735 hash = jhash_1word(hash, hash_act->hash_basis);
736 if (!hash)
737 hash = 0x1;
738
739 key->ovs_flow_hash = hash;
740 }
741
742 static int execute_set_action(struct sk_buff *skb,
743 struct sw_flow_key *flow_key,
744 const struct nlattr *a)
745 {
746 /* Only tunnel set execution is supported without a mask. */
747 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
748 OVS_CB(skb)->egress_tun_info = nla_data(a);
749 return 0;
750 }
751
752 return -EINVAL;
753 }
754
755 /* Mask is at the midpoint of the data. */
756 #define get_mask(a, type) ((const type)nla_data(a) + 1)
757
758 static int execute_masked_set_action(struct sk_buff *skb,
759 struct sw_flow_key *flow_key,
760 const struct nlattr *a)
761 {
762 int err = 0;
763
764 switch (nla_type(a)) {
765 case OVS_KEY_ATTR_PRIORITY:
766 SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
767 flow_key->phy.priority = skb->priority;
768 break;
769
770 case OVS_KEY_ATTR_SKB_MARK:
771 SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
772 flow_key->phy.skb_mark = skb->mark;
773 break;
774
775 case OVS_KEY_ATTR_TUNNEL_INFO:
776 /* Masked data not supported for tunnel. */
777 err = -EINVAL;
778 break;
779
780 case OVS_KEY_ATTR_ETHERNET:
781 err = set_eth_addr(skb, flow_key, nla_data(a),
782 get_mask(a, struct ovs_key_ethernet *));
783 break;
784
785 case OVS_KEY_ATTR_IPV4:
786 err = set_ipv4(skb, flow_key, nla_data(a),
787 get_mask(a, struct ovs_key_ipv4 *));
788 break;
789
790 case OVS_KEY_ATTR_IPV6:
791 err = set_ipv6(skb, flow_key, nla_data(a),
792 get_mask(a, struct ovs_key_ipv6 *));
793 break;
794
795 case OVS_KEY_ATTR_TCP:
796 err = set_tcp(skb, flow_key, nla_data(a),
797 get_mask(a, struct ovs_key_tcp *));
798 break;
799
800 case OVS_KEY_ATTR_UDP:
801 err = set_udp(skb, flow_key, nla_data(a),
802 get_mask(a, struct ovs_key_udp *));
803 break;
804
805 case OVS_KEY_ATTR_SCTP:
806 err = set_sctp(skb, flow_key, nla_data(a),
807 get_mask(a, struct ovs_key_sctp *));
808 break;
809
810 case OVS_KEY_ATTR_MPLS:
811 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
812 __be32 *));
813 break;
814 }
815
816 return err;
817 }
818
819 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
820 struct sw_flow_key *key,
821 const struct nlattr *a, int rem)
822 {
823 struct deferred_action *da;
824
825 if (!is_flow_key_valid(key)) {
826 int err;
827
828 err = ovs_flow_key_update(skb, key);
829 if (err)
830 return err;
831 }
832 BUG_ON(!is_flow_key_valid(key));
833
834 if (!nla_is_last(a, rem)) {
835 /* Recirc action is the not the last action
836 * of the action list, need to clone the skb.
837 */
838 skb = skb_clone(skb, GFP_ATOMIC);
839
840 /* Skip the recirc action when out of memory, but
841 * continue on with the rest of the action list.
842 */
843 if (!skb)
844 return 0;
845 }
846
847 da = add_deferred_actions(skb, key, NULL);
848 if (da) {
849 da->pkt_key.recirc_id = nla_get_u32(a);
850 } else {
851 kfree_skb(skb);
852
853 if (net_ratelimit())
854 pr_warn("%s: deferred action limit reached, drop recirc action\n",
855 ovs_dp_name(dp));
856 }
857
858 return 0;
859 }
860
861 /* Execute a list of actions against 'skb'. */
862 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
863 struct sw_flow_key *key,
864 const struct nlattr *attr, int len)
865 {
866 /* Every output action needs a separate clone of 'skb', but the common
867 * case is just a single output action, so that doing a clone and
868 * then freeing the original skbuff is wasteful. So the following code
869 * is slightly obscure just to avoid that.
870 */
871 int prev_port = -1;
872 const struct nlattr *a;
873 int rem;
874
875 for (a = attr, rem = len; rem > 0;
876 a = nla_next(a, &rem)) {
877 int err = 0;
878
879 if (unlikely(prev_port != -1)) {
880 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
881
882 if (out_skb)
883 do_output(dp, out_skb, prev_port);
884
885 prev_port = -1;
886 }
887
888 switch (nla_type(a)) {
889 case OVS_ACTION_ATTR_OUTPUT:
890 prev_port = nla_get_u32(a);
891 break;
892
893 case OVS_ACTION_ATTR_USERSPACE:
894 output_userspace(dp, skb, key, a, attr, len);
895 break;
896
897 case OVS_ACTION_ATTR_HASH:
898 execute_hash(skb, key, a);
899 break;
900
901 case OVS_ACTION_ATTR_PUSH_MPLS:
902 err = push_mpls(skb, key, nla_data(a));
903 break;
904
905 case OVS_ACTION_ATTR_POP_MPLS:
906 err = pop_mpls(skb, key, nla_get_be16(a));
907 break;
908
909 case OVS_ACTION_ATTR_PUSH_VLAN:
910 err = push_vlan(skb, key, nla_data(a));
911 break;
912
913 case OVS_ACTION_ATTR_POP_VLAN:
914 err = pop_vlan(skb, key);
915 break;
916
917 case OVS_ACTION_ATTR_RECIRC:
918 err = execute_recirc(dp, skb, key, a, rem);
919 if (nla_is_last(a, rem)) {
920 /* If this is the last action, the skb has
921 * been consumed or freed.
922 * Return immediately.
923 */
924 return err;
925 }
926 break;
927
928 case OVS_ACTION_ATTR_SET:
929 err = execute_set_action(skb, key, nla_data(a));
930 break;
931
932 case OVS_ACTION_ATTR_SET_MASKED:
933 case OVS_ACTION_ATTR_SET_TO_MASKED:
934 err = execute_masked_set_action(skb, key, nla_data(a));
935 break;
936
937 case OVS_ACTION_ATTR_SAMPLE:
938 err = sample(dp, skb, key, a, attr, len);
939 break;
940 }
941
942 if (unlikely(err)) {
943 kfree_skb(skb);
944 return err;
945 }
946 }
947
948 if (prev_port != -1)
949 do_output(dp, skb, prev_port);
950 else
951 consume_skb(skb);
952
953 return 0;
954 }
955
956 static void process_deferred_actions(struct datapath *dp)
957 {
958 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
959
960 /* Do not touch the FIFO in case there is no deferred actions. */
961 if (action_fifo_is_empty(fifo))
962 return;
963
964 /* Finishing executing all deferred actions. */
965 do {
966 struct deferred_action *da = action_fifo_get(fifo);
967 struct sk_buff *skb = da->skb;
968 struct sw_flow_key *key = &da->pkt_key;
969 const struct nlattr *actions = da->actions;
970
971 if (actions)
972 do_execute_actions(dp, skb, key, actions,
973 nla_len(actions));
974 else
975 ovs_dp_process_packet(skb, key);
976 } while (!action_fifo_is_empty(fifo));
977
978 /* Reset FIFO for the next packet. */
979 action_fifo_init(fifo);
980 }
981
982 /* Execute a list of actions against 'skb'. */
983 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
984 const struct sw_flow_actions *acts,
985 struct sw_flow_key *key)
986 {
987 int level = this_cpu_read(exec_actions_level);
988 int err;
989
990 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
991 if (net_ratelimit())
992 pr_warn("%s: packet loop detected, dropping.\n",
993 ovs_dp_name(dp));
994
995 kfree_skb(skb);
996 return -ELOOP;
997 }
998
999 this_cpu_inc(exec_actions_level);
1000 err = do_execute_actions(dp, skb, key,
1001 acts->actions, acts->actions_len);
1002
1003 if (!level)
1004 process_deferred_actions(dp);
1005
1006 this_cpu_dec(exec_actions_level);
1007
1008 /* This return status currently does not reflect the errors
1009 * encounted during deferred actions execution. Probably needs to
1010 * be fixed in the future.
1011 */
1012 return err;
1013 }
1014
1015 int action_fifos_init(void)
1016 {
1017 action_fifos = alloc_percpu(struct action_fifo);
1018 if (!action_fifos)
1019 return -ENOMEM;
1020
1021 return 0;
1022 }
1023
1024 void action_fifos_exit(void)
1025 {
1026 free_percpu(action_fifos);
1027 }