]> git.proxmox.com Git - ovs.git/blob - datapath/flow.c
datapath: Fix pop_vlan action for double tagged frames
[ovs.git] / datapath / flow.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <linux/timekeeping.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 #include <net/nsh.h>
50
51 #include "datapath.h"
52 #include "conntrack.h"
53 #include "flow.h"
54 #include "flow_netlink.h"
55 #include "vport.h"
56
57 u64 ovs_flow_used_time(unsigned long flow_jiffies)
58 {
59 struct timespec64 cur_ts;
60 u64 cur_ms, idle_ms;
61
62 ktime_get_ts64(&cur_ts);
63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
65 cur_ts.tv_nsec / NSEC_PER_MSEC;
66
67 return cur_ms - idle_ms;
68 }
69
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
71
72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73 const struct sk_buff *skb)
74 {
75 struct flow_stats *stats;
76 unsigned int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79 stats = rcu_dereference(flow->stats[cpu]);
80
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
90
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
93 */
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
99 */
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
104
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 numa_node_id());
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
118
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122 goto unlock;
123 }
124 }
125 flow->stats_last_writer = cpu;
126 }
127 }
128
129 stats->used = jiffies;
130 stats->packet_count++;
131 stats->byte_count += len;
132 stats->tcp_flags |= tcp_flags;
133 unlock:
134 spin_unlock(&stats->lock);
135 }
136
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow *flow,
139 struct ovs_flow_stats *ovs_stats,
140 unsigned long *used, __be16 *tcp_flags)
141 {
142 int cpu;
143
144 *used = 0;
145 *tcp_flags = 0;
146 memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151
152 if (stats) {
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
155 */
156 spin_lock_bh(&stats->lock);
157 if (!*used || time_after(stats->used, *used))
158 *used = stats->used;
159 *tcp_flags |= stats->tcp_flags;
160 ovs_stats->n_packets += stats->packet_count;
161 ovs_stats->n_bytes += stats->byte_count;
162 spin_unlock_bh(&stats->lock);
163 }
164 }
165 }
166
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow *flow)
169 {
170 int cpu;
171
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175
176 if (stats) {
177 spin_lock_bh(&stats->lock);
178 stats->used = 0;
179 stats->packet_count = 0;
180 stats->byte_count = 0;
181 stats->tcp_flags = 0;
182 spin_unlock_bh(&stats->lock);
183 }
184 }
185 }
186
187 static int check_header(struct sk_buff *skb, int len)
188 {
189 if (unlikely(skb->len < len))
190 return -EINVAL;
191 if (unlikely(!pskb_may_pull(skb, len)))
192 return -ENOMEM;
193 return 0;
194 }
195
196 static bool arphdr_ok(struct sk_buff *skb)
197 {
198 return pskb_may_pull(skb, skb_network_offset(skb) +
199 sizeof(struct arp_eth_header));
200 }
201
202 static int check_iphdr(struct sk_buff *skb)
203 {
204 unsigned int nh_ofs = skb_network_offset(skb);
205 unsigned int ip_len;
206 int err;
207
208 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209 if (unlikely(err))
210 return err;
211
212 ip_len = ip_hdrlen(skb);
213 if (unlikely(ip_len < sizeof(struct iphdr) ||
214 skb->len < nh_ofs + ip_len))
215 return -EINVAL;
216
217 skb_set_transport_header(skb, nh_ofs + ip_len);
218 return 0;
219 }
220
221 static bool tcphdr_ok(struct sk_buff *skb)
222 {
223 int th_ofs = skb_transport_offset(skb);
224 int tcp_len;
225
226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227 return false;
228
229 tcp_len = tcp_hdrlen(skb);
230 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231 skb->len < th_ofs + tcp_len))
232 return false;
233
234 return true;
235 }
236
237 static bool udphdr_ok(struct sk_buff *skb)
238 {
239 return pskb_may_pull(skb, skb_transport_offset(skb) +
240 sizeof(struct udphdr));
241 }
242
243 static bool sctphdr_ok(struct sk_buff *skb)
244 {
245 return pskb_may_pull(skb, skb_transport_offset(skb) +
246 sizeof(struct sctphdr));
247 }
248
249 static bool icmphdr_ok(struct sk_buff *skb)
250 {
251 return pskb_may_pull(skb, skb_transport_offset(skb) +
252 sizeof(struct icmphdr));
253 }
254
255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256 {
257 unsigned int nh_ofs = skb_network_offset(skb);
258 unsigned int nh_len;
259 int payload_ofs;
260 struct ipv6hdr *nh;
261 uint8_t nexthdr;
262 __be16 frag_off;
263 int err;
264
265 err = check_header(skb, nh_ofs + sizeof(*nh));
266 if (unlikely(err))
267 return err;
268
269 nh = ipv6_hdr(skb);
270 nexthdr = nh->nexthdr;
271 payload_ofs = (u8 *)(nh + 1) - skb->data;
272
273 key->ip.proto = NEXTHDR_NONE;
274 key->ip.tos = ipv6_get_dsfield(nh);
275 key->ip.ttl = nh->hop_limit;
276 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277 key->ipv6.addr.src = nh->saddr;
278 key->ipv6.addr.dst = nh->daddr;
279
280 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
281
282 if (frag_off) {
283 if (frag_off & htons(~0x7))
284 key->ip.frag = OVS_FRAG_TYPE_LATER;
285 else
286 key->ip.frag = OVS_FRAG_TYPE_FIRST;
287 } else {
288 key->ip.frag = OVS_FRAG_TYPE_NONE;
289 }
290
291 /* Delayed handling of error in ipv6_skip_exthdr() as it
292 * always sets frag_off to a valid value which may be
293 * used to set key->ip.frag above.
294 */
295 if (unlikely(payload_ofs < 0))
296 return -EPROTO;
297
298 nh_len = payload_ofs - nh_ofs;
299 skb_set_transport_header(skb, nh_ofs + nh_len);
300 key->ip.proto = nexthdr;
301 return nh_len;
302 }
303
304 static bool icmp6hdr_ok(struct sk_buff *skb)
305 {
306 return pskb_may_pull(skb, skb_transport_offset(skb) +
307 sizeof(struct icmp6hdr));
308 }
309
310 /**
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
315 */
316 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317 bool untag_vlan)
318 {
319 struct vlan_head *vh = (struct vlan_head *)skb->data;
320
321 if (likely(!eth_type_vlan(vh->tpid)))
322 return 0;
323
324 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325 return 0;
326
327 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328 sizeof(__be16))))
329 return -ENOMEM;
330
331 vh = (struct vlan_head *)skb->data;
332 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333 key_vh->tpid = vh->tpid;
334
335 if (unlikely(untag_vlan)) {
336 int offset = skb->data - skb_mac_header(skb);
337 u16 tci;
338 int err;
339
340 __skb_push(skb, offset);
341 err = __skb_vlan_pop(skb, &tci);
342 __skb_pull(skb, offset);
343 if (err)
344 return err;
345 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346 } else {
347 __skb_pull(skb, sizeof(struct vlan_head));
348 }
349 return 1;
350 }
351
352 static void clear_vlan(struct sw_flow_key *key)
353 {
354 key->eth.vlan.tci = 0;
355 key->eth.vlan.tpid = 0;
356 key->eth.cvlan.tci = 0;
357 key->eth.cvlan.tpid = 0;
358 }
359
360 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
361 {
362 int res;
363
364 key->eth.vlan.tci = 0;
365 key->eth.vlan.tpid = 0;
366 key->eth.cvlan.tci = 0;
367 key->eth.cvlan.tpid = 0;
368
369 if (skb_vlan_tag_present(skb)) {
370 key->eth.vlan.tci = htons(skb->vlan_tci);
371 key->eth.vlan.tpid = skb->vlan_proto;
372 } else {
373 /* Parse outer vlan tag in the non-accelerated case. */
374 res = parse_vlan_tag(skb, &key->eth.vlan, true);
375 if (res <= 0)
376 return res;
377 }
378
379 /* Parse inner vlan tag. */
380 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
381 if (res <= 0)
382 return res;
383
384 return 0;
385 }
386
387 static __be16 parse_ethertype(struct sk_buff *skb)
388 {
389 struct llc_snap_hdr {
390 u8 dsap; /* Always 0xAA */
391 u8 ssap; /* Always 0xAA */
392 u8 ctrl;
393 u8 oui[3];
394 __be16 ethertype;
395 };
396 struct llc_snap_hdr *llc;
397 __be16 proto;
398
399 proto = *(__be16 *) skb->data;
400 __skb_pull(skb, sizeof(__be16));
401
402 if (eth_proto_is_802_3(proto))
403 return proto;
404
405 if (skb->len < sizeof(struct llc_snap_hdr))
406 return htons(ETH_P_802_2);
407
408 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
409 return htons(0);
410
411 llc = (struct llc_snap_hdr *) skb->data;
412 if (llc->dsap != LLC_SAP_SNAP ||
413 llc->ssap != LLC_SAP_SNAP ||
414 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
415 return htons(ETH_P_802_2);
416
417 __skb_pull(skb, sizeof(struct llc_snap_hdr));
418
419 if (eth_proto_is_802_3(llc->ethertype))
420 return llc->ethertype;
421
422 return htons(ETH_P_802_2);
423 }
424
425 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
426 int nh_len)
427 {
428 struct icmp6hdr *icmp = icmp6_hdr(skb);
429
430 /* The ICMPv6 type and code fields use the 16-bit transport port
431 * fields, so we need to store them in 16-bit network byte order.
432 */
433 key->tp.src = htons(icmp->icmp6_type);
434 key->tp.dst = htons(icmp->icmp6_code);
435 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
436
437 if (icmp->icmp6_code == 0 &&
438 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
439 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
440 int icmp_len = skb->len - skb_transport_offset(skb);
441 struct nd_msg *nd;
442 int offset;
443
444 /* In order to process neighbor discovery options, we need the
445 * entire packet.
446 */
447 if (unlikely(icmp_len < sizeof(*nd)))
448 return 0;
449
450 if (unlikely(skb_linearize(skb)))
451 return -ENOMEM;
452
453 nd = (struct nd_msg *)skb_transport_header(skb);
454 key->ipv6.nd.target = nd->target;
455
456 icmp_len -= sizeof(*nd);
457 offset = 0;
458 while (icmp_len >= 8) {
459 struct nd_opt_hdr *nd_opt =
460 (struct nd_opt_hdr *)(nd->opt + offset);
461 int opt_len = nd_opt->nd_opt_len * 8;
462
463 if (unlikely(!opt_len || opt_len > icmp_len))
464 return 0;
465
466 /* Store the link layer address if the appropriate
467 * option is provided. It is considered an error if
468 * the same link layer option is specified twice.
469 */
470 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
471 && opt_len == 8) {
472 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
473 goto invalid;
474 ether_addr_copy(key->ipv6.nd.sll,
475 &nd->opt[offset+sizeof(*nd_opt)]);
476 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
477 && opt_len == 8) {
478 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
479 goto invalid;
480 ether_addr_copy(key->ipv6.nd.tll,
481 &nd->opt[offset+sizeof(*nd_opt)]);
482 }
483
484 icmp_len -= opt_len;
485 offset += opt_len;
486 }
487 }
488
489 return 0;
490
491 invalid:
492 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
493 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
494 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
495
496 return 0;
497 }
498
499 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
500 {
501 struct nshhdr *nh;
502 unsigned int nh_ofs = skb_network_offset(skb);
503 u8 version, length;
504 int err;
505
506 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
507 if (unlikely(err))
508 return err;
509
510 nh = nsh_hdr(skb);
511 version = nsh_get_ver(nh);
512 length = nsh_hdr_len(nh);
513
514 if (version != 0)
515 return -EINVAL;
516
517 err = check_header(skb, nh_ofs + length);
518 if (unlikely(err))
519 return err;
520
521 nh = nsh_hdr(skb);
522 key->nsh.base.flags = nsh_get_flags(nh);
523 key->nsh.base.ttl = nsh_get_ttl(nh);
524 key->nsh.base.mdtype = nh->mdtype;
525 key->nsh.base.np = nh->np;
526 key->nsh.base.path_hdr = nh->path_hdr;
527 switch (key->nsh.base.mdtype) {
528 case NSH_M_TYPE1:
529 if (length != NSH_M_TYPE1_LEN)
530 return -EINVAL;
531 memcpy(key->nsh.context, nh->md1.context,
532 sizeof(nh->md1));
533 break;
534 case NSH_M_TYPE2:
535 memset(key->nsh.context, 0,
536 sizeof(nh->md1));
537 break;
538 default:
539 return -EINVAL;
540 }
541
542 return 0;
543 }
544
545 /**
546 * key_extract - extracts a flow key from an Ethernet frame.
547 * @skb: sk_buff that contains the frame, with skb->data pointing to the
548 * Ethernet header
549 * @key: output flow key
550 *
551 * The caller must ensure that skb->len >= ETH_HLEN.
552 *
553 * Returns 0 if successful, otherwise a negative errno value.
554 *
555 * Initializes @skb header fields as follows:
556 *
557 * - skb->mac_header: the L2 header.
558 *
559 * - skb->network_header: just past the L2 header, or just past the
560 * VLAN header, to the first byte of the L2 payload.
561 *
562 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
563 * on output, then just past the IP header, if one is present and
564 * of a correct length, otherwise the same as skb->network_header.
565 * For other key->eth.type values it is left untouched.
566 *
567 * - skb->protocol: the type of the data starting at skb->network_header.
568 * Equals to key->eth.type.
569 */
570 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
571 {
572 int error;
573 struct ethhdr *eth;
574
575 /* Flags are always used as part of stats */
576 key->tp.flags = 0;
577
578 skb_reset_mac_header(skb);
579
580 /* Link layer. */
581 clear_vlan(key);
582 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
583 if (unlikely(eth_type_vlan(skb->protocol)))
584 return -EINVAL;
585
586 skb_reset_network_header(skb);
587 key->eth.type = skb->protocol;
588 } else {
589 eth = eth_hdr(skb);
590 ether_addr_copy(key->eth.src, eth->h_source);
591 ether_addr_copy(key->eth.dst, eth->h_dest);
592
593 __skb_pull(skb, 2 * ETH_ALEN);
594 /* We are going to push all headers that we pull, so no need to
595 * update skb->csum here.
596 */
597
598 if (unlikely(parse_vlan(skb, key)))
599 return -ENOMEM;
600
601 key->eth.type = parse_ethertype(skb);
602 if (unlikely(key->eth.type == htons(0)))
603 return -ENOMEM;
604
605 /* Multiple tagged packets need to retain TPID to satisfy
606 * skb_vlan_pop(), which will later shift the ethertype into
607 * skb->protocol.
608 */
609 if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
610 skb->protocol = key->eth.cvlan.tpid;
611 else
612 skb->protocol = key->eth.type;
613
614 skb_reset_network_header(skb);
615 __skb_push(skb, skb->data - skb_mac_header(skb));
616 }
617
618 skb_reset_mac_len(skb);
619
620 /* Network layer. */
621 if (key->eth.type == htons(ETH_P_IP)) {
622 struct iphdr *nh;
623 __be16 offset;
624
625 error = check_iphdr(skb);
626 if (unlikely(error)) {
627 memset(&key->ip, 0, sizeof(key->ip));
628 memset(&key->ipv4, 0, sizeof(key->ipv4));
629 if (error == -EINVAL) {
630 skb->transport_header = skb->network_header;
631 error = 0;
632 }
633 return error;
634 }
635
636 nh = ip_hdr(skb);
637 key->ipv4.addr.src = nh->saddr;
638 key->ipv4.addr.dst = nh->daddr;
639
640 key->ip.proto = nh->protocol;
641 key->ip.tos = nh->tos;
642 key->ip.ttl = nh->ttl;
643
644 offset = nh->frag_off & htons(IP_OFFSET);
645 if (offset) {
646 key->ip.frag = OVS_FRAG_TYPE_LATER;
647 return 0;
648 }
649 #ifdef HAVE_SKB_GSO_UDP
650 if (nh->frag_off & htons(IP_MF) ||
651 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
652 #else
653 if (nh->frag_off & htons(IP_MF))
654 #endif
655 key->ip.frag = OVS_FRAG_TYPE_FIRST;
656 else
657 key->ip.frag = OVS_FRAG_TYPE_NONE;
658
659 /* Transport layer. */
660 if (key->ip.proto == IPPROTO_TCP) {
661 if (tcphdr_ok(skb)) {
662 struct tcphdr *tcp = tcp_hdr(skb);
663 key->tp.src = tcp->source;
664 key->tp.dst = tcp->dest;
665 key->tp.flags = TCP_FLAGS_BE16(tcp);
666 } else {
667 memset(&key->tp, 0, sizeof(key->tp));
668 }
669
670 } else if (key->ip.proto == IPPROTO_UDP) {
671 if (udphdr_ok(skb)) {
672 struct udphdr *udp = udp_hdr(skb);
673 key->tp.src = udp->source;
674 key->tp.dst = udp->dest;
675 } else {
676 memset(&key->tp, 0, sizeof(key->tp));
677 }
678 } else if (key->ip.proto == IPPROTO_SCTP) {
679 if (sctphdr_ok(skb)) {
680 struct sctphdr *sctp = sctp_hdr(skb);
681 key->tp.src = sctp->source;
682 key->tp.dst = sctp->dest;
683 } else {
684 memset(&key->tp, 0, sizeof(key->tp));
685 }
686 } else if (key->ip.proto == IPPROTO_ICMP) {
687 if (icmphdr_ok(skb)) {
688 struct icmphdr *icmp = icmp_hdr(skb);
689 /* The ICMP type and code fields use the 16-bit
690 * transport port fields, so we need to store
691 * them in 16-bit network byte order.
692 */
693 key->tp.src = htons(icmp->type);
694 key->tp.dst = htons(icmp->code);
695 } else {
696 memset(&key->tp, 0, sizeof(key->tp));
697 }
698 }
699
700 } else if (key->eth.type == htons(ETH_P_ARP) ||
701 key->eth.type == htons(ETH_P_RARP)) {
702 struct arp_eth_header *arp;
703 bool arp_available = arphdr_ok(skb);
704
705 arp = (struct arp_eth_header *)skb_network_header(skb);
706
707 if (arp_available &&
708 arp->ar_hrd == htons(ARPHRD_ETHER) &&
709 arp->ar_pro == htons(ETH_P_IP) &&
710 arp->ar_hln == ETH_ALEN &&
711 arp->ar_pln == 4) {
712
713 /* We only match on the lower 8 bits of the opcode. */
714 if (ntohs(arp->ar_op) <= 0xff)
715 key->ip.proto = ntohs(arp->ar_op);
716 else
717 key->ip.proto = 0;
718
719 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
720 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
721 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
722 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
723 } else {
724 memset(&key->ip, 0, sizeof(key->ip));
725 memset(&key->ipv4, 0, sizeof(key->ipv4));
726 }
727 } else if (eth_p_mpls(key->eth.type)) {
728 size_t stack_len = MPLS_HLEN;
729
730 skb_set_inner_network_header(skb, skb->mac_len);
731 while (1) {
732 __be32 lse;
733
734 error = check_header(skb, skb->mac_len + stack_len);
735 if (unlikely(error))
736 return 0;
737
738 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
739
740 if (stack_len == MPLS_HLEN)
741 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
742
743 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
744 if (lse & htonl(MPLS_LS_S_MASK))
745 break;
746
747 stack_len += MPLS_HLEN;
748 }
749 } else if (key->eth.type == htons(ETH_P_IPV6)) {
750 int nh_len; /* IPv6 Header + Extensions */
751
752 nh_len = parse_ipv6hdr(skb, key);
753 if (unlikely(nh_len < 0)) {
754 switch (nh_len) {
755 case -EINVAL:
756 memset(&key->ip, 0, sizeof(key->ip));
757 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
758 /* fall-through */
759 case -EPROTO:
760 skb->transport_header = skb->network_header;
761 error = 0;
762 break;
763 default:
764 error = nh_len;
765 }
766 return error;
767 }
768
769 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
770 return 0;
771 #ifdef HAVE_SKB_GSO_UDP
772 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
773 key->ip.frag = OVS_FRAG_TYPE_FIRST;
774
775 #endif
776 /* Transport layer. */
777 if (key->ip.proto == NEXTHDR_TCP) {
778 if (tcphdr_ok(skb)) {
779 struct tcphdr *tcp = tcp_hdr(skb);
780 key->tp.src = tcp->source;
781 key->tp.dst = tcp->dest;
782 key->tp.flags = TCP_FLAGS_BE16(tcp);
783 } else {
784 memset(&key->tp, 0, sizeof(key->tp));
785 }
786 } else if (key->ip.proto == NEXTHDR_UDP) {
787 if (udphdr_ok(skb)) {
788 struct udphdr *udp = udp_hdr(skb);
789 key->tp.src = udp->source;
790 key->tp.dst = udp->dest;
791 } else {
792 memset(&key->tp, 0, sizeof(key->tp));
793 }
794 } else if (key->ip.proto == NEXTHDR_SCTP) {
795 if (sctphdr_ok(skb)) {
796 struct sctphdr *sctp = sctp_hdr(skb);
797 key->tp.src = sctp->source;
798 key->tp.dst = sctp->dest;
799 } else {
800 memset(&key->tp, 0, sizeof(key->tp));
801 }
802 } else if (key->ip.proto == NEXTHDR_ICMP) {
803 if (icmp6hdr_ok(skb)) {
804 error = parse_icmpv6(skb, key, nh_len);
805 if (error)
806 return error;
807 } else {
808 memset(&key->tp, 0, sizeof(key->tp));
809 }
810 }
811 } else if (key->eth.type == htons(ETH_P_NSH)) {
812 error = parse_nsh(skb, key);
813 if (error)
814 return error;
815 }
816 return 0;
817 }
818
819 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
820 {
821 int res;
822
823 res = key_extract(skb, key);
824 if (!res)
825 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
826
827 return res;
828 }
829
830 static int key_extract_mac_proto(struct sk_buff *skb)
831 {
832 switch (skb->dev->type) {
833 case ARPHRD_ETHER:
834 return MAC_PROTO_ETHERNET;
835 case ARPHRD_NONE:
836 if (skb->protocol == htons(ETH_P_TEB))
837 return MAC_PROTO_ETHERNET;
838 return MAC_PROTO_NONE;
839 }
840 WARN_ON_ONCE(1);
841 return -EINVAL;
842 }
843
844 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
845 struct sk_buff *skb, struct sw_flow_key *key)
846 {
847 int res, err;
848
849 /* Extract metadata from packet. */
850 if (tun_info) {
851 key->tun_proto = ip_tunnel_info_af(tun_info);
852 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
853 BUILD_BUG_ON(((1 << (sizeof(tun_info->options_len) * 8)) - 1) >
854 sizeof(key->tun_opts));
855
856 if (tun_info->options_len) {
857 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
858 tun_info);
859 key->tun_opts_len = tun_info->options_len;
860 } else {
861 key->tun_opts_len = 0;
862 }
863 } else {
864 key->tun_proto = 0;
865 key->tun_opts_len = 0;
866 memset(&key->tun_key, 0, sizeof(key->tun_key));
867 }
868
869 key->phy.priority = skb->priority;
870 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
871 key->phy.skb_mark = skb->mark;
872 key->ovs_flow_hash = 0;
873 res = key_extract_mac_proto(skb);
874 if (res < 0)
875 return res;
876 key->mac_proto = res;
877 key->recirc_id = 0;
878
879 err = key_extract(skb, key);
880 if (!err)
881 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
882 return err;
883 }
884
885 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
886 struct sk_buff *skb,
887 struct sw_flow_key *key, bool log)
888 {
889 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
890 u64 attrs = 0;
891 int err;
892
893 err = parse_flow_nlattrs(attr, a, &attrs, log);
894 if (err)
895 return -EINVAL;
896
897 /* Extract metadata from netlink attributes. */
898 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
899 if (err)
900 return err;
901
902 /* key_extract assumes that skb->protocol is set-up for
903 * layer 3 packets which is the case for other callers,
904 * in particular packets received from the network stack.
905 * Here the correct value can be set from the metadata
906 * extracted above.
907 * For L2 packet key eth type would be zero. skb protocol
908 * would be set to correct value later during key-extact.
909 */
910
911 skb->protocol = key->eth.type;
912 err = key_extract(skb, key);
913 if (err)
914 return err;
915
916 /* Check that we have conntrack original direction tuple metadata only
917 * for packets for which it makes sense. Otherwise the key may be
918 * corrupted due to overlapping key fields.
919 */
920 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
921 key->eth.type != htons(ETH_P_IP))
922 return -EINVAL;
923 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
924 (key->eth.type != htons(ETH_P_IPV6) ||
925 sw_flow_key_is_nd(key)))
926 return -EINVAL;
927
928 return 0;
929 }