]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/datapath.c
gre: Disable tx queue.
[mirror_ovs.git] / datapath / datapath.c
1 /*
2 * Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
3 * Distributed under the terms of the GNU GPL version 2.
4 *
5 * Significant portions of this file may be copied from parts of the Linux
6 * kernel, by Linus Torvalds and others.
7 */
8
9 /* Functions for managing the dp interface/device. */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/fs.h>
14 #include <linux/if_arp.h>
15 #include <linux/if_bridge.h>
16 #include <linux/if_vlan.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/delay.h>
20 #include <linux/time.h>
21 #include <linux/etherdevice.h>
22 #include <linux/kernel.h>
23 #include <linux/kthread.h>
24 #include <linux/llc.h>
25 #include <linux/mutex.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/version.h>
31 #include <linux/ethtool.h>
32 #include <linux/random.h>
33 #include <linux/wait.h>
34 #include <asm/system.h>
35 #include <asm/div64.h>
36 #include <asm/bug.h>
37 #include <linux/netfilter_bridge.h>
38 #include <linux/netfilter_ipv4.h>
39 #include <linux/inetdevice.h>
40 #include <linux/list.h>
41 #include <linux/rculist.h>
42 #include <linux/workqueue.h>
43 #include <linux/dmi.h>
44 #include <net/llc.h>
45
46 #include "openvswitch/datapath-protocol.h"
47 #include "datapath.h"
48 #include "actions.h"
49 #include "dp_dev.h"
50 #include "flow.h"
51
52 #include "compat.h"
53
54
55 int (*dp_ioctl_hook)(struct net_device *dev, struct ifreq *rq, int cmd);
56 EXPORT_SYMBOL(dp_ioctl_hook);
57
58 /* Datapaths. Protected on the read side by rcu_read_lock, on the write side
59 * by dp_mutex.
60 *
61 * dp_mutex nests inside the RTNL lock: if you need both you must take the RTNL
62 * lock first.
63 *
64 * It is safe to access the datapath and net_bridge_port structures with just
65 * dp_mutex.
66 */
67 static struct datapath *dps[ODP_MAX];
68 static DEFINE_MUTEX(dp_mutex);
69
70 /* Number of milliseconds between runs of the maintenance thread. */
71 #define MAINT_SLEEP_MSECS 1000
72
73 static int new_nbp(struct datapath *, struct net_device *, int port_no);
74
75 /* Must be called with rcu_read_lock or dp_mutex. */
76 struct datapath *get_dp(int dp_idx)
77 {
78 if (dp_idx < 0 || dp_idx >= ODP_MAX)
79 return NULL;
80 return rcu_dereference(dps[dp_idx]);
81 }
82 EXPORT_SYMBOL_GPL(get_dp);
83
84 static struct datapath *get_dp_locked(int dp_idx)
85 {
86 struct datapath *dp;
87
88 mutex_lock(&dp_mutex);
89 dp = get_dp(dp_idx);
90 if (dp)
91 mutex_lock(&dp->mutex);
92 mutex_unlock(&dp_mutex);
93 return dp;
94 }
95
96 static inline size_t br_nlmsg_size(void)
97 {
98 return NLMSG_ALIGN(sizeof(struct ifinfomsg))
99 + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
100 + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
101 + nla_total_size(4) /* IFLA_MASTER */
102 + nla_total_size(4) /* IFLA_MTU */
103 + nla_total_size(4) /* IFLA_LINK */
104 + nla_total_size(1); /* IFLA_OPERSTATE */
105 }
106
107 static int dp_fill_ifinfo(struct sk_buff *skb,
108 const struct net_bridge_port *port,
109 int event, unsigned int flags)
110 {
111 const struct datapath *dp = port->dp;
112 const struct net_device *dev = port->dev;
113 struct ifinfomsg *hdr;
114 struct nlmsghdr *nlh;
115
116 nlh = nlmsg_put(skb, 0, 0, event, sizeof(*hdr), flags);
117 if (nlh == NULL)
118 return -EMSGSIZE;
119
120 hdr = nlmsg_data(nlh);
121 hdr->ifi_family = AF_BRIDGE;
122 hdr->__ifi_pad = 0;
123 hdr->ifi_type = dev->type;
124 hdr->ifi_index = dev->ifindex;
125 hdr->ifi_flags = dev_get_flags(dev);
126 hdr->ifi_change = 0;
127
128 NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
129 NLA_PUT_U32(skb, IFLA_MASTER, dp->ports[ODPP_LOCAL]->dev->ifindex);
130 NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
131 #ifdef IFLA_OPERSTATE
132 NLA_PUT_U8(skb, IFLA_OPERSTATE,
133 netif_running(dev) ? dev->operstate : IF_OPER_DOWN);
134 #endif
135
136 if (dev->addr_len)
137 NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
138
139 if (dev->ifindex != dev->iflink)
140 NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
141
142 return nlmsg_end(skb, nlh);
143
144 nla_put_failure:
145 nlmsg_cancel(skb, nlh);
146 return -EMSGSIZE;
147 }
148
149 static void dp_ifinfo_notify(int event, struct net_bridge_port *port)
150 {
151 struct net *net = dev_net(port->dev);
152 struct sk_buff *skb;
153 int err = -ENOBUFS;
154
155 skb = nlmsg_new(br_nlmsg_size(), GFP_KERNEL);
156 if (skb == NULL)
157 goto errout;
158
159 err = dp_fill_ifinfo(skb, port, event, 0);
160 if (err < 0) {
161 /* -EMSGSIZE implies BUG in br_nlmsg_size() */
162 WARN_ON(err == -EMSGSIZE);
163 kfree_skb(skb);
164 goto errout;
165 }
166 rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
167 return;
168 errout:
169 if (err < 0)
170 rtnl_set_sk_err(net, RTNLGRP_LINK, err);
171 }
172
173 static void release_dp(struct kobject *kobj)
174 {
175 struct datapath *dp = container_of(kobj, struct datapath, ifobj);
176 kfree(dp);
177 }
178
179 static struct kobj_type dp_ktype = {
180 .release = release_dp
181 };
182
183 static int create_dp(int dp_idx, const char __user *devnamep)
184 {
185 struct net_device *dp_dev;
186 char devname[IFNAMSIZ];
187 struct datapath *dp;
188 int err;
189 int i;
190
191 if (devnamep) {
192 err = -EFAULT;
193 if (strncpy_from_user(devname, devnamep, IFNAMSIZ - 1) < 0)
194 goto err;
195 devname[IFNAMSIZ - 1] = '\0';
196 } else {
197 snprintf(devname, sizeof devname, "of%d", dp_idx);
198 }
199
200 rtnl_lock();
201 mutex_lock(&dp_mutex);
202 err = -ENODEV;
203 if (!try_module_get(THIS_MODULE))
204 goto err_unlock;
205
206 /* Exit early if a datapath with that number already exists.
207 * (We don't use -EEXIST because that's ambiguous with 'devname'
208 * conflicting with an existing network device name.) */
209 err = -EBUSY;
210 if (get_dp(dp_idx))
211 goto err_put_module;
212
213 err = -ENOMEM;
214 dp = kzalloc(sizeof *dp, GFP_KERNEL);
215 if (dp == NULL)
216 goto err_put_module;
217 INIT_LIST_HEAD(&dp->port_list);
218 mutex_init(&dp->mutex);
219 dp->dp_idx = dp_idx;
220 for (i = 0; i < DP_N_QUEUES; i++)
221 skb_queue_head_init(&dp->queues[i]);
222 init_waitqueue_head(&dp->waitqueue);
223
224 /* Initialize kobject for bridge. This will be added as
225 * /sys/class/net/<devname>/brif later, if sysfs is enabled. */
226 dp->ifobj.kset = NULL;
227 kobject_init(&dp->ifobj, &dp_ktype);
228
229 /* Allocate table. */
230 err = -ENOMEM;
231 rcu_assign_pointer(dp->table, dp_table_create(DP_L1_SIZE));
232 if (!dp->table)
233 goto err_free_dp;
234
235 /* Set up our datapath device. */
236 dp_dev = dp_dev_create(dp, devname, ODPP_LOCAL);
237 err = PTR_ERR(dp_dev);
238 if (IS_ERR(dp_dev))
239 goto err_destroy_table;
240
241 err = new_nbp(dp, dp_dev, ODPP_LOCAL);
242 if (err) {
243 dp_dev_destroy(dp_dev);
244 goto err_destroy_table;
245 }
246
247 dp->drop_frags = 0;
248 dp->stats_percpu = alloc_percpu(struct dp_stats_percpu);
249 if (!dp->stats_percpu)
250 goto err_destroy_local_port;
251
252 rcu_assign_pointer(dps[dp_idx], dp);
253 mutex_unlock(&dp_mutex);
254 rtnl_unlock();
255
256 dp_sysfs_add_dp(dp);
257
258 return 0;
259
260 err_destroy_local_port:
261 dp_del_port(dp->ports[ODPP_LOCAL]);
262 err_destroy_table:
263 dp_table_destroy(dp->table, 0);
264 err_free_dp:
265 kfree(dp);
266 err_put_module:
267 module_put(THIS_MODULE);
268 err_unlock:
269 mutex_unlock(&dp_mutex);
270 rtnl_unlock();
271 err:
272 return err;
273 }
274
275 static void do_destroy_dp(struct datapath *dp)
276 {
277 struct net_bridge_port *p, *n;
278 int i;
279
280 list_for_each_entry_safe (p, n, &dp->port_list, node)
281 if (p->port_no != ODPP_LOCAL)
282 dp_del_port(p);
283
284 dp_sysfs_del_dp(dp);
285
286 rcu_assign_pointer(dps[dp->dp_idx], NULL);
287
288 dp_del_port(dp->ports[ODPP_LOCAL]);
289
290 dp_table_destroy(dp->table, 1);
291
292 for (i = 0; i < DP_N_QUEUES; i++)
293 skb_queue_purge(&dp->queues[i]);
294 for (i = 0; i < DP_MAX_GROUPS; i++)
295 kfree(dp->groups[i]);
296 free_percpu(dp->stats_percpu);
297 kobject_put(&dp->ifobj);
298 module_put(THIS_MODULE);
299 }
300
301 static int destroy_dp(int dp_idx)
302 {
303 struct datapath *dp;
304 int err;
305
306 rtnl_lock();
307 mutex_lock(&dp_mutex);
308 dp = get_dp(dp_idx);
309 err = -ENODEV;
310 if (!dp)
311 goto err_unlock;
312
313 do_destroy_dp(dp);
314 err = 0;
315
316 err_unlock:
317 mutex_unlock(&dp_mutex);
318 rtnl_unlock();
319 return err;
320 }
321
322 static void release_nbp(struct kobject *kobj)
323 {
324 struct net_bridge_port *p = container_of(kobj, struct net_bridge_port, kobj);
325 kfree(p);
326 }
327
328 static struct kobj_type brport_ktype = {
329 #ifdef CONFIG_SYSFS
330 .sysfs_ops = &brport_sysfs_ops,
331 #endif
332 .release = release_nbp
333 };
334
335 /* Called with RTNL lock and dp_mutex. */
336 static int new_nbp(struct datapath *dp, struct net_device *dev, int port_no)
337 {
338 struct net_bridge_port *p;
339
340 if (dev->br_port != NULL)
341 return -EBUSY;
342
343 p = kzalloc(sizeof(*p), GFP_KERNEL);
344 if (!p)
345 return -ENOMEM;
346
347 dev_set_promiscuity(dev, 1);
348 dev_hold(dev);
349 p->port_no = port_no;
350 p->dp = dp;
351 p->dev = dev;
352 atomic_set(&p->sflow_pool, 0);
353 if (!is_dp_dev(dev))
354 rcu_assign_pointer(dev->br_port, p);
355 else {
356 /* It would make sense to assign dev->br_port here too, but
357 * that causes packets received on internal ports to get caught
358 * in dp_frame_hook(). In turn dp_frame_hook() can reject them
359 * back to network stack, but that's a waste of time. */
360 }
361 dev_disable_lro(dev);
362 rcu_assign_pointer(dp->ports[port_no], p);
363 list_add_rcu(&p->node, &dp->port_list);
364 dp->n_ports++;
365
366 /* Initialize kobject for bridge. This will be added as
367 * /sys/class/net/<devname>/brport later, if sysfs is enabled. */
368 p->kobj.kset = NULL;
369 kobject_init(&p->kobj, &brport_ktype);
370
371 dp_ifinfo_notify(RTM_NEWLINK, p);
372
373 return 0;
374 }
375
376 static int add_port(int dp_idx, struct odp_port __user *portp)
377 {
378 struct net_device *dev;
379 struct datapath *dp;
380 struct odp_port port;
381 int port_no;
382 int err;
383
384 err = -EFAULT;
385 if (copy_from_user(&port, portp, sizeof port))
386 goto out;
387 port.devname[IFNAMSIZ - 1] = '\0';
388
389 rtnl_lock();
390 dp = get_dp_locked(dp_idx);
391 err = -ENODEV;
392 if (!dp)
393 goto out_unlock_rtnl;
394
395 for (port_no = 1; port_no < DP_MAX_PORTS; port_no++)
396 if (!dp->ports[port_no])
397 goto got_port_no;
398 err = -EFBIG;
399 goto out_unlock_dp;
400
401 got_port_no:
402 if (!(port.flags & ODP_PORT_INTERNAL)) {
403 err = -ENODEV;
404 dev = dev_get_by_name(&init_net, port.devname);
405 if (!dev)
406 goto out_unlock_dp;
407
408 err = -EINVAL;
409 if (dev->flags & IFF_LOOPBACK || dev->type != ARPHRD_ETHER ||
410 is_dp_dev(dev))
411 goto out_put;
412 } else {
413 dev = dp_dev_create(dp, port.devname, port_no);
414 err = PTR_ERR(dev);
415 if (IS_ERR(dev))
416 goto out_unlock_dp;
417 dev_hold(dev);
418 }
419
420 err = new_nbp(dp, dev, port_no);
421 if (err)
422 goto out_put;
423
424 set_dp_devs_mtu(dp, dev);
425 dp_sysfs_add_if(dp->ports[port_no]);
426
427 err = __put_user(port_no, &portp->port);
428
429 out_put:
430 dev_put(dev);
431 out_unlock_dp:
432 mutex_unlock(&dp->mutex);
433 out_unlock_rtnl:
434 rtnl_unlock();
435 out:
436 return err;
437 }
438
439 int dp_del_port(struct net_bridge_port *p)
440 {
441 ASSERT_RTNL();
442
443 if (p->port_no != ODPP_LOCAL)
444 dp_sysfs_del_if(p);
445 dp_ifinfo_notify(RTM_DELLINK, p);
446
447 p->dp->n_ports--;
448
449 if (is_dp_dev(p->dev)) {
450 /* Make sure that no packets arrive from now on, since
451 * dp_dev_xmit() will try to find itself through
452 * p->dp->ports[], and we're about to set that to null. */
453 netif_tx_disable(p->dev);
454 }
455
456 /* First drop references to device. */
457 dev_set_promiscuity(p->dev, -1);
458 list_del_rcu(&p->node);
459 rcu_assign_pointer(p->dp->ports[p->port_no], NULL);
460 rcu_assign_pointer(p->dev->br_port, NULL);
461
462 /* Then wait until no one is still using it, and destroy it. */
463 synchronize_rcu();
464
465 if (is_dp_dev(p->dev))
466 dp_dev_destroy(p->dev);
467 dev_put(p->dev);
468 kobject_put(&p->kobj);
469
470 return 0;
471 }
472
473 static int del_port(int dp_idx, int port_no)
474 {
475 struct net_bridge_port *p;
476 struct datapath *dp;
477 LIST_HEAD(dp_devs);
478 int err;
479
480 err = -EINVAL;
481 if (port_no < 0 || port_no >= DP_MAX_PORTS || port_no == ODPP_LOCAL)
482 goto out;
483
484 rtnl_lock();
485 dp = get_dp_locked(dp_idx);
486 err = -ENODEV;
487 if (!dp)
488 goto out_unlock_rtnl;
489
490 p = dp->ports[port_no];
491 err = -ENOENT;
492 if (!p)
493 goto out_unlock_dp;
494
495 err = dp_del_port(p);
496
497 out_unlock_dp:
498 mutex_unlock(&dp->mutex);
499 out_unlock_rtnl:
500 rtnl_unlock();
501 out:
502 return err;
503 }
504
505 /* Must be called with rcu_read_lock. */
506 static void
507 do_port_input(struct net_bridge_port *p, struct sk_buff *skb)
508 {
509 /* LRO isn't suitable for bridging. We turn it off but make sure
510 * that it wasn't reactivated. */
511 if (skb_warn_if_lro(skb))
512 return;
513
514 /* Make our own copy of the packet. Otherwise we will mangle the
515 * packet for anyone who came before us (e.g. tcpdump via AF_PACKET).
516 * (No one comes after us, since we tell handle_bridge() that we took
517 * the packet.) */
518 skb = skb_share_check(skb, GFP_ATOMIC);
519 if (!skb)
520 return;
521
522 /* Push the Ethernet header back on. */
523 skb_push(skb, ETH_HLEN);
524 skb_reset_mac_header(skb);
525 dp_process_received_packet(skb, p);
526 }
527
528 /* Must be called with rcu_read_lock and with bottom-halves disabled. */
529 void dp_process_received_packet(struct sk_buff *skb, struct net_bridge_port *p)
530 {
531 struct datapath *dp = p->dp;
532 struct dp_stats_percpu *stats;
533 struct odp_flow_key key;
534 struct sw_flow *flow;
535
536 WARN_ON_ONCE(skb_shared(skb));
537
538 compute_ip_summed(skb, false);
539
540 /* BHs are off so we don't have to use get_cpu()/put_cpu() here. */
541 stats = percpu_ptr(dp->stats_percpu, smp_processor_id());
542
543 if (flow_extract(skb, p ? p->port_no : ODPP_NONE, &key)) {
544 if (dp->drop_frags) {
545 kfree_skb(skb);
546 stats->n_frags++;
547 return;
548 }
549 }
550
551 flow = dp_table_lookup(rcu_dereference(dp->table), &key);
552 if (flow) {
553 struct sw_flow_actions *acts = rcu_dereference(flow->sf_acts);
554 flow_used(flow, skb);
555 execute_actions(dp, skb, &key, acts->actions, acts->n_actions,
556 GFP_ATOMIC);
557 stats->n_hit++;
558 } else {
559 stats->n_missed++;
560 dp_output_control(dp, skb, _ODPL_MISS_NR, 0);
561 }
562 }
563
564 /*
565 * Used as br_handle_frame_hook. (Cannot run bridge at the same time, even on
566 * different set of devices!)
567 */
568 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
569 /* Called with rcu_read_lock and bottom-halves disabled. */
570 static struct sk_buff *dp_frame_hook(struct net_bridge_port *p,
571 struct sk_buff *skb)
572 {
573 do_port_input(p, skb);
574 return NULL;
575 }
576 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
577 /* Called with rcu_read_lock and bottom-halves disabled. */
578 static int dp_frame_hook(struct net_bridge_port *p, struct sk_buff **pskb)
579 {
580 do_port_input(p, *pskb);
581 return 1;
582 }
583 #else
584 #error
585 #endif
586
587 #if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID)
588 /* This code is based on a skb_checksum_setup from net/dev/core.c from a
589 * combination of Lenny's 2.6.26 Xen kernel and Xen's
590 * linux-2.6.18-92.1.10.el5.xs5.0.0.394.644. We can't call this function
591 * directly because it isn't exported in all versions. */
592 static int skb_pull_up_to(struct sk_buff *skb, void *ptr)
593 {
594 if (ptr < (void *)skb->tail)
595 return 1;
596 if (__pskb_pull_tail(skb,
597 ptr - (void *)skb->data - skb_headlen(skb))) {
598 return 1;
599 } else {
600 return 0;
601 }
602 }
603
604 int vswitch_skb_checksum_setup(struct sk_buff *skb)
605 {
606 struct iphdr *iph;
607 unsigned char *th;
608 int err = -EPROTO;
609 __u16 csum_start, csum_offset;
610
611 if (!skb->proto_csum_blank)
612 return 0;
613
614 if (skb->protocol != htons(ETH_P_IP))
615 goto out;
616
617 if (!skb_pull_up_to(skb, skb_network_header(skb) + sizeof(struct iphdr)))
618 goto out;
619
620 iph = ip_hdr(skb);
621 th = skb_network_header(skb) + 4 * iph->ihl;
622
623 csum_start = th - skb->head;
624 switch (iph->protocol) {
625 case IPPROTO_TCP:
626 csum_offset = offsetof(struct tcphdr, check);
627 break;
628 case IPPROTO_UDP:
629 csum_offset = offsetof(struct udphdr, check);
630 break;
631 default:
632 if (net_ratelimit())
633 printk(KERN_ERR "Attempting to checksum a non-"
634 "TCP/UDP packet, dropping a protocol"
635 " %d packet", iph->protocol);
636 goto out;
637 }
638
639 if (!skb_pull_up_to(skb, th + csum_offset + 2))
640 goto out;
641
642 skb->ip_summed = CHECKSUM_PARTIAL;
643 skb->proto_csum_blank = 0;
644
645 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
646 skb->csum_start = csum_start;
647 skb->csum_offset = csum_offset;
648 #else
649 skb_set_transport_header(skb, csum_start - skb_headroom(skb));
650 skb->csum = csum_offset;
651 #endif
652
653 err = 0;
654
655 out:
656 return err;
657 }
658 #endif /* CONFIG_XEN && HAVE_PROTO_DATA_VALID */
659
660 /* Types of checksums that we can receive (these all refer to L4 checksums):
661 * 1. CHECKSUM_NONE: Device that did not compute checksum, contains full
662 * (though not verified) checksum in packet but not in skb->csum. Packets
663 * from the bridge local port will also have this type.
664 * 2. CHECKSUM_COMPLETE (CHECKSUM_HW): Good device that computes checksums,
665 * also the GRE module. This is the same as CHECKSUM_NONE, except it has
666 * a valid skb->csum. Importantly, both contain a full checksum (not
667 * verified) in the packet itself. The only difference is that if the
668 * packet gets to L4 processing on this machine (not in DomU) we won't
669 * have to recompute the checksum to verify. Most hardware devices do not
670 * produce packets with this type, even if they support receive checksum
671 * offloading (they produce type #5).
672 * 3. CHECKSUM_PARTIAL (CHECKSUM_HW): Packet without full checksum and needs to
673 * be computed if it is sent off box. Unfortunately on earlier kernels,
674 * this case is impossible to distinguish from #2, despite having opposite
675 * meanings. Xen adds an extra field on earlier kernels (see #4) in order
676 * to distinguish the different states. The only real user of this type
677 * with bridging is Xen (on later kernels).
678 * 4. CHECKSUM_UNNECESSARY (with proto_csum_blank true): This packet was
679 * generated locally by a Xen DomU and has a partial checksum. If it is
680 * handled on this machine (Dom0 or DomU), then the checksum will not be
681 * computed. If it goes off box, the checksum in the packet needs to be
682 * completed. Calling skb_checksum_setup converts this to CHECKSUM_HW
683 * (CHECKSUM_PARTIAL) so that the checksum can be completed. In later
684 * kernels, this combination is replaced with CHECKSUM_PARTIAL.
685 * 5. CHECKSUM_UNNECESSARY (with proto_csum_blank false): Packet with a correct
686 * full checksum or using a protocol without a checksum. skb->csum is
687 * undefined. This is common from devices with receive checksum
688 * offloading. This is somewhat similar to CHECKSUM_NONE, except that
689 * nobody will try to verify the checksum with CHECKSUM_UNNECESSARY.
690 *
691 * Note that on earlier kernels, CHECKSUM_COMPLETE and CHECKSUM_PARTIAL are
692 * both defined as CHECKSUM_HW. Normally the meaning of CHECKSUM_HW is clear
693 * based on whether it is on the transmit or receive path. After the datapath
694 * it will be intepreted as CHECKSUM_PARTIAL. If the packet already has a
695 * checksum, we will panic. Since we can receive packets with checksums, we
696 * assume that all CHECKSUM_HW packets have checksums and map them to
697 * CHECKSUM_NONE, which has a similar meaning (the it is only different if the
698 * packet is processed by the local IP stack, in which case it will need to
699 * be reverified). If we receive a packet with CHECKSUM_HW that really means
700 * CHECKSUM_PARTIAL, it will be sent with the wrong checksum. However, there
701 * shouldn't be any devices that do this with bridging.
702 *
703 * The bridge has similar behavior and this function closely resembles
704 * skb_forward_csum(). It is slightly different because we are only concerned
705 * with bridging and not other types of forwarding and can get away with
706 * slightly more optimal behavior.*/
707 void
708 compute_ip_summed(struct sk_buff *skb, bool xmit)
709 {
710 /* For our convenience these defines change repeatedly between kernel
711 * versions, so we can't just copy them over... */
712 switch (skb->ip_summed) {
713 case CHECKSUM_NONE:
714 OVS_CB(skb)->ip_summed = OVS_CSUM_NONE;
715 break;
716 case CHECKSUM_UNNECESSARY:
717 OVS_CB(skb)->ip_summed = OVS_CSUM_UNNECESSARY;
718 break;
719 #ifdef CHECKSUM_HW
720 /* In theory this could be either CHECKSUM_PARTIAL or CHECKSUM_COMPLETE.
721 * However, we should only get CHECKSUM_PARTIAL packets from Xen, which
722 * uses some special fields to represent this (see below). Since we
723 * can only make one type work, pick the one that actually happens in
724 * practice.
725 *
726 * The one exception to this is if we are on the transmit path
727 * (basically after skb_checksum_setup() has been run) the type has
728 * already been converted, so we should stay with that. */
729 case CHECKSUM_HW:
730 if (!xmit)
731 OVS_CB(skb)->ip_summed = OVS_CSUM_COMPLETE;
732 else
733 OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL;
734
735 break;
736 #else
737 case CHECKSUM_COMPLETE:
738 OVS_CB(skb)->ip_summed = OVS_CSUM_COMPLETE;
739 break;
740 case CHECKSUM_PARTIAL:
741 OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL;
742 break;
743 #endif
744 default:
745 printk(KERN_ERR "openvswitch: unknown checksum type %d\n",
746 skb->ip_summed);
747 /* None seems the safest... */
748 OVS_CB(skb)->ip_summed = OVS_CSUM_NONE;
749 }
750
751 #if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID)
752 /* Xen has a special way of representing CHECKSUM_PARTIAL on older
753 * kernels. It should not be set on the transmit path though. */
754 if (skb->proto_csum_blank)
755 OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL;
756
757 WARN_ON_ONCE(skb->proto_csum_blank && xmit);
758 #endif
759 }
760
761 void
762 forward_ip_summed(struct sk_buff *skb)
763 {
764 #ifdef CHECKSUM_HW
765 if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE)
766 skb->ip_summed = CHECKSUM_NONE;
767 #endif
768 }
769
770 /* Append each packet in 'skb' list to 'queue'. There will be only one packet
771 * unless we broke up a GSO packet. */
772 static int
773 queue_control_packets(struct sk_buff *skb, struct sk_buff_head *queue,
774 int queue_no, u32 arg)
775 {
776 struct sk_buff *nskb;
777 int port_no;
778 int err;
779
780 port_no = ODPP_LOCAL;
781 if (skb->dev) {
782 if (skb->dev->br_port)
783 port_no = skb->dev->br_port->port_no;
784 else if (is_dp_dev(skb->dev))
785 port_no = dp_dev_priv(skb->dev)->port_no;
786 }
787
788 do {
789 struct odp_msg *header;
790
791 nskb = skb->next;
792 skb->next = NULL;
793
794 /* If a checksum-deferred packet is forwarded to the
795 * controller, correct the pointers and checksum. This happens
796 * on a regular basis only on Xen, on which VMs can pass up
797 * packets that do not have their checksum computed.
798 */
799 err = vswitch_skb_checksum_setup(skb);
800 if (err)
801 goto err_kfree_skbs;
802 #ifndef CHECKSUM_HW
803 if (skb->ip_summed == CHECKSUM_PARTIAL) {
804 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
805 /* Until 2.6.22, the start of the transport header was
806 * also the start of data to be checksummed. Linux
807 * 2.6.22 introduced the csum_start field for this
808 * purpose, but we should point the transport header to
809 * it anyway for backward compatibility, as
810 * dev_queue_xmit() does even in 2.6.28. */
811 skb_set_transport_header(skb, skb->csum_start -
812 skb_headroom(skb));
813 #endif
814 err = skb_checksum_help(skb);
815 if (err)
816 goto err_kfree_skbs;
817 }
818 #else
819 if (skb->ip_summed == CHECKSUM_HW) {
820 err = skb_checksum_help(skb, 0);
821 if (err)
822 goto err_kfree_skbs;
823 }
824 #endif
825
826 err = skb_cow(skb, sizeof *header);
827 if (err)
828 goto err_kfree_skbs;
829
830 header = (struct odp_msg*)__skb_push(skb, sizeof *header);
831 header->type = queue_no;
832 header->length = skb->len;
833 header->port = port_no;
834 header->reserved = 0;
835 header->arg = arg;
836 skb_queue_tail(queue, skb);
837
838 skb = nskb;
839 } while (skb);
840 return 0;
841
842 err_kfree_skbs:
843 kfree_skb(skb);
844 while ((skb = nskb) != NULL) {
845 nskb = skb->next;
846 kfree_skb(skb);
847 }
848 return err;
849 }
850
851 int
852 dp_output_control(struct datapath *dp, struct sk_buff *skb, int queue_no,
853 u32 arg)
854 {
855 struct dp_stats_percpu *stats;
856 struct sk_buff_head *queue;
857 int err;
858
859 WARN_ON_ONCE(skb_shared(skb));
860 BUG_ON(queue_no != _ODPL_MISS_NR && queue_no != _ODPL_ACTION_NR && queue_no != _ODPL_SFLOW_NR);
861 queue = &dp->queues[queue_no];
862 err = -ENOBUFS;
863 if (skb_queue_len(queue) >= DP_MAX_QUEUE_LEN)
864 goto err_kfree_skb;
865
866 forward_ip_summed(skb);
867
868 /* Break apart GSO packets into their component pieces. Otherwise
869 * userspace may try to stuff a 64kB packet into a 1500-byte MTU. */
870 if (skb_is_gso(skb)) {
871 struct sk_buff *nskb = skb_gso_segment(skb, 0);
872 if (nskb) {
873 kfree_skb(skb);
874 skb = nskb;
875 if (unlikely(IS_ERR(skb))) {
876 err = PTR_ERR(skb);
877 goto err;
878 }
879 } else {
880 /* XXX This case might not be possible. It's hard to
881 * tell from the skb_gso_segment() code and comment. */
882 }
883 }
884
885 err = queue_control_packets(skb, queue, queue_no, arg);
886 wake_up_interruptible(&dp->waitqueue);
887 return err;
888
889 err_kfree_skb:
890 kfree_skb(skb);
891 err:
892 stats = percpu_ptr(dp->stats_percpu, get_cpu());
893 stats->n_lost++;
894 put_cpu();
895
896 return err;
897 }
898
899 static int flush_flows(struct datapath *dp)
900 {
901 dp->n_flows = 0;
902 return dp_table_flush(dp);
903 }
904
905 static int validate_actions(const struct sw_flow_actions *actions)
906 {
907 unsigned int i;
908
909 for (i = 0; i < actions->n_actions; i++) {
910 const union odp_action *a = &actions->actions[i];
911 switch (a->type) {
912 case ODPAT_OUTPUT:
913 if (a->output.port >= DP_MAX_PORTS)
914 return -EINVAL;
915 break;
916
917 case ODPAT_OUTPUT_GROUP:
918 if (a->output_group.group >= DP_MAX_GROUPS)
919 return -EINVAL;
920 break;
921
922 case ODPAT_SET_VLAN_VID:
923 if (a->vlan_vid.vlan_vid & htons(~VLAN_VID_MASK))
924 return -EINVAL;
925 break;
926
927 case ODPAT_SET_VLAN_PCP:
928 if (a->vlan_pcp.vlan_pcp
929 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT))
930 return -EINVAL;
931 break;
932
933 default:
934 if (a->type >= ODPAT_N_ACTIONS)
935 return -EOPNOTSUPP;
936 break;
937 }
938 }
939
940 return 0;
941 }
942
943 static struct sw_flow_actions *get_actions(const struct odp_flow *flow)
944 {
945 struct sw_flow_actions *actions;
946 int error;
947
948 actions = flow_actions_alloc(flow->n_actions);
949 error = PTR_ERR(actions);
950 if (IS_ERR(actions))
951 goto error;
952
953 error = -EFAULT;
954 if (copy_from_user(actions->actions, flow->actions,
955 flow->n_actions * sizeof(union odp_action)))
956 goto error_free_actions;
957 error = validate_actions(actions);
958 if (error)
959 goto error_free_actions;
960
961 return actions;
962
963 error_free_actions:
964 kfree(actions);
965 error:
966 return ERR_PTR(error);
967 }
968
969 static void get_stats(struct sw_flow *flow, struct odp_flow_stats *stats)
970 {
971 if (flow->used.tv_sec) {
972 stats->used_sec = flow->used.tv_sec;
973 stats->used_nsec = flow->used.tv_nsec;
974 } else {
975 stats->used_sec = 0;
976 stats->used_nsec = 0;
977 }
978 stats->n_packets = flow->packet_count;
979 stats->n_bytes = flow->byte_count;
980 stats->ip_tos = flow->ip_tos;
981 stats->tcp_flags = flow->tcp_flags;
982 stats->error = 0;
983 }
984
985 static void clear_stats(struct sw_flow *flow)
986 {
987 flow->used.tv_sec = flow->used.tv_nsec = 0;
988 flow->tcp_flags = 0;
989 flow->ip_tos = 0;
990 flow->packet_count = 0;
991 flow->byte_count = 0;
992 }
993
994 static int put_flow(struct datapath *dp, struct odp_flow_put __user *ufp)
995 {
996 struct odp_flow_put uf;
997 struct sw_flow *flow;
998 struct dp_table *table;
999 struct odp_flow_stats stats;
1000 int error;
1001
1002 error = -EFAULT;
1003 if (copy_from_user(&uf, ufp, sizeof(struct odp_flow_put)))
1004 goto error;
1005 memset(uf.flow.key.reserved, 0, sizeof uf.flow.key.reserved);
1006
1007 table = rcu_dereference(dp->table);
1008 flow = dp_table_lookup(table, &uf.flow.key);
1009 if (!flow) {
1010 /* No such flow. */
1011 struct sw_flow_actions *acts;
1012
1013 error = -ENOENT;
1014 if (!(uf.flags & ODPPF_CREATE))
1015 goto error;
1016
1017 /* Expand table, if necessary, to make room. */
1018 if (dp->n_flows >= table->n_buckets) {
1019 error = -ENOSPC;
1020 if (table->n_buckets >= DP_MAX_BUCKETS)
1021 goto error;
1022
1023 error = dp_table_expand(dp);
1024 if (error)
1025 goto error;
1026 table = rcu_dereference(dp->table);
1027 }
1028
1029 /* Allocate flow. */
1030 error = -ENOMEM;
1031 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
1032 if (flow == NULL)
1033 goto error;
1034 flow->key = uf.flow.key;
1035 spin_lock_init(&flow->lock);
1036 clear_stats(flow);
1037
1038 /* Obtain actions. */
1039 acts = get_actions(&uf.flow);
1040 error = PTR_ERR(acts);
1041 if (IS_ERR(acts))
1042 goto error_free_flow;
1043 rcu_assign_pointer(flow->sf_acts, acts);
1044
1045 /* Put flow in bucket. */
1046 error = dp_table_insert(table, flow);
1047 if (error)
1048 goto error_free_flow_acts;
1049 dp->n_flows++;
1050 memset(&stats, 0, sizeof(struct odp_flow_stats));
1051 } else {
1052 /* We found a matching flow. */
1053 struct sw_flow_actions *old_acts, *new_acts;
1054 unsigned long int flags;
1055
1056 /* Bail out if we're not allowed to modify an existing flow. */
1057 error = -EEXIST;
1058 if (!(uf.flags & ODPPF_MODIFY))
1059 goto error;
1060
1061 /* Swap actions. */
1062 new_acts = get_actions(&uf.flow);
1063 error = PTR_ERR(new_acts);
1064 if (IS_ERR(new_acts))
1065 goto error;
1066 old_acts = rcu_dereference(flow->sf_acts);
1067 if (old_acts->n_actions != new_acts->n_actions ||
1068 memcmp(old_acts->actions, new_acts->actions,
1069 sizeof(union odp_action) * old_acts->n_actions)) {
1070 rcu_assign_pointer(flow->sf_acts, new_acts);
1071 flow_deferred_free_acts(old_acts);
1072 } else {
1073 kfree(new_acts);
1074 }
1075
1076 /* Fetch stats, then clear them if necessary. */
1077 spin_lock_irqsave(&flow->lock, flags);
1078 get_stats(flow, &stats);
1079 if (uf.flags & ODPPF_ZERO_STATS)
1080 clear_stats(flow);
1081 spin_unlock_irqrestore(&flow->lock, flags);
1082 }
1083
1084 /* Copy stats to userspace. */
1085 if (__copy_to_user(&ufp->flow.stats, &stats,
1086 sizeof(struct odp_flow_stats)))
1087 return -EFAULT;
1088 return 0;
1089
1090 error_free_flow_acts:
1091 kfree(flow->sf_acts);
1092 error_free_flow:
1093 kmem_cache_free(flow_cache, flow);
1094 error:
1095 return error;
1096 }
1097
1098 static int put_actions(const struct sw_flow *flow, struct odp_flow __user *ufp)
1099 {
1100 union odp_action __user *actions;
1101 struct sw_flow_actions *sf_acts;
1102 u32 n_actions;
1103
1104 if (__get_user(actions, &ufp->actions) ||
1105 __get_user(n_actions, &ufp->n_actions))
1106 return -EFAULT;
1107
1108 if (!n_actions)
1109 return 0;
1110
1111 sf_acts = rcu_dereference(flow->sf_acts);
1112 if (__put_user(sf_acts->n_actions, &ufp->n_actions) ||
1113 (actions && copy_to_user(actions, sf_acts->actions,
1114 sizeof(union odp_action) *
1115 min(sf_acts->n_actions, n_actions))))
1116 return -EFAULT;
1117
1118 return 0;
1119 }
1120
1121 static int answer_query(struct sw_flow *flow, u32 query_flags,
1122 struct odp_flow __user *ufp)
1123 {
1124 struct odp_flow_stats stats;
1125 unsigned long int flags;
1126
1127 spin_lock_irqsave(&flow->lock, flags);
1128 get_stats(flow, &stats);
1129
1130 if (query_flags & ODPFF_ZERO_TCP_FLAGS) {
1131 flow->tcp_flags = 0;
1132 }
1133 spin_unlock_irqrestore(&flow->lock, flags);
1134
1135 if (__copy_to_user(&ufp->stats, &stats, sizeof(struct odp_flow_stats)))
1136 return -EFAULT;
1137 return put_actions(flow, ufp);
1138 }
1139
1140 static int del_flow(struct datapath *dp, struct odp_flow __user *ufp)
1141 {
1142 struct dp_table *table = rcu_dereference(dp->table);
1143 struct odp_flow uf;
1144 struct sw_flow *flow;
1145 int error;
1146
1147 error = -EFAULT;
1148 if (copy_from_user(&uf, ufp, sizeof uf))
1149 goto error;
1150 memset(uf.key.reserved, 0, sizeof uf.key.reserved);
1151
1152 flow = dp_table_lookup(table, &uf.key);
1153 error = -ENOENT;
1154 if (!flow)
1155 goto error;
1156
1157 /* XXX redundant lookup */
1158 error = dp_table_delete(table, flow);
1159 if (error)
1160 goto error;
1161
1162 /* XXX These statistics might lose a few packets, since other CPUs can
1163 * be using this flow. We used to synchronize_rcu() to make sure that
1164 * we get completely accurate stats, but that blows our performance,
1165 * badly. */
1166 dp->n_flows--;
1167 error = answer_query(flow, 0, ufp);
1168 flow_deferred_free(flow);
1169
1170 error:
1171 return error;
1172 }
1173
1174 static int query_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
1175 {
1176 struct dp_table *table = rcu_dereference(dp->table);
1177 int i;
1178 for (i = 0; i < flowvec->n_flows; i++) {
1179 struct __user odp_flow *ufp = &flowvec->flows[i];
1180 struct odp_flow uf;
1181 struct sw_flow *flow;
1182 int error;
1183
1184 if (__copy_from_user(&uf, ufp, sizeof uf))
1185 return -EFAULT;
1186 memset(uf.key.reserved, 0, sizeof uf.key.reserved);
1187
1188 flow = dp_table_lookup(table, &uf.key);
1189 if (!flow)
1190 error = __put_user(ENOENT, &ufp->stats.error);
1191 else
1192 error = answer_query(flow, uf.flags, ufp);
1193 if (error)
1194 return -EFAULT;
1195 }
1196 return flowvec->n_flows;
1197 }
1198
1199 struct list_flows_cbdata {
1200 struct odp_flow __user *uflows;
1201 int n_flows;
1202 int listed_flows;
1203 };
1204
1205 static int list_flow(struct sw_flow *flow, void *cbdata_)
1206 {
1207 struct list_flows_cbdata *cbdata = cbdata_;
1208 struct odp_flow __user *ufp = &cbdata->uflows[cbdata->listed_flows++];
1209 int error;
1210
1211 if (__copy_to_user(&ufp->key, &flow->key, sizeof flow->key))
1212 return -EFAULT;
1213 error = answer_query(flow, 0, ufp);
1214 if (error)
1215 return error;
1216
1217 if (cbdata->listed_flows >= cbdata->n_flows)
1218 return cbdata->listed_flows;
1219 return 0;
1220 }
1221
1222 static int list_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
1223 {
1224 struct list_flows_cbdata cbdata;
1225 int error;
1226
1227 if (!flowvec->n_flows)
1228 return 0;
1229
1230 cbdata.uflows = flowvec->flows;
1231 cbdata.n_flows = flowvec->n_flows;
1232 cbdata.listed_flows = 0;
1233 error = dp_table_foreach(rcu_dereference(dp->table),
1234 list_flow, &cbdata);
1235 return error ? error : cbdata.listed_flows;
1236 }
1237
1238 static int do_flowvec_ioctl(struct datapath *dp, unsigned long argp,
1239 int (*function)(struct datapath *,
1240 const struct odp_flowvec *))
1241 {
1242 struct odp_flowvec __user *uflowvec;
1243 struct odp_flowvec flowvec;
1244 int retval;
1245
1246 uflowvec = (struct odp_flowvec __user *)argp;
1247 if (!access_ok(VERIFY_WRITE, uflowvec, sizeof *uflowvec) ||
1248 copy_from_user(&flowvec, uflowvec, sizeof flowvec))
1249 return -EFAULT;
1250
1251 if (flowvec.n_flows > INT_MAX / sizeof(struct odp_flow))
1252 return -EINVAL;
1253
1254 if (!access_ok(VERIFY_WRITE, flowvec.flows,
1255 flowvec.n_flows * sizeof(struct odp_flow)))
1256 return -EFAULT;
1257
1258 retval = function(dp, &flowvec);
1259 return (retval < 0 ? retval
1260 : retval == flowvec.n_flows ? 0
1261 : __put_user(retval, &uflowvec->n_flows));
1262 }
1263
1264 static int do_execute(struct datapath *dp, const struct odp_execute *executep)
1265 {
1266 struct odp_execute execute;
1267 struct odp_flow_key key;
1268 struct sk_buff *skb;
1269 struct sw_flow_actions *actions;
1270 struct ethhdr *eth;
1271 int err;
1272
1273 err = -EFAULT;
1274 if (copy_from_user(&execute, executep, sizeof execute))
1275 goto error;
1276
1277 err = -EINVAL;
1278 if (execute.length < ETH_HLEN || execute.length > 65535)
1279 goto error;
1280
1281 err = -ENOMEM;
1282 actions = flow_actions_alloc(execute.n_actions);
1283 if (!actions)
1284 goto error;
1285
1286 err = -EFAULT;
1287 if (copy_from_user(actions->actions, execute.actions,
1288 execute.n_actions * sizeof *execute.actions))
1289 goto error_free_actions;
1290
1291 err = validate_actions(actions);
1292 if (err)
1293 goto error_free_actions;
1294
1295 err = -ENOMEM;
1296 skb = alloc_skb(execute.length, GFP_KERNEL);
1297 if (!skb)
1298 goto error_free_actions;
1299 if (execute.in_port < DP_MAX_PORTS) {
1300 struct net_bridge_port *p = dp->ports[execute.in_port];
1301 if (p)
1302 skb->dev = p->dev;
1303 }
1304
1305 err = -EFAULT;
1306 if (copy_from_user(skb_put(skb, execute.length), execute.data,
1307 execute.length))
1308 goto error_free_skb;
1309
1310 skb_reset_mac_header(skb);
1311 eth = eth_hdr(skb);
1312
1313 /* Normally, setting the skb 'protocol' field would be handled by a
1314 * call to eth_type_trans(), but it assumes there's a sending
1315 * device, which we may not have. */
1316 if (ntohs(eth->h_proto) >= 1536)
1317 skb->protocol = eth->h_proto;
1318 else
1319 skb->protocol = htons(ETH_P_802_2);
1320
1321 flow_extract(skb, execute.in_port, &key);
1322 err = execute_actions(dp, skb, &key, actions->actions,
1323 actions->n_actions, GFP_KERNEL);
1324 kfree(actions);
1325 return err;
1326
1327 error_free_skb:
1328 kfree_skb(skb);
1329 error_free_actions:
1330 kfree(actions);
1331 error:
1332 return err;
1333 }
1334
1335 static int get_dp_stats(struct datapath *dp, struct odp_stats __user *statsp)
1336 {
1337 struct odp_stats stats;
1338 int i;
1339
1340 stats.n_flows = dp->n_flows;
1341 stats.cur_capacity = rcu_dereference(dp->table)->n_buckets;
1342 stats.max_capacity = DP_MAX_BUCKETS;
1343 stats.n_ports = dp->n_ports;
1344 stats.max_ports = DP_MAX_PORTS;
1345 stats.max_groups = DP_MAX_GROUPS;
1346 stats.n_frags = stats.n_hit = stats.n_missed = stats.n_lost = 0;
1347 for_each_possible_cpu(i) {
1348 const struct dp_stats_percpu *s;
1349 s = percpu_ptr(dp->stats_percpu, i);
1350 stats.n_frags += s->n_frags;
1351 stats.n_hit += s->n_hit;
1352 stats.n_missed += s->n_missed;
1353 stats.n_lost += s->n_lost;
1354 }
1355 stats.max_miss_queue = DP_MAX_QUEUE_LEN;
1356 stats.max_action_queue = DP_MAX_QUEUE_LEN;
1357 return copy_to_user(statsp, &stats, sizeof stats) ? -EFAULT : 0;
1358 }
1359
1360 /* MTU of the dp pseudo-device: ETH_DATA_LEN or the minimum of the ports */
1361 int dp_min_mtu(const struct datapath *dp)
1362 {
1363 struct net_bridge_port *p;
1364 int mtu = 0;
1365
1366 ASSERT_RTNL();
1367
1368 list_for_each_entry_rcu (p, &dp->port_list, node) {
1369 struct net_device *dev = p->dev;
1370
1371 /* Skip any internal ports, since that's what we're trying to
1372 * set. */
1373 if (is_dp_dev(dev))
1374 continue;
1375
1376 if (!mtu || dev->mtu < mtu)
1377 mtu = dev->mtu;
1378 }
1379
1380 return mtu ? mtu : ETH_DATA_LEN;
1381 }
1382
1383 /* Sets the MTU of all datapath devices to the minimum of the ports. 'dev'
1384 * is the device whose MTU may have changed. Must be called with RTNL lock
1385 * and dp_mutex. */
1386 void set_dp_devs_mtu(const struct datapath *dp, struct net_device *dev)
1387 {
1388 struct net_bridge_port *p;
1389 int mtu;
1390
1391 ASSERT_RTNL();
1392
1393 if (is_dp_dev(dev))
1394 return;
1395
1396 mtu = dp_min_mtu(dp);
1397
1398 list_for_each_entry_rcu (p, &dp->port_list, node) {
1399 struct net_device *br_dev = p->dev;
1400
1401 if (is_dp_dev(br_dev))
1402 dev_set_mtu(br_dev, mtu);
1403 }
1404 }
1405
1406 static int
1407 put_port(const struct net_bridge_port *p, struct odp_port __user *uop)
1408 {
1409 struct odp_port op;
1410 memset(&op, 0, sizeof op);
1411 strncpy(op.devname, p->dev->name, sizeof op.devname);
1412 op.port = p->port_no;
1413 op.flags = is_dp_dev(p->dev) ? ODP_PORT_INTERNAL : 0;
1414 return copy_to_user(uop, &op, sizeof op) ? -EFAULT : 0;
1415 }
1416
1417 static int
1418 query_port(struct datapath *dp, struct odp_port __user *uport)
1419 {
1420 struct odp_port port;
1421
1422 if (copy_from_user(&port, uport, sizeof port))
1423 return -EFAULT;
1424 if (port.devname[0]) {
1425 struct net_bridge_port *p;
1426 struct net_device *dev;
1427 int err;
1428
1429 port.devname[IFNAMSIZ - 1] = '\0';
1430
1431 dev = dev_get_by_name(&init_net, port.devname);
1432 if (!dev)
1433 return -ENODEV;
1434
1435 p = dev->br_port;
1436 if (!p && is_dp_dev(dev)) {
1437 struct dp_dev *dp_dev = dp_dev_priv(dev);
1438 if (dp_dev->dp == dp)
1439 p = dp->ports[dp_dev->port_no];
1440 }
1441 err = p && p->dp == dp ? put_port(p, uport) : -ENOENT;
1442 dev_put(dev);
1443
1444 return err;
1445 } else {
1446 if (port.port >= DP_MAX_PORTS)
1447 return -EINVAL;
1448 if (!dp->ports[port.port])
1449 return -ENOENT;
1450 return put_port(dp->ports[port.port], uport);
1451 }
1452 }
1453
1454 static int
1455 list_ports(struct datapath *dp, struct odp_portvec __user *pvp)
1456 {
1457 struct odp_portvec pv;
1458 struct net_bridge_port *p;
1459 int idx;
1460
1461 if (copy_from_user(&pv, pvp, sizeof pv))
1462 return -EFAULT;
1463
1464 idx = 0;
1465 if (pv.n_ports) {
1466 list_for_each_entry_rcu (p, &dp->port_list, node) {
1467 if (put_port(p, &pv.ports[idx]))
1468 return -EFAULT;
1469 if (idx++ >= pv.n_ports)
1470 break;
1471 }
1472 }
1473 return put_user(dp->n_ports, &pvp->n_ports);
1474 }
1475
1476 /* RCU callback for freeing a dp_port_group */
1477 static void free_port_group(struct rcu_head *rcu)
1478 {
1479 struct dp_port_group *g = container_of(rcu, struct dp_port_group, rcu);
1480 kfree(g);
1481 }
1482
1483 static int
1484 set_port_group(struct datapath *dp, const struct odp_port_group __user *upg)
1485 {
1486 struct odp_port_group pg;
1487 struct dp_port_group *new_group, *old_group;
1488 int error;
1489
1490 error = -EFAULT;
1491 if (copy_from_user(&pg, upg, sizeof pg))
1492 goto error;
1493
1494 error = -EINVAL;
1495 if (pg.n_ports > DP_MAX_PORTS || pg.group >= DP_MAX_GROUPS)
1496 goto error;
1497
1498 error = -ENOMEM;
1499 new_group = kmalloc(sizeof *new_group + sizeof(u16) * pg.n_ports,
1500 GFP_KERNEL);
1501 if (!new_group)
1502 goto error;
1503
1504 new_group->n_ports = pg.n_ports;
1505 error = -EFAULT;
1506 if (copy_from_user(new_group->ports, pg.ports,
1507 sizeof(u16) * pg.n_ports))
1508 goto error_free;
1509
1510 old_group = rcu_dereference(dp->groups[pg.group]);
1511 rcu_assign_pointer(dp->groups[pg.group], new_group);
1512 if (old_group)
1513 call_rcu(&old_group->rcu, free_port_group);
1514 return 0;
1515
1516 error_free:
1517 kfree(new_group);
1518 error:
1519 return error;
1520 }
1521
1522 static int
1523 get_port_group(struct datapath *dp, struct odp_port_group *upg)
1524 {
1525 struct odp_port_group pg;
1526 struct dp_port_group *g;
1527 u16 n_copy;
1528
1529 if (copy_from_user(&pg, upg, sizeof pg))
1530 return -EFAULT;
1531
1532 if (pg.group >= DP_MAX_GROUPS)
1533 return -EINVAL;
1534
1535 g = dp->groups[pg.group];
1536 n_copy = g ? min_t(int, g->n_ports, pg.n_ports) : 0;
1537 if (n_copy && copy_to_user(pg.ports, g->ports, n_copy * sizeof(u16)))
1538 return -EFAULT;
1539
1540 if (put_user(g ? g->n_ports : 0, &upg->n_ports))
1541 return -EFAULT;
1542
1543 return 0;
1544 }
1545
1546 static int get_listen_mask(const struct file *f)
1547 {
1548 return (long)f->private_data;
1549 }
1550
1551 static void set_listen_mask(struct file *f, int listen_mask)
1552 {
1553 f->private_data = (void*)(long)listen_mask;
1554 }
1555
1556 static long openvswitch_ioctl(struct file *f, unsigned int cmd,
1557 unsigned long argp)
1558 {
1559 int dp_idx = iminor(f->f_dentry->d_inode);
1560 struct datapath *dp;
1561 int drop_frags, listeners, port_no;
1562 unsigned int sflow_probability;
1563 int err;
1564
1565 /* Handle commands with special locking requirements up front. */
1566 switch (cmd) {
1567 case ODP_DP_CREATE:
1568 err = create_dp(dp_idx, (char __user *)argp);
1569 goto exit;
1570
1571 case ODP_DP_DESTROY:
1572 err = destroy_dp(dp_idx);
1573 goto exit;
1574
1575 case ODP_PORT_ADD:
1576 err = add_port(dp_idx, (struct odp_port __user *)argp);
1577 goto exit;
1578
1579 case ODP_PORT_DEL:
1580 err = get_user(port_no, (int __user *)argp);
1581 if (!err)
1582 err = del_port(dp_idx, port_no);
1583 goto exit;
1584 }
1585
1586 dp = get_dp_locked(dp_idx);
1587 err = -ENODEV;
1588 if (!dp)
1589 goto exit;
1590
1591 switch (cmd) {
1592 case ODP_DP_STATS:
1593 err = get_dp_stats(dp, (struct odp_stats __user *)argp);
1594 break;
1595
1596 case ODP_GET_DROP_FRAGS:
1597 err = put_user(dp->drop_frags, (int __user *)argp);
1598 break;
1599
1600 case ODP_SET_DROP_FRAGS:
1601 err = get_user(drop_frags, (int __user *)argp);
1602 if (err)
1603 break;
1604 err = -EINVAL;
1605 if (drop_frags != 0 && drop_frags != 1)
1606 break;
1607 dp->drop_frags = drop_frags;
1608 err = 0;
1609 break;
1610
1611 case ODP_GET_LISTEN_MASK:
1612 err = put_user(get_listen_mask(f), (int __user *)argp);
1613 break;
1614
1615 case ODP_SET_LISTEN_MASK:
1616 err = get_user(listeners, (int __user *)argp);
1617 if (err)
1618 break;
1619 err = -EINVAL;
1620 if (listeners & ~ODPL_ALL)
1621 break;
1622 err = 0;
1623 set_listen_mask(f, listeners);
1624 break;
1625
1626 case ODP_GET_SFLOW_PROBABILITY:
1627 err = put_user(dp->sflow_probability, (unsigned int __user *)argp);
1628 break;
1629
1630 case ODP_SET_SFLOW_PROBABILITY:
1631 err = get_user(sflow_probability, (unsigned int __user *)argp);
1632 if (!err)
1633 dp->sflow_probability = sflow_probability;
1634 break;
1635
1636 case ODP_PORT_QUERY:
1637 err = query_port(dp, (struct odp_port __user *)argp);
1638 break;
1639
1640 case ODP_PORT_LIST:
1641 err = list_ports(dp, (struct odp_portvec __user *)argp);
1642 break;
1643
1644 case ODP_PORT_GROUP_SET:
1645 err = set_port_group(dp, (struct odp_port_group __user *)argp);
1646 break;
1647
1648 case ODP_PORT_GROUP_GET:
1649 err = get_port_group(dp, (struct odp_port_group __user *)argp);
1650 break;
1651
1652 case ODP_FLOW_FLUSH:
1653 err = flush_flows(dp);
1654 break;
1655
1656 case ODP_FLOW_PUT:
1657 err = put_flow(dp, (struct odp_flow_put __user *)argp);
1658 break;
1659
1660 case ODP_FLOW_DEL:
1661 err = del_flow(dp, (struct odp_flow __user *)argp);
1662 break;
1663
1664 case ODP_FLOW_GET:
1665 err = do_flowvec_ioctl(dp, argp, query_flows);
1666 break;
1667
1668 case ODP_FLOW_LIST:
1669 err = do_flowvec_ioctl(dp, argp, list_flows);
1670 break;
1671
1672 case ODP_EXECUTE:
1673 err = do_execute(dp, (struct odp_execute __user *)argp);
1674 break;
1675
1676 default:
1677 err = -ENOIOCTLCMD;
1678 break;
1679 }
1680 mutex_unlock(&dp->mutex);
1681 exit:
1682 return err;
1683 }
1684
1685 static int dp_has_packet_of_interest(struct datapath *dp, int listeners)
1686 {
1687 int i;
1688 for (i = 0; i < DP_N_QUEUES; i++) {
1689 if (listeners & (1 << i) && !skb_queue_empty(&dp->queues[i]))
1690 return 1;
1691 }
1692 return 0;
1693 }
1694
1695 ssize_t openvswitch_read(struct file *f, char __user *buf, size_t nbytes,
1696 loff_t *ppos)
1697 {
1698 /* XXX is there sufficient synchronization here? */
1699 int listeners = get_listen_mask(f);
1700 int dp_idx = iminor(f->f_dentry->d_inode);
1701 struct datapath *dp = get_dp(dp_idx);
1702 struct sk_buff *skb;
1703 struct iovec __user iov;
1704 size_t copy_bytes;
1705 int retval;
1706
1707 if (!dp)
1708 return -ENODEV;
1709
1710 if (nbytes == 0 || !listeners)
1711 return 0;
1712
1713 for (;;) {
1714 int i;
1715
1716 for (i = 0; i < DP_N_QUEUES; i++) {
1717 if (listeners & (1 << i)) {
1718 skb = skb_dequeue(&dp->queues[i]);
1719 if (skb)
1720 goto success;
1721 }
1722 }
1723
1724 if (f->f_flags & O_NONBLOCK) {
1725 retval = -EAGAIN;
1726 goto error;
1727 }
1728
1729 wait_event_interruptible(dp->waitqueue,
1730 dp_has_packet_of_interest(dp,
1731 listeners));
1732
1733 if (signal_pending(current)) {
1734 retval = -ERESTARTSYS;
1735 goto error;
1736 }
1737 }
1738 success:
1739 copy_bytes = min_t(size_t, skb->len, nbytes);
1740 iov.iov_base = buf;
1741 iov.iov_len = copy_bytes;
1742 retval = skb_copy_datagram_iovec(skb, 0, &iov, iov.iov_len);
1743 if (!retval)
1744 retval = copy_bytes;
1745 kfree_skb(skb);
1746
1747 error:
1748 return retval;
1749 }
1750
1751 static unsigned int openvswitch_poll(struct file *file, poll_table *wait)
1752 {
1753 /* XXX is there sufficient synchronization here? */
1754 int dp_idx = iminor(file->f_dentry->d_inode);
1755 struct datapath *dp = get_dp(dp_idx);
1756 unsigned int mask;
1757
1758 if (dp) {
1759 mask = 0;
1760 poll_wait(file, &dp->waitqueue, wait);
1761 if (dp_has_packet_of_interest(dp, get_listen_mask(file)))
1762 mask |= POLLIN | POLLRDNORM;
1763 } else {
1764 mask = POLLIN | POLLRDNORM | POLLHUP;
1765 }
1766 return mask;
1767 }
1768
1769 struct file_operations openvswitch_fops = {
1770 /* XXX .aio_read = openvswitch_aio_read, */
1771 .read = openvswitch_read,
1772 .poll = openvswitch_poll,
1773 .unlocked_ioctl = openvswitch_ioctl,
1774 /* XXX .fasync = openvswitch_fasync, */
1775 };
1776
1777 static int major;
1778
1779 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
1780 static struct llc_sap *dp_stp_sap;
1781
1782 static int dp_stp_rcv(struct sk_buff *skb, struct net_device *dev,
1783 struct packet_type *pt, struct net_device *orig_dev)
1784 {
1785 /* We don't really care about STP packets, we just listen for them for
1786 * mutual exclusion with the bridge module, so this just discards
1787 * them. */
1788 kfree_skb(skb);
1789 return 0;
1790 }
1791
1792 static int dp_avoid_bridge_init(void)
1793 {
1794 /* Register to receive STP packets because the bridge module also
1795 * attempts to do so. Since there can only be a single listener for a
1796 * given protocol, this provides mutual exclusion against the bridge
1797 * module, preventing both of them from being loaded at the same
1798 * time. */
1799 dp_stp_sap = llc_sap_open(LLC_SAP_BSPAN, dp_stp_rcv);
1800 if (!dp_stp_sap) {
1801 printk(KERN_ERR "openvswitch: can't register sap for STP (probably the bridge module is loaded)\n");
1802 return -EADDRINUSE;
1803 }
1804 return 0;
1805 }
1806
1807 static void dp_avoid_bridge_exit(void)
1808 {
1809 llc_sap_put(dp_stp_sap);
1810 }
1811 #else /* Linux 2.6.27 or later. */
1812 static int dp_avoid_bridge_init(void)
1813 {
1814 /* Linux 2.6.27 introduces a way for multiple clients to register for
1815 * STP packets, which interferes with what we try to do above.
1816 * Instead, just check whether there's a bridge hook defined. This is
1817 * not as safe--the bridge module is willing to load over the top of
1818 * us--but it provides a little bit of protection. */
1819 if (br_handle_frame_hook) {
1820 printk(KERN_ERR "openvswitch: bridge module is loaded, cannot load over it\n");
1821 return -EADDRINUSE;
1822 }
1823 return 0;
1824 }
1825
1826 static void dp_avoid_bridge_exit(void)
1827 {
1828 /* Nothing to do. */
1829 }
1830 #endif /* Linux 2.6.27 or later */
1831
1832 static int __init dp_init(void)
1833 {
1834 int err;
1835
1836 printk("Open vSwitch %s, built "__DATE__" "__TIME__"\n", VERSION BUILDNR);
1837
1838 err = dp_avoid_bridge_init();
1839 if (err)
1840 return err;
1841
1842 err = flow_init();
1843 if (err)
1844 goto error;
1845
1846 err = register_netdevice_notifier(&dp_device_notifier);
1847 if (err)
1848 goto error_flow_exit;
1849
1850 major = register_chrdev(0, "openvswitch", &openvswitch_fops);
1851 if (err < 0)
1852 goto error_unreg_notifier;
1853
1854 /* Hook into callback used by the bridge to intercept packets.
1855 * Parasites we are. */
1856 br_handle_frame_hook = dp_frame_hook;
1857
1858 return 0;
1859
1860 error_unreg_notifier:
1861 unregister_netdevice_notifier(&dp_device_notifier);
1862 error_flow_exit:
1863 flow_exit();
1864 error:
1865 return err;
1866 }
1867
1868 static void dp_cleanup(void)
1869 {
1870 rcu_barrier();
1871 unregister_chrdev(major, "openvswitch");
1872 unregister_netdevice_notifier(&dp_device_notifier);
1873 flow_exit();
1874 br_handle_frame_hook = NULL;
1875 dp_avoid_bridge_exit();
1876 }
1877
1878 module_init(dp_init);
1879 module_exit(dp_cleanup);
1880
1881 MODULE_DESCRIPTION("Open vSwitch switching datapath");
1882 MODULE_LICENSE("GPL");