]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/flow.c
datapath: Derive IP protocol number for IPv6 later frags
[mirror_ovs.git] / datapath / flow.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <linux/timekeeping.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 #include <net/nsh.h>
50
51 #include "datapath.h"
52 #include "conntrack.h"
53 #include "flow.h"
54 #include "flow_netlink.h"
55 #include "vport.h"
56
57 u64 ovs_flow_used_time(unsigned long flow_jiffies)
58 {
59 struct timespec64 cur_ts;
60 u64 cur_ms, idle_ms;
61
62 ktime_get_ts64(&cur_ts);
63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
65 cur_ts.tv_nsec / NSEC_PER_MSEC;
66
67 return cur_ms - idle_ms;
68 }
69
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
71
72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73 const struct sk_buff *skb)
74 {
75 struct flow_stats *stats;
76 unsigned int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79 stats = rcu_dereference(flow->stats[cpu]);
80
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
90
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
93 */
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
99 */
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
104
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 numa_node_id());
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
118
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122 goto unlock;
123 }
124 }
125 flow->stats_last_writer = cpu;
126 }
127 }
128
129 stats->used = jiffies;
130 stats->packet_count++;
131 stats->byte_count += len;
132 stats->tcp_flags |= tcp_flags;
133 unlock:
134 spin_unlock(&stats->lock);
135 }
136
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow *flow,
139 struct ovs_flow_stats *ovs_stats,
140 unsigned long *used, __be16 *tcp_flags)
141 {
142 int cpu;
143
144 *used = 0;
145 *tcp_flags = 0;
146 memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151
152 if (stats) {
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
155 */
156 spin_lock_bh(&stats->lock);
157 if (!*used || time_after(stats->used, *used))
158 *used = stats->used;
159 *tcp_flags |= stats->tcp_flags;
160 ovs_stats->n_packets += stats->packet_count;
161 ovs_stats->n_bytes += stats->byte_count;
162 spin_unlock_bh(&stats->lock);
163 }
164 }
165 }
166
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow *flow)
169 {
170 int cpu;
171
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175
176 if (stats) {
177 spin_lock_bh(&stats->lock);
178 stats->used = 0;
179 stats->packet_count = 0;
180 stats->byte_count = 0;
181 stats->tcp_flags = 0;
182 spin_unlock_bh(&stats->lock);
183 }
184 }
185 }
186
187 static int check_header(struct sk_buff *skb, int len)
188 {
189 if (unlikely(skb->len < len))
190 return -EINVAL;
191 if (unlikely(!pskb_may_pull(skb, len)))
192 return -ENOMEM;
193 return 0;
194 }
195
196 static bool arphdr_ok(struct sk_buff *skb)
197 {
198 return pskb_may_pull(skb, skb_network_offset(skb) +
199 sizeof(struct arp_eth_header));
200 }
201
202 static int check_iphdr(struct sk_buff *skb)
203 {
204 unsigned int nh_ofs = skb_network_offset(skb);
205 unsigned int ip_len;
206 int err;
207
208 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209 if (unlikely(err))
210 return err;
211
212 ip_len = ip_hdrlen(skb);
213 if (unlikely(ip_len < sizeof(struct iphdr) ||
214 skb->len < nh_ofs + ip_len))
215 return -EINVAL;
216
217 skb_set_transport_header(skb, nh_ofs + ip_len);
218 return 0;
219 }
220
221 static bool tcphdr_ok(struct sk_buff *skb)
222 {
223 int th_ofs = skb_transport_offset(skb);
224 int tcp_len;
225
226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227 return false;
228
229 tcp_len = tcp_hdrlen(skb);
230 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231 skb->len < th_ofs + tcp_len))
232 return false;
233
234 return true;
235 }
236
237 static bool udphdr_ok(struct sk_buff *skb)
238 {
239 return pskb_may_pull(skb, skb_transport_offset(skb) +
240 sizeof(struct udphdr));
241 }
242
243 static bool sctphdr_ok(struct sk_buff *skb)
244 {
245 return pskb_may_pull(skb, skb_transport_offset(skb) +
246 sizeof(struct sctphdr));
247 }
248
249 static bool icmphdr_ok(struct sk_buff *skb)
250 {
251 return pskb_may_pull(skb, skb_transport_offset(skb) +
252 sizeof(struct icmphdr));
253 }
254
255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256 {
257 unsigned short frag_off;
258 unsigned int payload_ofs = 0;
259 unsigned int nh_ofs = skb_network_offset(skb);
260 unsigned int nh_len;
261 struct ipv6hdr *nh;
262 int err, nexthdr, flags = 0;
263
264 err = check_header(skb, nh_ofs + sizeof(*nh));
265 if (unlikely(err))
266 return err;
267
268 nh = ipv6_hdr(skb);
269
270 key->ip.proto = NEXTHDR_NONE;
271 key->ip.tos = ipv6_get_dsfield(nh);
272 key->ip.ttl = nh->hop_limit;
273 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
274 key->ipv6.addr.src = nh->saddr;
275 key->ipv6.addr.dst = nh->daddr;
276
277 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
278 if (flags & IP6_FH_F_FRAG) {
279 if (frag_off)
280 key->ip.frag = OVS_FRAG_TYPE_LATER;
281 else
282 key->ip.frag = OVS_FRAG_TYPE_FIRST;
283 } else {
284 key->ip.frag = OVS_FRAG_TYPE_NONE;
285 }
286
287 /* Delayed handling of error in ipv6_find_hdr() as it
288 * always sets flags and frag_off to a valid value which may be
289 * used to set key->ip.frag above.
290 */
291 if (unlikely(nexthdr < 0))
292 return -EPROTO;
293
294 nh_len = payload_ofs - nh_ofs;
295 skb_set_transport_header(skb, nh_ofs + nh_len);
296 key->ip.proto = nexthdr;
297 return nh_len;
298 }
299
300 static bool icmp6hdr_ok(struct sk_buff *skb)
301 {
302 return pskb_may_pull(skb, skb_transport_offset(skb) +
303 sizeof(struct icmp6hdr));
304 }
305
306 /**
307 * Parse vlan tag from vlan header.
308 * Returns ERROR on memory error.
309 * Returns 0 if it encounters a non-vlan or incomplete packet.
310 * Returns 1 after successfully parsing vlan tag.
311 */
312 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
313 bool untag_vlan)
314 {
315 struct vlan_head *vh = (struct vlan_head *)skb->data;
316
317 if (likely(!eth_type_vlan(vh->tpid)))
318 return 0;
319
320 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
321 return 0;
322
323 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
324 sizeof(__be16))))
325 return -ENOMEM;
326
327 vh = (struct vlan_head *)skb->data;
328 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
329 key_vh->tpid = vh->tpid;
330
331 if (unlikely(untag_vlan)) {
332 int offset = skb->data - skb_mac_header(skb);
333 u16 tci;
334 int err;
335
336 __skb_push(skb, offset);
337 err = __skb_vlan_pop(skb, &tci);
338 __skb_pull(skb, offset);
339 if (err)
340 return err;
341 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
342 } else {
343 __skb_pull(skb, sizeof(struct vlan_head));
344 }
345 return 1;
346 }
347
348 static void clear_vlan(struct sw_flow_key *key)
349 {
350 key->eth.vlan.tci = 0;
351 key->eth.vlan.tpid = 0;
352 key->eth.cvlan.tci = 0;
353 key->eth.cvlan.tpid = 0;
354 }
355
356 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
357 {
358 int res;
359
360 key->eth.vlan.tci = 0;
361 key->eth.vlan.tpid = 0;
362 key->eth.cvlan.tci = 0;
363 key->eth.cvlan.tpid = 0;
364
365 if (skb_vlan_tag_present(skb)) {
366 key->eth.vlan.tci = htons(skb->vlan_tci);
367 key->eth.vlan.tpid = skb->vlan_proto;
368 } else {
369 /* Parse outer vlan tag in the non-accelerated case. */
370 res = parse_vlan_tag(skb, &key->eth.vlan, true);
371 if (res <= 0)
372 return res;
373 }
374
375 /* Parse inner vlan tag. */
376 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
377 if (res <= 0)
378 return res;
379
380 return 0;
381 }
382
383 static __be16 parse_ethertype(struct sk_buff *skb)
384 {
385 struct llc_snap_hdr {
386 u8 dsap; /* Always 0xAA */
387 u8 ssap; /* Always 0xAA */
388 u8 ctrl;
389 u8 oui[3];
390 __be16 ethertype;
391 };
392 struct llc_snap_hdr *llc;
393 __be16 proto;
394
395 proto = *(__be16 *) skb->data;
396 __skb_pull(skb, sizeof(__be16));
397
398 if (eth_proto_is_802_3(proto))
399 return proto;
400
401 if (skb->len < sizeof(struct llc_snap_hdr))
402 return htons(ETH_P_802_2);
403
404 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
405 return htons(0);
406
407 llc = (struct llc_snap_hdr *) skb->data;
408 if (llc->dsap != LLC_SAP_SNAP ||
409 llc->ssap != LLC_SAP_SNAP ||
410 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
411 return htons(ETH_P_802_2);
412
413 __skb_pull(skb, sizeof(struct llc_snap_hdr));
414
415 if (eth_proto_is_802_3(llc->ethertype))
416 return llc->ethertype;
417
418 return htons(ETH_P_802_2);
419 }
420
421 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
422 int nh_len)
423 {
424 struct icmp6hdr *icmp = icmp6_hdr(skb);
425
426 /* The ICMPv6 type and code fields use the 16-bit transport port
427 * fields, so we need to store them in 16-bit network byte order.
428 */
429 key->tp.src = htons(icmp->icmp6_type);
430 key->tp.dst = htons(icmp->icmp6_code);
431 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
432
433 if (icmp->icmp6_code == 0 &&
434 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
435 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
436 int icmp_len = skb->len - skb_transport_offset(skb);
437 struct nd_msg *nd;
438 int offset;
439
440 /* In order to process neighbor discovery options, we need the
441 * entire packet.
442 */
443 if (unlikely(icmp_len < sizeof(*nd)))
444 return 0;
445
446 if (unlikely(skb_linearize(skb)))
447 return -ENOMEM;
448
449 nd = (struct nd_msg *)skb_transport_header(skb);
450 key->ipv6.nd.target = nd->target;
451
452 icmp_len -= sizeof(*nd);
453 offset = 0;
454 while (icmp_len >= 8) {
455 struct nd_opt_hdr *nd_opt =
456 (struct nd_opt_hdr *)(nd->opt + offset);
457 int opt_len = nd_opt->nd_opt_len * 8;
458
459 if (unlikely(!opt_len || opt_len > icmp_len))
460 return 0;
461
462 /* Store the link layer address if the appropriate
463 * option is provided. It is considered an error if
464 * the same link layer option is specified twice.
465 */
466 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
467 && opt_len == 8) {
468 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
469 goto invalid;
470 ether_addr_copy(key->ipv6.nd.sll,
471 &nd->opt[offset+sizeof(*nd_opt)]);
472 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
473 && opt_len == 8) {
474 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
475 goto invalid;
476 ether_addr_copy(key->ipv6.nd.tll,
477 &nd->opt[offset+sizeof(*nd_opt)]);
478 }
479
480 icmp_len -= opt_len;
481 offset += opt_len;
482 }
483 }
484
485 return 0;
486
487 invalid:
488 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
489 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
490 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
491
492 return 0;
493 }
494
495 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
496 {
497 struct nshhdr *nh;
498 unsigned int nh_ofs = skb_network_offset(skb);
499 u8 version, length;
500 int err;
501
502 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
503 if (unlikely(err))
504 return err;
505
506 nh = nsh_hdr(skb);
507 version = nsh_get_ver(nh);
508 length = nsh_hdr_len(nh);
509
510 if (version != 0)
511 return -EINVAL;
512
513 err = check_header(skb, nh_ofs + length);
514 if (unlikely(err))
515 return err;
516
517 nh = nsh_hdr(skb);
518 key->nsh.base.flags = nsh_get_flags(nh);
519 key->nsh.base.ttl = nsh_get_ttl(nh);
520 key->nsh.base.mdtype = nh->mdtype;
521 key->nsh.base.np = nh->np;
522 key->nsh.base.path_hdr = nh->path_hdr;
523 switch (key->nsh.base.mdtype) {
524 case NSH_M_TYPE1:
525 if (length != NSH_M_TYPE1_LEN)
526 return -EINVAL;
527 memcpy(key->nsh.context, nh->md1.context,
528 sizeof(nh->md1));
529 break;
530 case NSH_M_TYPE2:
531 memset(key->nsh.context, 0,
532 sizeof(nh->md1));
533 break;
534 default:
535 return -EINVAL;
536 }
537
538 return 0;
539 }
540
541 /**
542 * key_extract - extracts a flow key from an Ethernet frame.
543 * @skb: sk_buff that contains the frame, with skb->data pointing to the
544 * Ethernet header
545 * @key: output flow key
546 *
547 * The caller must ensure that skb->len >= ETH_HLEN.
548 *
549 * Returns 0 if successful, otherwise a negative errno value.
550 *
551 * Initializes @skb header fields as follows:
552 *
553 * - skb->mac_header: the L2 header.
554 *
555 * - skb->network_header: just past the L2 header, or just past the
556 * VLAN header, to the first byte of the L2 payload.
557 *
558 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
559 * on output, then just past the IP header, if one is present and
560 * of a correct length, otherwise the same as skb->network_header.
561 * For other key->eth.type values it is left untouched.
562 *
563 * - skb->protocol: the type of the data starting at skb->network_header.
564 * Equals to key->eth.type.
565 */
566 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
567 {
568 int error;
569 struct ethhdr *eth;
570
571 /* Flags are always used as part of stats */
572 key->tp.flags = 0;
573
574 skb_reset_mac_header(skb);
575
576 /* Link layer. */
577 clear_vlan(key);
578 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
579 if (unlikely(eth_type_vlan(skb->protocol)))
580 return -EINVAL;
581
582 skb_reset_network_header(skb);
583 key->eth.type = skb->protocol;
584 } else {
585 eth = eth_hdr(skb);
586 ether_addr_copy(key->eth.src, eth->h_source);
587 ether_addr_copy(key->eth.dst, eth->h_dest);
588
589 __skb_pull(skb, 2 * ETH_ALEN);
590 /* We are going to push all headers that we pull, so no need to
591 * update skb->csum here.
592 */
593
594 if (unlikely(parse_vlan(skb, key)))
595 return -ENOMEM;
596
597 key->eth.type = parse_ethertype(skb);
598 if (unlikely(key->eth.type == htons(0)))
599 return -ENOMEM;
600
601 /* Multiple tagged packets need to retain TPID to satisfy
602 * skb_vlan_pop(), which will later shift the ethertype into
603 * skb->protocol.
604 */
605 if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
606 skb->protocol = key->eth.cvlan.tpid;
607 else
608 skb->protocol = key->eth.type;
609
610 skb_reset_network_header(skb);
611 __skb_push(skb, skb->data - skb_mac_header(skb));
612 }
613
614 skb_reset_mac_len(skb);
615
616 /* Network layer. */
617 if (key->eth.type == htons(ETH_P_IP)) {
618 struct iphdr *nh;
619 __be16 offset;
620
621 error = check_iphdr(skb);
622 if (unlikely(error)) {
623 memset(&key->ip, 0, sizeof(key->ip));
624 memset(&key->ipv4, 0, sizeof(key->ipv4));
625 if (error == -EINVAL) {
626 skb->transport_header = skb->network_header;
627 error = 0;
628 }
629 return error;
630 }
631
632 nh = ip_hdr(skb);
633 key->ipv4.addr.src = nh->saddr;
634 key->ipv4.addr.dst = nh->daddr;
635
636 key->ip.proto = nh->protocol;
637 key->ip.tos = nh->tos;
638 key->ip.ttl = nh->ttl;
639
640 offset = nh->frag_off & htons(IP_OFFSET);
641 if (offset) {
642 key->ip.frag = OVS_FRAG_TYPE_LATER;
643 return 0;
644 }
645 #ifdef HAVE_SKB_GSO_UDP
646 if (nh->frag_off & htons(IP_MF) ||
647 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
648 #else
649 if (nh->frag_off & htons(IP_MF))
650 #endif
651 key->ip.frag = OVS_FRAG_TYPE_FIRST;
652 else
653 key->ip.frag = OVS_FRAG_TYPE_NONE;
654
655 /* Transport layer. */
656 if (key->ip.proto == IPPROTO_TCP) {
657 if (tcphdr_ok(skb)) {
658 struct tcphdr *tcp = tcp_hdr(skb);
659 key->tp.src = tcp->source;
660 key->tp.dst = tcp->dest;
661 key->tp.flags = TCP_FLAGS_BE16(tcp);
662 } else {
663 memset(&key->tp, 0, sizeof(key->tp));
664 }
665
666 } else if (key->ip.proto == IPPROTO_UDP) {
667 if (udphdr_ok(skb)) {
668 struct udphdr *udp = udp_hdr(skb);
669 key->tp.src = udp->source;
670 key->tp.dst = udp->dest;
671 } else {
672 memset(&key->tp, 0, sizeof(key->tp));
673 }
674 } else if (key->ip.proto == IPPROTO_SCTP) {
675 if (sctphdr_ok(skb)) {
676 struct sctphdr *sctp = sctp_hdr(skb);
677 key->tp.src = sctp->source;
678 key->tp.dst = sctp->dest;
679 } else {
680 memset(&key->tp, 0, sizeof(key->tp));
681 }
682 } else if (key->ip.proto == IPPROTO_ICMP) {
683 if (icmphdr_ok(skb)) {
684 struct icmphdr *icmp = icmp_hdr(skb);
685 /* The ICMP type and code fields use the 16-bit
686 * transport port fields, so we need to store
687 * them in 16-bit network byte order.
688 */
689 key->tp.src = htons(icmp->type);
690 key->tp.dst = htons(icmp->code);
691 } else {
692 memset(&key->tp, 0, sizeof(key->tp));
693 }
694 }
695
696 } else if (key->eth.type == htons(ETH_P_ARP) ||
697 key->eth.type == htons(ETH_P_RARP)) {
698 struct arp_eth_header *arp;
699 bool arp_available = arphdr_ok(skb);
700
701 arp = (struct arp_eth_header *)skb_network_header(skb);
702
703 if (arp_available &&
704 arp->ar_hrd == htons(ARPHRD_ETHER) &&
705 arp->ar_pro == htons(ETH_P_IP) &&
706 arp->ar_hln == ETH_ALEN &&
707 arp->ar_pln == 4) {
708
709 /* We only match on the lower 8 bits of the opcode. */
710 if (ntohs(arp->ar_op) <= 0xff)
711 key->ip.proto = ntohs(arp->ar_op);
712 else
713 key->ip.proto = 0;
714
715 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
716 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
717 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
718 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
719 } else {
720 memset(&key->ip, 0, sizeof(key->ip));
721 memset(&key->ipv4, 0, sizeof(key->ipv4));
722 }
723 } else if (eth_p_mpls(key->eth.type)) {
724 size_t stack_len = MPLS_HLEN;
725
726 skb_set_inner_network_header(skb, skb->mac_len);
727 while (1) {
728 __be32 lse;
729
730 error = check_header(skb, skb->mac_len + stack_len);
731 if (unlikely(error))
732 return 0;
733
734 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
735
736 if (stack_len == MPLS_HLEN)
737 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
738
739 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
740 if (lse & htonl(MPLS_LS_S_MASK))
741 break;
742
743 stack_len += MPLS_HLEN;
744 }
745 } else if (key->eth.type == htons(ETH_P_IPV6)) {
746 int nh_len; /* IPv6 Header + Extensions */
747
748 nh_len = parse_ipv6hdr(skb, key);
749 if (unlikely(nh_len < 0)) {
750 switch (nh_len) {
751 case -EINVAL:
752 memset(&key->ip, 0, sizeof(key->ip));
753 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
754 /* fall-through */
755 case -EPROTO:
756 skb->transport_header = skb->network_header;
757 error = 0;
758 break;
759 default:
760 error = nh_len;
761 }
762 return error;
763 }
764
765 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
766 return 0;
767 #ifdef HAVE_SKB_GSO_UDP
768 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
769 key->ip.frag = OVS_FRAG_TYPE_FIRST;
770
771 #endif
772 /* Transport layer. */
773 if (key->ip.proto == NEXTHDR_TCP) {
774 if (tcphdr_ok(skb)) {
775 struct tcphdr *tcp = tcp_hdr(skb);
776 key->tp.src = tcp->source;
777 key->tp.dst = tcp->dest;
778 key->tp.flags = TCP_FLAGS_BE16(tcp);
779 } else {
780 memset(&key->tp, 0, sizeof(key->tp));
781 }
782 } else if (key->ip.proto == NEXTHDR_UDP) {
783 if (udphdr_ok(skb)) {
784 struct udphdr *udp = udp_hdr(skb);
785 key->tp.src = udp->source;
786 key->tp.dst = udp->dest;
787 } else {
788 memset(&key->tp, 0, sizeof(key->tp));
789 }
790 } else if (key->ip.proto == NEXTHDR_SCTP) {
791 if (sctphdr_ok(skb)) {
792 struct sctphdr *sctp = sctp_hdr(skb);
793 key->tp.src = sctp->source;
794 key->tp.dst = sctp->dest;
795 } else {
796 memset(&key->tp, 0, sizeof(key->tp));
797 }
798 } else if (key->ip.proto == NEXTHDR_ICMP) {
799 if (icmp6hdr_ok(skb)) {
800 error = parse_icmpv6(skb, key, nh_len);
801 if (error)
802 return error;
803 } else {
804 memset(&key->tp, 0, sizeof(key->tp));
805 }
806 }
807 } else if (key->eth.type == htons(ETH_P_NSH)) {
808 error = parse_nsh(skb, key);
809 if (error)
810 return error;
811 }
812 return 0;
813 }
814
815 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
816 {
817 int res;
818
819 res = key_extract(skb, key);
820 if (!res)
821 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
822
823 return res;
824 }
825
826 static int key_extract_mac_proto(struct sk_buff *skb)
827 {
828 switch (skb->dev->type) {
829 case ARPHRD_ETHER:
830 return MAC_PROTO_ETHERNET;
831 case ARPHRD_NONE:
832 if (skb->protocol == htons(ETH_P_TEB))
833 return MAC_PROTO_ETHERNET;
834 return MAC_PROTO_NONE;
835 }
836 WARN_ON_ONCE(1);
837 return -EINVAL;
838 }
839
840 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
841 struct sk_buff *skb, struct sw_flow_key *key)
842 {
843 int res, err;
844
845 /* Extract metadata from packet. */
846 if (tun_info) {
847 key->tun_proto = ip_tunnel_info_af(tun_info);
848 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
849 BUILD_BUG_ON(((1 << (sizeof(tun_info->options_len) * 8)) - 1) >
850 sizeof(key->tun_opts));
851
852 if (tun_info->options_len) {
853 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
854 tun_info);
855 key->tun_opts_len = tun_info->options_len;
856 } else {
857 key->tun_opts_len = 0;
858 }
859 } else {
860 key->tun_proto = 0;
861 key->tun_opts_len = 0;
862 memset(&key->tun_key, 0, sizeof(key->tun_key));
863 }
864
865 key->phy.priority = skb->priority;
866 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
867 key->phy.skb_mark = skb->mark;
868 key->ovs_flow_hash = 0;
869 res = key_extract_mac_proto(skb);
870 if (res < 0)
871 return res;
872 key->mac_proto = res;
873 key->recirc_id = 0;
874
875 err = key_extract(skb, key);
876 if (!err)
877 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
878 return err;
879 }
880
881 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
882 struct sk_buff *skb,
883 struct sw_flow_key *key, bool log)
884 {
885 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
886 u64 attrs = 0;
887 int err;
888
889 err = parse_flow_nlattrs(attr, a, &attrs, log);
890 if (err)
891 return -EINVAL;
892
893 /* Extract metadata from netlink attributes. */
894 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
895 if (err)
896 return err;
897
898 /* key_extract assumes that skb->protocol is set-up for
899 * layer 3 packets which is the case for other callers,
900 * in particular packets received from the network stack.
901 * Here the correct value can be set from the metadata
902 * extracted above.
903 * For L2 packet key eth type would be zero. skb protocol
904 * would be set to correct value later during key-extact.
905 */
906
907 skb->protocol = key->eth.type;
908 err = key_extract(skb, key);
909 if (err)
910 return err;
911
912 /* Check that we have conntrack original direction tuple metadata only
913 * for packets for which it makes sense. Otherwise the key may be
914 * corrupted due to overlapping key fields.
915 */
916 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
917 key->eth.type != htons(ETH_P_IP))
918 return -EINVAL;
919 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
920 (key->eth.type != htons(ETH_P_IPV6) ||
921 sw_flow_key_is_nd(key)))
922 return -EINVAL;
923
924 return 0;
925 }