]> git.proxmox.com Git - ovs.git/blob - datapath/datapath.c
ofproto: Match VLAN PCP and rewrite ToS bits (OpenFlow 0.9)
[ovs.git] / datapath / datapath.c
1 /*
2 * Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
3 * Distributed under the terms of the GNU GPL version 2.
4 *
5 * Significant portions of this file may be copied from parts of the Linux
6 * kernel, by Linus Torvalds and others.
7 */
8
9 /* Functions for managing the dp interface/device. */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/fs.h>
14 #include <linux/if_arp.h>
15 #include <linux/if_bridge.h>
16 #include <linux/if_vlan.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/delay.h>
20 #include <linux/time.h>
21 #include <linux/etherdevice.h>
22 #include <linux/kernel.h>
23 #include <linux/kthread.h>
24 #include <linux/llc.h>
25 #include <linux/mutex.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/version.h>
31 #include <linux/ethtool.h>
32 #include <linux/random.h>
33 #include <linux/wait.h>
34 #include <asm/system.h>
35 #include <asm/div64.h>
36 #include <asm/bug.h>
37 #include <linux/netfilter_bridge.h>
38 #include <linux/netfilter_ipv4.h>
39 #include <linux/inetdevice.h>
40 #include <linux/list.h>
41 #include <linux/rculist.h>
42 #include <linux/workqueue.h>
43 #include <linux/dmi.h>
44 #include <net/llc.h>
45
46 #include "openvswitch/datapath-protocol.h"
47 #include "datapath.h"
48 #include "actions.h"
49 #include "dp_dev.h"
50 #include "flow.h"
51
52 #include "compat.h"
53
54
55 int (*dp_ioctl_hook)(struct net_device *dev, struct ifreq *rq, int cmd);
56 EXPORT_SYMBOL(dp_ioctl_hook);
57
58 /* Datapaths. Protected on the read side by rcu_read_lock, on the write side
59 * by dp_mutex.
60 *
61 * dp_mutex nests inside the RTNL lock: if you need both you must take the RTNL
62 * lock first.
63 *
64 * It is safe to access the datapath and net_bridge_port structures with just
65 * dp_mutex.
66 */
67 static struct datapath *dps[ODP_MAX];
68 static DEFINE_MUTEX(dp_mutex);
69
70 /* Number of milliseconds between runs of the maintenance thread. */
71 #define MAINT_SLEEP_MSECS 1000
72
73 static int new_nbp(struct datapath *, struct net_device *, int port_no);
74
75 /* Must be called with rcu_read_lock or dp_mutex. */
76 struct datapath *get_dp(int dp_idx)
77 {
78 if (dp_idx < 0 || dp_idx >= ODP_MAX)
79 return NULL;
80 return rcu_dereference(dps[dp_idx]);
81 }
82 EXPORT_SYMBOL_GPL(get_dp);
83
84 static struct datapath *get_dp_locked(int dp_idx)
85 {
86 struct datapath *dp;
87
88 mutex_lock(&dp_mutex);
89 dp = get_dp(dp_idx);
90 if (dp)
91 mutex_lock(&dp->mutex);
92 mutex_unlock(&dp_mutex);
93 return dp;
94 }
95
96 static inline size_t br_nlmsg_size(void)
97 {
98 return NLMSG_ALIGN(sizeof(struct ifinfomsg))
99 + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
100 + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
101 + nla_total_size(4) /* IFLA_MASTER */
102 + nla_total_size(4) /* IFLA_MTU */
103 + nla_total_size(4) /* IFLA_LINK */
104 + nla_total_size(1); /* IFLA_OPERSTATE */
105 }
106
107 static int dp_fill_ifinfo(struct sk_buff *skb,
108 const struct net_bridge_port *port,
109 int event, unsigned int flags)
110 {
111 const struct datapath *dp = port->dp;
112 const struct net_device *dev = port->dev;
113 struct ifinfomsg *hdr;
114 struct nlmsghdr *nlh;
115
116 nlh = nlmsg_put(skb, 0, 0, event, sizeof(*hdr), flags);
117 if (nlh == NULL)
118 return -EMSGSIZE;
119
120 hdr = nlmsg_data(nlh);
121 hdr->ifi_family = AF_BRIDGE;
122 hdr->__ifi_pad = 0;
123 hdr->ifi_type = dev->type;
124 hdr->ifi_index = dev->ifindex;
125 hdr->ifi_flags = dev_get_flags(dev);
126 hdr->ifi_change = 0;
127
128 NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
129 NLA_PUT_U32(skb, IFLA_MASTER, dp->ports[ODPP_LOCAL]->dev->ifindex);
130 NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
131 #ifdef IFLA_OPERSTATE
132 NLA_PUT_U8(skb, IFLA_OPERSTATE,
133 netif_running(dev) ? dev->operstate : IF_OPER_DOWN);
134 #endif
135
136 if (dev->addr_len)
137 NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
138
139 if (dev->ifindex != dev->iflink)
140 NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
141
142 return nlmsg_end(skb, nlh);
143
144 nla_put_failure:
145 nlmsg_cancel(skb, nlh);
146 return -EMSGSIZE;
147 }
148
149 static void dp_ifinfo_notify(int event, struct net_bridge_port *port)
150 {
151 struct net *net = dev_net(port->dev);
152 struct sk_buff *skb;
153 int err = -ENOBUFS;
154
155 skb = nlmsg_new(br_nlmsg_size(), GFP_KERNEL);
156 if (skb == NULL)
157 goto errout;
158
159 err = dp_fill_ifinfo(skb, port, event, 0);
160 if (err < 0) {
161 /* -EMSGSIZE implies BUG in br_nlmsg_size() */
162 WARN_ON(err == -EMSGSIZE);
163 kfree_skb(skb);
164 goto errout;
165 }
166 rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
167 return;
168 errout:
169 if (err < 0)
170 rtnl_set_sk_err(net, RTNLGRP_LINK, err);
171 }
172
173 static void release_dp(struct kobject *kobj)
174 {
175 struct datapath *dp = container_of(kobj, struct datapath, ifobj);
176 kfree(dp);
177 }
178
179 static struct kobj_type dp_ktype = {
180 .release = release_dp
181 };
182
183 static int create_dp(int dp_idx, const char __user *devnamep)
184 {
185 struct net_device *dp_dev;
186 char devname[IFNAMSIZ];
187 struct datapath *dp;
188 int err;
189 int i;
190
191 if (devnamep) {
192 err = -EFAULT;
193 if (strncpy_from_user(devname, devnamep, IFNAMSIZ - 1) < 0)
194 goto err;
195 devname[IFNAMSIZ - 1] = '\0';
196 } else {
197 snprintf(devname, sizeof devname, "of%d", dp_idx);
198 }
199
200 rtnl_lock();
201 mutex_lock(&dp_mutex);
202 err = -ENODEV;
203 if (!try_module_get(THIS_MODULE))
204 goto err_unlock;
205
206 /* Exit early if a datapath with that number already exists.
207 * (We don't use -EEXIST because that's ambiguous with 'devname'
208 * conflicting with an existing network device name.) */
209 err = -EBUSY;
210 if (get_dp(dp_idx))
211 goto err_put_module;
212
213 err = -ENOMEM;
214 dp = kzalloc(sizeof *dp, GFP_KERNEL);
215 if (dp == NULL)
216 goto err_put_module;
217 INIT_LIST_HEAD(&dp->port_list);
218 mutex_init(&dp->mutex);
219 dp->dp_idx = dp_idx;
220 for (i = 0; i < DP_N_QUEUES; i++)
221 skb_queue_head_init(&dp->queues[i]);
222 init_waitqueue_head(&dp->waitqueue);
223
224 /* Initialize kobject for bridge. This will be added as
225 * /sys/class/net/<devname>/brif later, if sysfs is enabled. */
226 dp->ifobj.kset = NULL;
227 kobject_init(&dp->ifobj, &dp_ktype);
228
229 /* Allocate table. */
230 err = -ENOMEM;
231 rcu_assign_pointer(dp->table, dp_table_create(DP_L1_SIZE));
232 if (!dp->table)
233 goto err_free_dp;
234
235 /* Set up our datapath device. */
236 dp_dev = dp_dev_create(dp, devname, ODPP_LOCAL);
237 err = PTR_ERR(dp_dev);
238 if (IS_ERR(dp_dev))
239 goto err_destroy_table;
240
241 err = new_nbp(dp, dp_dev, ODPP_LOCAL);
242 if (err) {
243 dp_dev_destroy(dp_dev);
244 goto err_destroy_table;
245 }
246
247 dp->drop_frags = 0;
248 dp->stats_percpu = alloc_percpu(struct dp_stats_percpu);
249 if (!dp->stats_percpu)
250 goto err_destroy_local_port;
251
252 rcu_assign_pointer(dps[dp_idx], dp);
253 mutex_unlock(&dp_mutex);
254 rtnl_unlock();
255
256 dp_sysfs_add_dp(dp);
257
258 return 0;
259
260 err_destroy_local_port:
261 dp_del_port(dp->ports[ODPP_LOCAL]);
262 err_destroy_table:
263 dp_table_destroy(dp->table, 0);
264 err_free_dp:
265 kfree(dp);
266 err_put_module:
267 module_put(THIS_MODULE);
268 err_unlock:
269 mutex_unlock(&dp_mutex);
270 rtnl_unlock();
271 err:
272 return err;
273 }
274
275 static void do_destroy_dp(struct datapath *dp)
276 {
277 struct net_bridge_port *p, *n;
278 int i;
279
280 list_for_each_entry_safe (p, n, &dp->port_list, node)
281 if (p->port_no != ODPP_LOCAL)
282 dp_del_port(p);
283
284 dp_sysfs_del_dp(dp);
285
286 rcu_assign_pointer(dps[dp->dp_idx], NULL);
287
288 dp_del_port(dp->ports[ODPP_LOCAL]);
289
290 dp_table_destroy(dp->table, 1);
291
292 for (i = 0; i < DP_N_QUEUES; i++)
293 skb_queue_purge(&dp->queues[i]);
294 for (i = 0; i < DP_MAX_GROUPS; i++)
295 kfree(dp->groups[i]);
296 free_percpu(dp->stats_percpu);
297 kobject_put(&dp->ifobj);
298 module_put(THIS_MODULE);
299 }
300
301 static int destroy_dp(int dp_idx)
302 {
303 struct datapath *dp;
304 int err;
305
306 rtnl_lock();
307 mutex_lock(&dp_mutex);
308 dp = get_dp(dp_idx);
309 err = -ENODEV;
310 if (!dp)
311 goto err_unlock;
312
313 do_destroy_dp(dp);
314 err = 0;
315
316 err_unlock:
317 mutex_unlock(&dp_mutex);
318 rtnl_unlock();
319 return err;
320 }
321
322 static void release_nbp(struct kobject *kobj)
323 {
324 struct net_bridge_port *p = container_of(kobj, struct net_bridge_port, kobj);
325 kfree(p);
326 }
327
328 static struct kobj_type brport_ktype = {
329 #ifdef CONFIG_SYSFS
330 .sysfs_ops = &brport_sysfs_ops,
331 #endif
332 .release = release_nbp
333 };
334
335 /* Called with RTNL lock and dp_mutex. */
336 static int new_nbp(struct datapath *dp, struct net_device *dev, int port_no)
337 {
338 struct net_bridge_port *p;
339
340 if (dev->br_port != NULL)
341 return -EBUSY;
342
343 p = kzalloc(sizeof(*p), GFP_KERNEL);
344 if (!p)
345 return -ENOMEM;
346
347 dev_set_promiscuity(dev, 1);
348 dev_hold(dev);
349 p->port_no = port_no;
350 p->dp = dp;
351 p->dev = dev;
352 atomic_set(&p->sflow_pool, 0);
353 if (!is_dp_dev(dev))
354 rcu_assign_pointer(dev->br_port, p);
355 else {
356 /* It would make sense to assign dev->br_port here too, but
357 * that causes packets received on internal ports to get caught
358 * in dp_frame_hook(). In turn dp_frame_hook() can reject them
359 * back to network stack, but that's a waste of time. */
360 }
361 rcu_assign_pointer(dp->ports[port_no], p);
362 list_add_rcu(&p->node, &dp->port_list);
363 dp->n_ports++;
364
365 /* Initialize kobject for bridge. This will be added as
366 * /sys/class/net/<devname>/brport later, if sysfs is enabled. */
367 p->kobj.kset = NULL;
368 kobject_init(&p->kobj, &brport_ktype);
369
370 dp_ifinfo_notify(RTM_NEWLINK, p);
371
372 return 0;
373 }
374
375 static int add_port(int dp_idx, struct odp_port __user *portp)
376 {
377 struct net_device *dev;
378 struct datapath *dp;
379 struct odp_port port;
380 int port_no;
381 int err;
382
383 err = -EFAULT;
384 if (copy_from_user(&port, portp, sizeof port))
385 goto out;
386 port.devname[IFNAMSIZ - 1] = '\0';
387
388 rtnl_lock();
389 dp = get_dp_locked(dp_idx);
390 err = -ENODEV;
391 if (!dp)
392 goto out_unlock_rtnl;
393
394 for (port_no = 1; port_no < DP_MAX_PORTS; port_no++)
395 if (!dp->ports[port_no])
396 goto got_port_no;
397 err = -EFBIG;
398 goto out_unlock_dp;
399
400 got_port_no:
401 if (!(port.flags & ODP_PORT_INTERNAL)) {
402 err = -ENODEV;
403 dev = dev_get_by_name(&init_net, port.devname);
404 if (!dev)
405 goto out_unlock_dp;
406
407 err = -EINVAL;
408 if (dev->flags & IFF_LOOPBACK || dev->type != ARPHRD_ETHER ||
409 is_dp_dev(dev))
410 goto out_put;
411 } else {
412 dev = dp_dev_create(dp, port.devname, port_no);
413 err = PTR_ERR(dev);
414 if (IS_ERR(dev))
415 goto out_unlock_dp;
416 dev_hold(dev);
417 }
418
419 err = new_nbp(dp, dev, port_no);
420 if (err)
421 goto out_put;
422
423 set_dp_devs_mtu(dp, dev);
424 dp_sysfs_add_if(dp->ports[port_no]);
425
426 err = __put_user(port_no, &portp->port);
427
428 out_put:
429 dev_put(dev);
430 out_unlock_dp:
431 mutex_unlock(&dp->mutex);
432 out_unlock_rtnl:
433 rtnl_unlock();
434 out:
435 return err;
436 }
437
438 int dp_del_port(struct net_bridge_port *p)
439 {
440 ASSERT_RTNL();
441
442 if (p->port_no != ODPP_LOCAL)
443 dp_sysfs_del_if(p);
444 dp_ifinfo_notify(RTM_DELLINK, p);
445
446 p->dp->n_ports--;
447
448 if (is_dp_dev(p->dev)) {
449 /* Make sure that no packets arrive from now on, since
450 * dp_dev_xmit() will try to find itself through
451 * p->dp->ports[], and we're about to set that to null. */
452 netif_tx_disable(p->dev);
453 }
454
455 /* First drop references to device. */
456 dev_set_promiscuity(p->dev, -1);
457 list_del_rcu(&p->node);
458 rcu_assign_pointer(p->dp->ports[p->port_no], NULL);
459 rcu_assign_pointer(p->dev->br_port, NULL);
460
461 /* Then wait until no one is still using it, and destroy it. */
462 synchronize_rcu();
463
464 if (is_dp_dev(p->dev))
465 dp_dev_destroy(p->dev);
466 dev_put(p->dev);
467 kobject_put(&p->kobj);
468
469 return 0;
470 }
471
472 static int del_port(int dp_idx, int port_no)
473 {
474 struct net_bridge_port *p;
475 struct datapath *dp;
476 LIST_HEAD(dp_devs);
477 int err;
478
479 err = -EINVAL;
480 if (port_no < 0 || port_no >= DP_MAX_PORTS || port_no == ODPP_LOCAL)
481 goto out;
482
483 rtnl_lock();
484 dp = get_dp_locked(dp_idx);
485 err = -ENODEV;
486 if (!dp)
487 goto out_unlock_rtnl;
488
489 p = dp->ports[port_no];
490 err = -ENOENT;
491 if (!p)
492 goto out_unlock_dp;
493
494 err = dp_del_port(p);
495
496 out_unlock_dp:
497 mutex_unlock(&dp->mutex);
498 out_unlock_rtnl:
499 rtnl_unlock();
500 out:
501 return err;
502 }
503
504 /* Must be called with rcu_read_lock. */
505 static void
506 do_port_input(struct net_bridge_port *p, struct sk_buff *skb)
507 {
508 /* Make our own copy of the packet. Otherwise we will mangle the
509 * packet for anyone who came before us (e.g. tcpdump via AF_PACKET).
510 * (No one comes after us, since we tell handle_bridge() that we took
511 * the packet.) */
512 skb = skb_share_check(skb, GFP_ATOMIC);
513 if (!skb)
514 return;
515
516 /* Push the Ethernet header back on. */
517 skb_push(skb, ETH_HLEN);
518 skb_reset_mac_header(skb);
519 dp_process_received_packet(skb, p);
520 }
521
522 /* Must be called with rcu_read_lock and with bottom-halves disabled. */
523 void dp_process_received_packet(struct sk_buff *skb, struct net_bridge_port *p)
524 {
525 struct datapath *dp = p->dp;
526 struct dp_stats_percpu *stats;
527 struct odp_flow_key key;
528 struct sw_flow *flow;
529
530 WARN_ON_ONCE(skb_shared(skb));
531
532 /* BHs are off so we don't have to use get_cpu()/put_cpu() here. */
533 stats = percpu_ptr(dp->stats_percpu, smp_processor_id());
534
535 if (flow_extract(skb, p ? p->port_no : ODPP_NONE, &key)) {
536 if (dp->drop_frags) {
537 kfree_skb(skb);
538 stats->n_frags++;
539 return;
540 }
541 }
542
543 flow = dp_table_lookup(rcu_dereference(dp->table), &key);
544 if (flow) {
545 struct sw_flow_actions *acts = rcu_dereference(flow->sf_acts);
546 flow_used(flow, skb);
547 execute_actions(dp, skb, &key, acts->actions, acts->n_actions,
548 GFP_ATOMIC);
549 stats->n_hit++;
550 } else {
551 stats->n_missed++;
552 dp_output_control(dp, skb, _ODPL_MISS_NR, 0);
553 }
554 }
555
556 /*
557 * Used as br_handle_frame_hook. (Cannot run bridge at the same time, even on
558 * different set of devices!)
559 */
560 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
561 /* Called with rcu_read_lock and bottom-halves disabled. */
562 static struct sk_buff *dp_frame_hook(struct net_bridge_port *p,
563 struct sk_buff *skb)
564 {
565 do_port_input(p, skb);
566 return NULL;
567 }
568 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
569 /* Called with rcu_read_lock and bottom-halves disabled. */
570 static int dp_frame_hook(struct net_bridge_port *p, struct sk_buff **pskb)
571 {
572 do_port_input(p, *pskb);
573 return 1;
574 }
575 #else
576 #error
577 #endif
578
579 #if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID)
580 /* This code is based on a skb_checksum_setup from net/dev/core.c from a
581 * combination of Lenny's 2.6.26 Xen kernel and Xen's
582 * linux-2.6.18-92.1.10.el5.xs5.0.0.394.644. We can't call this function
583 * directly because it isn't exported in all versions. */
584 static int skb_pull_up_to(struct sk_buff *skb, void *ptr)
585 {
586 if (ptr < (void *)skb->tail)
587 return 1;
588 if (__pskb_pull_tail(skb,
589 ptr - (void *)skb->data - skb_headlen(skb))) {
590 return 1;
591 } else {
592 return 0;
593 }
594 }
595
596 int vswitch_skb_checksum_setup(struct sk_buff *skb)
597 {
598 struct iphdr *iph;
599 unsigned char *th;
600 int err = -EPROTO;
601 __u16 csum_start, csum_offset;
602
603 if (!skb->proto_csum_blank)
604 return 0;
605
606 if (skb->protocol != htons(ETH_P_IP))
607 goto out;
608
609 if (!skb_pull_up_to(skb, skb_network_header(skb) + 1))
610 goto out;
611
612 iph = ip_hdr(skb);
613 th = skb_network_header(skb) + 4 * iph->ihl;
614
615 csum_start = th - skb->head;
616 switch (iph->protocol) {
617 case IPPROTO_TCP:
618 csum_offset = offsetof(struct tcphdr, check);
619 break;
620 case IPPROTO_UDP:
621 csum_offset = offsetof(struct udphdr, check);
622 break;
623 default:
624 if (net_ratelimit())
625 printk(KERN_ERR "Attempting to checksum a non-"
626 "TCP/UDP packet, dropping a protocol"
627 " %d packet", iph->protocol);
628 goto out;
629 }
630
631 if (!skb_pull_up_to(skb, th + csum_offset + 2))
632 goto out;
633
634 skb->ip_summed = CHECKSUM_PARTIAL;
635 skb->proto_csum_blank = 0;
636
637 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
638 skb->csum_start = csum_start;
639 skb->csum_offset = csum_offset;
640 #else
641 skb_set_transport_header(skb, csum_start - skb_headroom(skb));
642 skb->csum = csum_offset;
643 #endif
644
645 err = 0;
646
647 out:
648 return err;
649 }
650 #endif /* CONFIG_XEN && HAVE_PROTO_DATA_VALID */
651
652 /* Types of checksums that we can receive (these all refer to L4 checksums):
653 * 1. CHECKSUM_NONE: Device that did not compute checksum, contains full
654 * (though not verified) checksum in packet but not in skb->csum. Packets
655 * from the bridge local port will also have this type.
656 * 2. CHECKSUM_COMPLETE (CHECKSUM_HW): Good device that computes checksums,
657 * also the GRE module. This is the same as CHECKSUM_NONE, except it has
658 * a valid skb->csum. Importantly, both contain a full checksum (not
659 * verified) in the packet itself. The only difference is that if the
660 * packet gets to L4 processing on this machine (not in DomU) we won't
661 * have to recompute the checksum to verify. Most hardware devices do not
662 * produce packets with this type, even if they support receive checksum
663 * offloading (they produce type #5).
664 * 3. CHECKSUM_PARTIAL (CHECKSUM_HW): Packet without full checksum and needs to
665 * be computed if it is sent off box. Unfortunately on earlier kernels,
666 * this case is impossible to distinguish from #2, despite having opposite
667 * meanings. Xen adds an extra field on earlier kernels (see #4) in order
668 * to distinguish the different states. The only real user of this type
669 * with bridging is Xen (on later kernels).
670 * 4. CHECKSUM_UNNECESSARY (with proto_csum_blank true): This packet was
671 * generated locally by a Xen DomU and has a partial checksum. If it is
672 * handled on this machine (Dom0 or DomU), then the checksum will not be
673 * computed. If it goes off box, the checksum in the packet needs to be
674 * completed. Calling skb_checksum_setup converts this to CHECKSUM_HW
675 * (CHECKSUM_PARTIAL) so that the checksum can be completed. In later
676 * kernels, this combination is replaced with CHECKSUM_PARTIAL.
677 * 5. CHECKSUM_UNNECESSARY (with proto_csum_blank false): Packet with a correct
678 * full checksum or using a protocol without a checksum. skb->csum is
679 * undefined. This is common from devices with receive checksum
680 * offloading. This is somewhat similar to CHECKSUM_NONE, except that
681 * nobody will try to verify the checksum with CHECKSUM_UNNECESSARY.
682 *
683 * Note that on earlier kernels, CHECKSUM_COMPLETE and CHECKSUM_PARTIAL are
684 * both defined as CHECKSUM_HW. Normally the meaning of CHECKSUM_HW is clear
685 * based on whether it is on the transmit or receive path. After the datapath
686 * it will be intepreted as CHECKSUM_PARTIAL. If the packet already has a
687 * checksum, we will panic. Since we can receive packets with checksums, we
688 * assume that all CHECKSUM_HW packets have checksums and map them to
689 * CHECKSUM_NONE, which has a similar meaning (the it is only different if the
690 * packet is processed by the local IP stack, in which case it will need to
691 * be reverified). If we receive a packet with CHECKSUM_HW that really means
692 * CHECKSUM_PARTIAL, it will be sent with the wrong checksum. However, there
693 * shouldn't be any devices that do this with bridging.
694 *
695 * The bridge has similar behavior and this function closely resembles
696 * skb_forward_csum(). It is slightly different because we are only concerned
697 * with bridging and not other types of forwarding and can get away with
698 * slightly more optimal behavior.*/
699 void
700 forward_ip_summed(struct sk_buff *skb)
701 {
702 #ifdef CHECKSUM_HW
703 if (skb->ip_summed == CHECKSUM_HW)
704 skb->ip_summed = CHECKSUM_NONE;
705 #endif
706 }
707
708 /* Append each packet in 'skb' list to 'queue'. There will be only one packet
709 * unless we broke up a GSO packet. */
710 static int
711 queue_control_packets(struct sk_buff *skb, struct sk_buff_head *queue,
712 int queue_no, u32 arg)
713 {
714 struct sk_buff *nskb;
715 int port_no;
716 int err;
717
718 port_no = ODPP_LOCAL;
719 if (skb->dev) {
720 if (skb->dev->br_port)
721 port_no = skb->dev->br_port->port_no;
722 else if (is_dp_dev(skb->dev))
723 port_no = dp_dev_priv(skb->dev)->port_no;
724 }
725
726 do {
727 struct odp_msg *header;
728
729 nskb = skb->next;
730 skb->next = NULL;
731
732 /* If a checksum-deferred packet is forwarded to the
733 * controller, correct the pointers and checksum. This happens
734 * on a regular basis only on Xen, on which VMs can pass up
735 * packets that do not have their checksum computed.
736 */
737 err = vswitch_skb_checksum_setup(skb);
738 if (err)
739 goto err_kfree_skbs;
740 #ifndef CHECKSUM_HW
741 if (skb->ip_summed == CHECKSUM_PARTIAL) {
742 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
743 /* Until 2.6.22, the start of the transport header was
744 * also the start of data to be checksummed. Linux
745 * 2.6.22 introduced the csum_start field for this
746 * purpose, but we should point the transport header to
747 * it anyway for backward compatibility, as
748 * dev_queue_xmit() does even in 2.6.28. */
749 skb_set_transport_header(skb, skb->csum_start -
750 skb_headroom(skb));
751 #endif
752 err = skb_checksum_help(skb);
753 if (err)
754 goto err_kfree_skbs;
755 }
756 #else
757 if (skb->ip_summed == CHECKSUM_HW) {
758 err = skb_checksum_help(skb, 0);
759 if (err)
760 goto err_kfree_skbs;
761 }
762 #endif
763
764 err = skb_cow(skb, sizeof *header);
765 if (err)
766 goto err_kfree_skbs;
767
768 header = (struct odp_msg*)__skb_push(skb, sizeof *header);
769 header->type = queue_no;
770 header->length = skb->len;
771 header->port = port_no;
772 header->reserved = 0;
773 header->arg = arg;
774 skb_queue_tail(queue, skb);
775
776 skb = nskb;
777 } while (skb);
778 return 0;
779
780 err_kfree_skbs:
781 kfree_skb(skb);
782 while ((skb = nskb) != NULL) {
783 nskb = skb->next;
784 kfree_skb(skb);
785 }
786 return err;
787 }
788
789 int
790 dp_output_control(struct datapath *dp, struct sk_buff *skb, int queue_no,
791 u32 arg)
792 {
793 struct dp_stats_percpu *stats;
794 struct sk_buff_head *queue;
795 int err;
796
797 WARN_ON_ONCE(skb_shared(skb));
798 BUG_ON(queue_no != _ODPL_MISS_NR && queue_no != _ODPL_ACTION_NR && queue_no != _ODPL_SFLOW_NR);
799 queue = &dp->queues[queue_no];
800 err = -ENOBUFS;
801 if (skb_queue_len(queue) >= DP_MAX_QUEUE_LEN)
802 goto err_kfree_skb;
803
804 forward_ip_summed(skb);
805
806 /* Break apart GSO packets into their component pieces. Otherwise
807 * userspace may try to stuff a 64kB packet into a 1500-byte MTU. */
808 if (skb_is_gso(skb)) {
809 struct sk_buff *nskb = skb_gso_segment(skb, 0);
810 if (nskb) {
811 kfree_skb(skb);
812 skb = nskb;
813 if (unlikely(IS_ERR(skb))) {
814 err = PTR_ERR(skb);
815 goto err;
816 }
817 } else {
818 /* XXX This case might not be possible. It's hard to
819 * tell from the skb_gso_segment() code and comment. */
820 }
821 }
822
823 err = queue_control_packets(skb, queue, queue_no, arg);
824 wake_up_interruptible(&dp->waitqueue);
825 return err;
826
827 err_kfree_skb:
828 kfree_skb(skb);
829 err:
830 stats = percpu_ptr(dp->stats_percpu, get_cpu());
831 stats->n_lost++;
832 put_cpu();
833
834 return err;
835 }
836
837 static int flush_flows(struct datapath *dp)
838 {
839 dp->n_flows = 0;
840 return dp_table_flush(dp);
841 }
842
843 static int validate_actions(const struct sw_flow_actions *actions)
844 {
845 unsigned int i;
846
847 for (i = 0; i < actions->n_actions; i++) {
848 const union odp_action *a = &actions->actions[i];
849 switch (a->type) {
850 case ODPAT_OUTPUT:
851 if (a->output.port >= DP_MAX_PORTS)
852 return -EINVAL;
853 break;
854
855 case ODPAT_OUTPUT_GROUP:
856 if (a->output_group.group >= DP_MAX_GROUPS)
857 return -EINVAL;
858 break;
859
860 case ODPAT_SET_VLAN_VID:
861 if (a->vlan_vid.vlan_vid & htons(~VLAN_VID_MASK))
862 return -EINVAL;
863 break;
864
865 case ODPAT_SET_VLAN_PCP:
866 if (a->vlan_pcp.vlan_pcp
867 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT))
868 return -EINVAL;
869 break;
870
871 default:
872 if (a->type >= ODPAT_N_ACTIONS)
873 return -EOPNOTSUPP;
874 break;
875 }
876 }
877
878 return 0;
879 }
880
881 static struct sw_flow_actions *get_actions(const struct odp_flow *flow)
882 {
883 struct sw_flow_actions *actions;
884 int error;
885
886 actions = flow_actions_alloc(flow->n_actions);
887 error = PTR_ERR(actions);
888 if (IS_ERR(actions))
889 goto error;
890
891 error = -EFAULT;
892 if (copy_from_user(actions->actions, flow->actions,
893 flow->n_actions * sizeof(union odp_action)))
894 goto error_free_actions;
895 error = validate_actions(actions);
896 if (error)
897 goto error_free_actions;
898
899 return actions;
900
901 error_free_actions:
902 kfree(actions);
903 error:
904 return ERR_PTR(error);
905 }
906
907 static void get_stats(struct sw_flow *flow, struct odp_flow_stats *stats)
908 {
909 if (flow->used.tv_sec) {
910 stats->used_sec = flow->used.tv_sec;
911 stats->used_nsec = flow->used.tv_nsec;
912 } else {
913 stats->used_sec = 0;
914 stats->used_nsec = 0;
915 }
916 stats->n_packets = flow->packet_count;
917 stats->n_bytes = flow->byte_count;
918 stats->ip_tos = flow->ip_tos;
919 stats->tcp_flags = flow->tcp_flags;
920 stats->error = 0;
921 }
922
923 static void clear_stats(struct sw_flow *flow)
924 {
925 flow->used.tv_sec = flow->used.tv_nsec = 0;
926 flow->tcp_flags = 0;
927 flow->ip_tos = 0;
928 flow->packet_count = 0;
929 flow->byte_count = 0;
930 }
931
932 static int put_flow(struct datapath *dp, struct odp_flow_put __user *ufp)
933 {
934 struct odp_flow_put uf;
935 struct sw_flow *flow;
936 struct dp_table *table;
937 struct odp_flow_stats stats;
938 int error;
939
940 error = -EFAULT;
941 if (copy_from_user(&uf, ufp, sizeof(struct odp_flow_put)))
942 goto error;
943
944 table = rcu_dereference(dp->table);
945 flow = dp_table_lookup(table, &uf.flow.key);
946 if (!flow) {
947 /* No such flow. */
948 struct sw_flow_actions *acts;
949
950 error = -ENOENT;
951 if (!(uf.flags & ODPPF_CREATE))
952 goto error;
953
954 /* Expand table, if necessary, to make room. */
955 if (dp->n_flows >= table->n_buckets) {
956 error = -ENOSPC;
957 if (table->n_buckets >= DP_MAX_BUCKETS)
958 goto error;
959
960 error = dp_table_expand(dp);
961 if (error)
962 goto error;
963 table = rcu_dereference(dp->table);
964 }
965
966 /* Allocate flow. */
967 error = -ENOMEM;
968 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
969 if (flow == NULL)
970 goto error;
971 flow->key = uf.flow.key;
972 spin_lock_init(&flow->lock);
973 clear_stats(flow);
974
975 /* Obtain actions. */
976 acts = get_actions(&uf.flow);
977 error = PTR_ERR(acts);
978 if (IS_ERR(acts))
979 goto error_free_flow;
980 rcu_assign_pointer(flow->sf_acts, acts);
981
982 /* Put flow in bucket. */
983 error = dp_table_insert(table, flow);
984 if (error)
985 goto error_free_flow_acts;
986 dp->n_flows++;
987 memset(&stats, 0, sizeof(struct odp_flow_stats));
988 } else {
989 /* We found a matching flow. */
990 struct sw_flow_actions *old_acts, *new_acts;
991 unsigned long int flags;
992
993 /* Bail out if we're not allowed to modify an existing flow. */
994 error = -EEXIST;
995 if (!(uf.flags & ODPPF_MODIFY))
996 goto error;
997
998 /* Swap actions. */
999 new_acts = get_actions(&uf.flow);
1000 error = PTR_ERR(new_acts);
1001 if (IS_ERR(new_acts))
1002 goto error;
1003 old_acts = rcu_dereference(flow->sf_acts);
1004 if (old_acts->n_actions != new_acts->n_actions ||
1005 memcmp(old_acts->actions, new_acts->actions,
1006 sizeof(union odp_action) * old_acts->n_actions)) {
1007 rcu_assign_pointer(flow->sf_acts, new_acts);
1008 flow_deferred_free_acts(old_acts);
1009 } else {
1010 kfree(new_acts);
1011 }
1012
1013 /* Fetch stats, then clear them if necessary. */
1014 spin_lock_irqsave(&flow->lock, flags);
1015 get_stats(flow, &stats);
1016 if (uf.flags & ODPPF_ZERO_STATS)
1017 clear_stats(flow);
1018 spin_unlock_irqrestore(&flow->lock, flags);
1019 }
1020
1021 /* Copy stats to userspace. */
1022 if (__copy_to_user(&ufp->flow.stats, &stats,
1023 sizeof(struct odp_flow_stats)))
1024 return -EFAULT;
1025 return 0;
1026
1027 error_free_flow_acts:
1028 kfree(flow->sf_acts);
1029 error_free_flow:
1030 kmem_cache_free(flow_cache, flow);
1031 error:
1032 return error;
1033 }
1034
1035 static int put_actions(const struct sw_flow *flow, struct odp_flow __user *ufp)
1036 {
1037 union odp_action __user *actions;
1038 struct sw_flow_actions *sf_acts;
1039 u32 n_actions;
1040
1041 if (__get_user(actions, &ufp->actions) ||
1042 __get_user(n_actions, &ufp->n_actions))
1043 return -EFAULT;
1044
1045 if (!n_actions)
1046 return 0;
1047
1048 sf_acts = rcu_dereference(flow->sf_acts);
1049 if (__put_user(sf_acts->n_actions, &ufp->n_actions) ||
1050 (actions && copy_to_user(actions, sf_acts->actions,
1051 sizeof(union odp_action) *
1052 min(sf_acts->n_actions, n_actions))))
1053 return -EFAULT;
1054
1055 return 0;
1056 }
1057
1058 static int answer_query(struct sw_flow *flow, u32 query_flags,
1059 struct odp_flow __user *ufp)
1060 {
1061 struct odp_flow_stats stats;
1062 unsigned long int flags;
1063
1064 spin_lock_irqsave(&flow->lock, flags);
1065 get_stats(flow, &stats);
1066
1067 if (query_flags & ODPFF_ZERO_TCP_FLAGS) {
1068 flow->tcp_flags = 0;
1069 }
1070 spin_unlock_irqrestore(&flow->lock, flags);
1071
1072 if (__copy_to_user(&ufp->stats, &stats, sizeof(struct odp_flow_stats)))
1073 return -EFAULT;
1074 return put_actions(flow, ufp);
1075 }
1076
1077 static int del_flow(struct datapath *dp, struct odp_flow __user *ufp)
1078 {
1079 struct dp_table *table = rcu_dereference(dp->table);
1080 struct odp_flow uf;
1081 struct sw_flow *flow;
1082 int error;
1083
1084 error = -EFAULT;
1085 if (copy_from_user(&uf, ufp, sizeof uf))
1086 goto error;
1087
1088 flow = dp_table_lookup(table, &uf.key);
1089 error = -ENOENT;
1090 if (!flow)
1091 goto error;
1092
1093 /* XXX redundant lookup */
1094 error = dp_table_delete(table, flow);
1095 if (error)
1096 goto error;
1097
1098 /* XXX These statistics might lose a few packets, since other CPUs can
1099 * be using this flow. We used to synchronize_rcu() to make sure that
1100 * we get completely accurate stats, but that blows our performance,
1101 * badly. */
1102 dp->n_flows--;
1103 error = answer_query(flow, 0, ufp);
1104 flow_deferred_free(flow);
1105
1106 error:
1107 return error;
1108 }
1109
1110 static int query_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
1111 {
1112 struct dp_table *table = rcu_dereference(dp->table);
1113 int i;
1114 for (i = 0; i < flowvec->n_flows; i++) {
1115 struct __user odp_flow *ufp = &flowvec->flows[i];
1116 struct odp_flow uf;
1117 struct sw_flow *flow;
1118 int error;
1119
1120 if (__copy_from_user(&uf, ufp, sizeof uf))
1121 return -EFAULT;
1122
1123 flow = dp_table_lookup(table, &uf.key);
1124 if (!flow)
1125 error = __put_user(ENOENT, &ufp->stats.error);
1126 else
1127 error = answer_query(flow, uf.flags, ufp);
1128 if (error)
1129 return -EFAULT;
1130 }
1131 return flowvec->n_flows;
1132 }
1133
1134 struct list_flows_cbdata {
1135 struct odp_flow __user *uflows;
1136 int n_flows;
1137 int listed_flows;
1138 };
1139
1140 static int list_flow(struct sw_flow *flow, void *cbdata_)
1141 {
1142 struct list_flows_cbdata *cbdata = cbdata_;
1143 struct odp_flow __user *ufp = &cbdata->uflows[cbdata->listed_flows++];
1144 int error;
1145
1146 if (__copy_to_user(&ufp->key, &flow->key, sizeof flow->key))
1147 return -EFAULT;
1148 error = answer_query(flow, 0, ufp);
1149 if (error)
1150 return error;
1151
1152 if (cbdata->listed_flows >= cbdata->n_flows)
1153 return cbdata->listed_flows;
1154 return 0;
1155 }
1156
1157 static int list_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
1158 {
1159 struct list_flows_cbdata cbdata;
1160 int error;
1161
1162 if (!flowvec->n_flows)
1163 return 0;
1164
1165 cbdata.uflows = flowvec->flows;
1166 cbdata.n_flows = flowvec->n_flows;
1167 cbdata.listed_flows = 0;
1168 error = dp_table_foreach(rcu_dereference(dp->table),
1169 list_flow, &cbdata);
1170 return error ? error : cbdata.listed_flows;
1171 }
1172
1173 static int do_flowvec_ioctl(struct datapath *dp, unsigned long argp,
1174 int (*function)(struct datapath *,
1175 const struct odp_flowvec *))
1176 {
1177 struct odp_flowvec __user *uflowvec;
1178 struct odp_flowvec flowvec;
1179 int retval;
1180
1181 uflowvec = (struct odp_flowvec __user *)argp;
1182 if (!access_ok(VERIFY_WRITE, uflowvec, sizeof *uflowvec) ||
1183 copy_from_user(&flowvec, uflowvec, sizeof flowvec))
1184 return -EFAULT;
1185
1186 if (flowvec.n_flows > INT_MAX / sizeof(struct odp_flow))
1187 return -EINVAL;
1188
1189 if (!access_ok(VERIFY_WRITE, flowvec.flows,
1190 flowvec.n_flows * sizeof(struct odp_flow)))
1191 return -EFAULT;
1192
1193 retval = function(dp, &flowvec);
1194 return (retval < 0 ? retval
1195 : retval == flowvec.n_flows ? 0
1196 : __put_user(retval, &uflowvec->n_flows));
1197 }
1198
1199 static int do_execute(struct datapath *dp, const struct odp_execute *executep)
1200 {
1201 struct odp_execute execute;
1202 struct odp_flow_key key;
1203 struct sk_buff *skb;
1204 struct sw_flow_actions *actions;
1205 struct ethhdr *eth;
1206 int err;
1207
1208 err = -EFAULT;
1209 if (copy_from_user(&execute, executep, sizeof execute))
1210 goto error;
1211
1212 err = -EINVAL;
1213 if (execute.length < ETH_HLEN || execute.length > 65535)
1214 goto error;
1215
1216 err = -ENOMEM;
1217 actions = flow_actions_alloc(execute.n_actions);
1218 if (!actions)
1219 goto error;
1220
1221 err = -EFAULT;
1222 if (copy_from_user(actions->actions, execute.actions,
1223 execute.n_actions * sizeof *execute.actions))
1224 goto error_free_actions;
1225
1226 err = validate_actions(actions);
1227 if (err)
1228 goto error_free_actions;
1229
1230 err = -ENOMEM;
1231 skb = alloc_skb(execute.length, GFP_KERNEL);
1232 if (!skb)
1233 goto error_free_actions;
1234 if (execute.in_port < DP_MAX_PORTS) {
1235 struct net_bridge_port *p = dp->ports[execute.in_port];
1236 if (p)
1237 skb->dev = p->dev;
1238 }
1239
1240 err = -EFAULT;
1241 if (copy_from_user(skb_put(skb, execute.length), execute.data,
1242 execute.length))
1243 goto error_free_skb;
1244
1245 skb_reset_mac_header(skb);
1246 eth = eth_hdr(skb);
1247
1248 /* Normally, setting the skb 'protocol' field would be handled by a
1249 * call to eth_type_trans(), but it assumes there's a sending
1250 * device, which we may not have. */
1251 if (ntohs(eth->h_proto) >= 1536)
1252 skb->protocol = eth->h_proto;
1253 else
1254 skb->protocol = htons(ETH_P_802_2);
1255
1256 flow_extract(skb, execute.in_port, &key);
1257 err = execute_actions(dp, skb, &key, actions->actions,
1258 actions->n_actions, GFP_KERNEL);
1259 kfree(actions);
1260 return err;
1261
1262 error_free_skb:
1263 kfree_skb(skb);
1264 error_free_actions:
1265 kfree(actions);
1266 error:
1267 return err;
1268 }
1269
1270 static int get_dp_stats(struct datapath *dp, struct odp_stats __user *statsp)
1271 {
1272 struct odp_stats stats;
1273 int i;
1274
1275 stats.n_flows = dp->n_flows;
1276 stats.cur_capacity = rcu_dereference(dp->table)->n_buckets;
1277 stats.max_capacity = DP_MAX_BUCKETS;
1278 stats.n_ports = dp->n_ports;
1279 stats.max_ports = DP_MAX_PORTS;
1280 stats.max_groups = DP_MAX_GROUPS;
1281 stats.n_frags = stats.n_hit = stats.n_missed = stats.n_lost = 0;
1282 for_each_possible_cpu(i) {
1283 const struct dp_stats_percpu *s;
1284 s = percpu_ptr(dp->stats_percpu, i);
1285 stats.n_frags += s->n_frags;
1286 stats.n_hit += s->n_hit;
1287 stats.n_missed += s->n_missed;
1288 stats.n_lost += s->n_lost;
1289 }
1290 stats.max_miss_queue = DP_MAX_QUEUE_LEN;
1291 stats.max_action_queue = DP_MAX_QUEUE_LEN;
1292 return copy_to_user(statsp, &stats, sizeof stats) ? -EFAULT : 0;
1293 }
1294
1295 /* MTU of the dp pseudo-device: ETH_DATA_LEN or the minimum of the ports */
1296 int dp_min_mtu(const struct datapath *dp)
1297 {
1298 struct net_bridge_port *p;
1299 int mtu = 0;
1300
1301 ASSERT_RTNL();
1302
1303 list_for_each_entry_rcu (p, &dp->port_list, node) {
1304 struct net_device *dev = p->dev;
1305
1306 /* Skip any internal ports, since that's what we're trying to
1307 * set. */
1308 if (is_dp_dev(dev))
1309 continue;
1310
1311 if (!mtu || dev->mtu < mtu)
1312 mtu = dev->mtu;
1313 }
1314
1315 return mtu ? mtu : ETH_DATA_LEN;
1316 }
1317
1318 /* Sets the MTU of all datapath devices to the minimum of the ports. 'dev'
1319 * is the device whose MTU may have changed. Must be called with RTNL lock
1320 * and dp_mutex. */
1321 void set_dp_devs_mtu(const struct datapath *dp, struct net_device *dev)
1322 {
1323 struct net_bridge_port *p;
1324 int mtu;
1325
1326 ASSERT_RTNL();
1327
1328 if (is_dp_dev(dev))
1329 return;
1330
1331 mtu = dp_min_mtu(dp);
1332
1333 list_for_each_entry_rcu (p, &dp->port_list, node) {
1334 struct net_device *br_dev = p->dev;
1335
1336 if (is_dp_dev(br_dev))
1337 dev_set_mtu(br_dev, mtu);
1338 }
1339 }
1340
1341 static int
1342 put_port(const struct net_bridge_port *p, struct odp_port __user *uop)
1343 {
1344 struct odp_port op;
1345 memset(&op, 0, sizeof op);
1346 strncpy(op.devname, p->dev->name, sizeof op.devname);
1347 op.port = p->port_no;
1348 op.flags = is_dp_dev(p->dev) ? ODP_PORT_INTERNAL : 0;
1349 return copy_to_user(uop, &op, sizeof op) ? -EFAULT : 0;
1350 }
1351
1352 static int
1353 query_port(struct datapath *dp, struct odp_port __user *uport)
1354 {
1355 struct odp_port port;
1356
1357 if (copy_from_user(&port, uport, sizeof port))
1358 return -EFAULT;
1359 if (port.devname[0]) {
1360 struct net_bridge_port *p;
1361 struct net_device *dev;
1362 int err;
1363
1364 port.devname[IFNAMSIZ - 1] = '\0';
1365
1366 dev = dev_get_by_name(&init_net, port.devname);
1367 if (!dev)
1368 return -ENODEV;
1369
1370 p = dev->br_port;
1371 if (!p && is_dp_dev(dev)) {
1372 struct dp_dev *dp_dev = dp_dev_priv(dev);
1373 if (dp_dev->dp == dp)
1374 p = dp->ports[dp_dev->port_no];
1375 }
1376 err = p && p->dp == dp ? put_port(p, uport) : -ENOENT;
1377 dev_put(dev);
1378
1379 return err;
1380 } else {
1381 if (port.port >= DP_MAX_PORTS)
1382 return -EINVAL;
1383 if (!dp->ports[port.port])
1384 return -ENOENT;
1385 return put_port(dp->ports[port.port], uport);
1386 }
1387 }
1388
1389 static int
1390 list_ports(struct datapath *dp, struct odp_portvec __user *pvp)
1391 {
1392 struct odp_portvec pv;
1393 struct net_bridge_port *p;
1394 int idx;
1395
1396 if (copy_from_user(&pv, pvp, sizeof pv))
1397 return -EFAULT;
1398
1399 idx = 0;
1400 if (pv.n_ports) {
1401 list_for_each_entry_rcu (p, &dp->port_list, node) {
1402 if (put_port(p, &pv.ports[idx]))
1403 return -EFAULT;
1404 if (idx++ >= pv.n_ports)
1405 break;
1406 }
1407 }
1408 return put_user(dp->n_ports, &pvp->n_ports);
1409 }
1410
1411 /* RCU callback for freeing a dp_port_group */
1412 static void free_port_group(struct rcu_head *rcu)
1413 {
1414 struct dp_port_group *g = container_of(rcu, struct dp_port_group, rcu);
1415 kfree(g);
1416 }
1417
1418 static int
1419 set_port_group(struct datapath *dp, const struct odp_port_group __user *upg)
1420 {
1421 struct odp_port_group pg;
1422 struct dp_port_group *new_group, *old_group;
1423 int error;
1424
1425 error = -EFAULT;
1426 if (copy_from_user(&pg, upg, sizeof pg))
1427 goto error;
1428
1429 error = -EINVAL;
1430 if (pg.n_ports > DP_MAX_PORTS || pg.group >= DP_MAX_GROUPS)
1431 goto error;
1432
1433 error = -ENOMEM;
1434 new_group = kmalloc(sizeof *new_group + sizeof(u16) * pg.n_ports,
1435 GFP_KERNEL);
1436 if (!new_group)
1437 goto error;
1438
1439 new_group->n_ports = pg.n_ports;
1440 error = -EFAULT;
1441 if (copy_from_user(new_group->ports, pg.ports,
1442 sizeof(u16) * pg.n_ports))
1443 goto error_free;
1444
1445 old_group = rcu_dereference(dp->groups[pg.group]);
1446 rcu_assign_pointer(dp->groups[pg.group], new_group);
1447 if (old_group)
1448 call_rcu(&old_group->rcu, free_port_group);
1449 return 0;
1450
1451 error_free:
1452 kfree(new_group);
1453 error:
1454 return error;
1455 }
1456
1457 static int
1458 get_port_group(struct datapath *dp, struct odp_port_group *upg)
1459 {
1460 struct odp_port_group pg;
1461 struct dp_port_group *g;
1462 u16 n_copy;
1463
1464 if (copy_from_user(&pg, upg, sizeof pg))
1465 return -EFAULT;
1466
1467 if (pg.group >= DP_MAX_GROUPS)
1468 return -EINVAL;
1469
1470 g = dp->groups[pg.group];
1471 n_copy = g ? min_t(int, g->n_ports, pg.n_ports) : 0;
1472 if (n_copy && copy_to_user(pg.ports, g->ports, n_copy * sizeof(u16)))
1473 return -EFAULT;
1474
1475 if (put_user(g ? g->n_ports : 0, &upg->n_ports))
1476 return -EFAULT;
1477
1478 return 0;
1479 }
1480
1481 static int get_listen_mask(const struct file *f)
1482 {
1483 return (long)f->private_data;
1484 }
1485
1486 static void set_listen_mask(struct file *f, int listen_mask)
1487 {
1488 f->private_data = (void*)(long)listen_mask;
1489 }
1490
1491 static long openvswitch_ioctl(struct file *f, unsigned int cmd,
1492 unsigned long argp)
1493 {
1494 int dp_idx = iminor(f->f_dentry->d_inode);
1495 struct datapath *dp;
1496 int drop_frags, listeners, port_no;
1497 unsigned int sflow_probability;
1498 int err;
1499
1500 /* Handle commands with special locking requirements up front. */
1501 switch (cmd) {
1502 case ODP_DP_CREATE:
1503 err = create_dp(dp_idx, (char __user *)argp);
1504 goto exit;
1505
1506 case ODP_DP_DESTROY:
1507 err = destroy_dp(dp_idx);
1508 goto exit;
1509
1510 case ODP_PORT_ADD:
1511 err = add_port(dp_idx, (struct odp_port __user *)argp);
1512 goto exit;
1513
1514 case ODP_PORT_DEL:
1515 err = get_user(port_no, (int __user *)argp);
1516 if (!err)
1517 err = del_port(dp_idx, port_no);
1518 goto exit;
1519 }
1520
1521 dp = get_dp_locked(dp_idx);
1522 err = -ENODEV;
1523 if (!dp)
1524 goto exit;
1525
1526 switch (cmd) {
1527 case ODP_DP_STATS:
1528 err = get_dp_stats(dp, (struct odp_stats __user *)argp);
1529 break;
1530
1531 case ODP_GET_DROP_FRAGS:
1532 err = put_user(dp->drop_frags, (int __user *)argp);
1533 break;
1534
1535 case ODP_SET_DROP_FRAGS:
1536 err = get_user(drop_frags, (int __user *)argp);
1537 if (err)
1538 break;
1539 err = -EINVAL;
1540 if (drop_frags != 0 && drop_frags != 1)
1541 break;
1542 dp->drop_frags = drop_frags;
1543 err = 0;
1544 break;
1545
1546 case ODP_GET_LISTEN_MASK:
1547 err = put_user(get_listen_mask(f), (int __user *)argp);
1548 break;
1549
1550 case ODP_SET_LISTEN_MASK:
1551 err = get_user(listeners, (int __user *)argp);
1552 if (err)
1553 break;
1554 err = -EINVAL;
1555 if (listeners & ~ODPL_ALL)
1556 break;
1557 err = 0;
1558 set_listen_mask(f, listeners);
1559 break;
1560
1561 case ODP_GET_SFLOW_PROBABILITY:
1562 err = put_user(dp->sflow_probability, (unsigned int __user *)argp);
1563 break;
1564
1565 case ODP_SET_SFLOW_PROBABILITY:
1566 err = get_user(sflow_probability, (unsigned int __user *)argp);
1567 if (!err)
1568 dp->sflow_probability = sflow_probability;
1569 break;
1570
1571 case ODP_PORT_QUERY:
1572 err = query_port(dp, (struct odp_port __user *)argp);
1573 break;
1574
1575 case ODP_PORT_LIST:
1576 err = list_ports(dp, (struct odp_portvec __user *)argp);
1577 break;
1578
1579 case ODP_PORT_GROUP_SET:
1580 err = set_port_group(dp, (struct odp_port_group __user *)argp);
1581 break;
1582
1583 case ODP_PORT_GROUP_GET:
1584 err = get_port_group(dp, (struct odp_port_group __user *)argp);
1585 break;
1586
1587 case ODP_FLOW_FLUSH:
1588 err = flush_flows(dp);
1589 break;
1590
1591 case ODP_FLOW_PUT:
1592 err = put_flow(dp, (struct odp_flow_put __user *)argp);
1593 break;
1594
1595 case ODP_FLOW_DEL:
1596 err = del_flow(dp, (struct odp_flow __user *)argp);
1597 break;
1598
1599 case ODP_FLOW_GET:
1600 err = do_flowvec_ioctl(dp, argp, query_flows);
1601 break;
1602
1603 case ODP_FLOW_LIST:
1604 err = do_flowvec_ioctl(dp, argp, list_flows);
1605 break;
1606
1607 case ODP_EXECUTE:
1608 err = do_execute(dp, (struct odp_execute __user *)argp);
1609 break;
1610
1611 default:
1612 err = -ENOIOCTLCMD;
1613 break;
1614 }
1615 mutex_unlock(&dp->mutex);
1616 exit:
1617 return err;
1618 }
1619
1620 static int dp_has_packet_of_interest(struct datapath *dp, int listeners)
1621 {
1622 int i;
1623 for (i = 0; i < DP_N_QUEUES; i++) {
1624 if (listeners & (1 << i) && !skb_queue_empty(&dp->queues[i]))
1625 return 1;
1626 }
1627 return 0;
1628 }
1629
1630 ssize_t openvswitch_read(struct file *f, char __user *buf, size_t nbytes,
1631 loff_t *ppos)
1632 {
1633 /* XXX is there sufficient synchronization here? */
1634 int listeners = get_listen_mask(f);
1635 int dp_idx = iminor(f->f_dentry->d_inode);
1636 struct datapath *dp = get_dp(dp_idx);
1637 struct sk_buff *skb;
1638 struct iovec __user iov;
1639 size_t copy_bytes;
1640 int retval;
1641
1642 if (!dp)
1643 return -ENODEV;
1644
1645 if (nbytes == 0 || !listeners)
1646 return 0;
1647
1648 for (;;) {
1649 int i;
1650
1651 for (i = 0; i < DP_N_QUEUES; i++) {
1652 if (listeners & (1 << i)) {
1653 skb = skb_dequeue(&dp->queues[i]);
1654 if (skb)
1655 goto success;
1656 }
1657 }
1658
1659 if (f->f_flags & O_NONBLOCK) {
1660 retval = -EAGAIN;
1661 goto error;
1662 }
1663
1664 wait_event_interruptible(dp->waitqueue,
1665 dp_has_packet_of_interest(dp,
1666 listeners));
1667
1668 if (signal_pending(current)) {
1669 retval = -ERESTARTSYS;
1670 goto error;
1671 }
1672 }
1673 success:
1674 copy_bytes = min_t(size_t, skb->len, nbytes);
1675 iov.iov_base = buf;
1676 iov.iov_len = copy_bytes;
1677 retval = skb_copy_datagram_iovec(skb, 0, &iov, iov.iov_len);
1678 if (!retval)
1679 retval = copy_bytes;
1680 kfree_skb(skb);
1681
1682 error:
1683 return retval;
1684 }
1685
1686 static unsigned int openvswitch_poll(struct file *file, poll_table *wait)
1687 {
1688 /* XXX is there sufficient synchronization here? */
1689 int dp_idx = iminor(file->f_dentry->d_inode);
1690 struct datapath *dp = get_dp(dp_idx);
1691 unsigned int mask;
1692
1693 if (dp) {
1694 mask = 0;
1695 poll_wait(file, &dp->waitqueue, wait);
1696 if (dp_has_packet_of_interest(dp, get_listen_mask(file)))
1697 mask |= POLLIN | POLLRDNORM;
1698 } else {
1699 mask = POLLIN | POLLRDNORM | POLLHUP;
1700 }
1701 return mask;
1702 }
1703
1704 struct file_operations openvswitch_fops = {
1705 /* XXX .aio_read = openvswitch_aio_read, */
1706 .read = openvswitch_read,
1707 .poll = openvswitch_poll,
1708 .unlocked_ioctl = openvswitch_ioctl,
1709 /* XXX .fasync = openvswitch_fasync, */
1710 };
1711
1712 static int major;
1713
1714 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
1715 static struct llc_sap *dp_stp_sap;
1716
1717 static int dp_stp_rcv(struct sk_buff *skb, struct net_device *dev,
1718 struct packet_type *pt, struct net_device *orig_dev)
1719 {
1720 /* We don't really care about STP packets, we just listen for them for
1721 * mutual exclusion with the bridge module, so this just discards
1722 * them. */
1723 kfree_skb(skb);
1724 return 0;
1725 }
1726
1727 static int dp_avoid_bridge_init(void)
1728 {
1729 /* Register to receive STP packets because the bridge module also
1730 * attempts to do so. Since there can only be a single listener for a
1731 * given protocol, this provides mutual exclusion against the bridge
1732 * module, preventing both of them from being loaded at the same
1733 * time. */
1734 dp_stp_sap = llc_sap_open(LLC_SAP_BSPAN, dp_stp_rcv);
1735 if (!dp_stp_sap) {
1736 printk(KERN_ERR "openvswitch: can't register sap for STP (probably the bridge module is loaded)\n");
1737 return -EADDRINUSE;
1738 }
1739 return 0;
1740 }
1741
1742 static void dp_avoid_bridge_exit(void)
1743 {
1744 llc_sap_put(dp_stp_sap);
1745 }
1746 #else /* Linux 2.6.27 or later. */
1747 static int dp_avoid_bridge_init(void)
1748 {
1749 /* Linux 2.6.27 introduces a way for multiple clients to register for
1750 * STP packets, which interferes with what we try to do above.
1751 * Instead, just check whether there's a bridge hook defined. This is
1752 * not as safe--the bridge module is willing to load over the top of
1753 * us--but it provides a little bit of protection. */
1754 if (br_handle_frame_hook) {
1755 printk(KERN_ERR "openvswitch: bridge module is loaded, cannot load over it\n");
1756 return -EADDRINUSE;
1757 }
1758 return 0;
1759 }
1760
1761 static void dp_avoid_bridge_exit(void)
1762 {
1763 /* Nothing to do. */
1764 }
1765 #endif /* Linux 2.6.27 or later */
1766
1767 static int __init dp_init(void)
1768 {
1769 int err;
1770
1771 printk("Open vSwitch %s, built "__DATE__" "__TIME__"\n", VERSION BUILDNR);
1772
1773 err = dp_avoid_bridge_init();
1774 if (err)
1775 return err;
1776
1777 err = flow_init();
1778 if (err)
1779 goto error;
1780
1781 err = register_netdevice_notifier(&dp_device_notifier);
1782 if (err)
1783 goto error_flow_exit;
1784
1785 major = register_chrdev(0, "openvswitch", &openvswitch_fops);
1786 if (err < 0)
1787 goto error_unreg_notifier;
1788
1789 /* Hook into callback used by the bridge to intercept packets.
1790 * Parasites we are. */
1791 br_handle_frame_hook = dp_frame_hook;
1792
1793 return 0;
1794
1795 error_unreg_notifier:
1796 unregister_netdevice_notifier(&dp_device_notifier);
1797 error_flow_exit:
1798 flow_exit();
1799 error:
1800 return err;
1801 }
1802
1803 static void dp_cleanup(void)
1804 {
1805 rcu_barrier();
1806 unregister_chrdev(major, "openvswitch");
1807 unregister_netdevice_notifier(&dp_device_notifier);
1808 flow_exit();
1809 br_handle_frame_hook = NULL;
1810 dp_avoid_bridge_exit();
1811 }
1812
1813 module_init(dp_init);
1814 module_exit(dp_cleanup);
1815
1816 MODULE_DESCRIPTION("Open vSwitch switching datapath");
1817 MODULE_LICENSE("GPL");