]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/flow.c
Widen TCP flags handling.
[mirror_ovs.git] / datapath / flow.c
1 /*
2 * Copyright (c) 2007-2013 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47
48 #include "vlan.h"
49
50 u64 ovs_flow_used_time(unsigned long flow_jiffies)
51 {
52 struct timespec cur_ts;
53 u64 cur_ms, idle_ms;
54
55 ktime_get_ts(&cur_ts);
56 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
57 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
58 cur_ts.tv_nsec / NSEC_PER_MSEC;
59
60 return cur_ms - idle_ms;
61 }
62
63 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
64
65 void ovs_flow_stats_update(struct sw_flow *flow, struct sk_buff *skb)
66 {
67 struct sw_flow_stats *stats = &flow->stats[smp_processor_id()];
68 __be16 tcp_flags = 0;
69
70 if ((flow->key.eth.type == htons(ETH_P_IP) ||
71 flow->key.eth.type == htons(ETH_P_IPV6)) &&
72 flow->key.ip.proto == IPPROTO_TCP &&
73 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
74 tcp_flags = TCP_FLAGS_BE16(tcp_hdr(skb));
75 }
76
77 spin_lock(&stats->lock);
78 stats->used = jiffies;
79 stats->packet_count++;
80 stats->byte_count += skb->len;
81 stats->tcp_flags |= tcp_flags;
82 spin_unlock(&stats->lock);
83 }
84
85 void ovs_flow_stats_get(struct sw_flow *flow, struct sw_flow_stats *res)
86 {
87 int cpu, cur_cpu;
88
89 memset(res, 0, sizeof(*res));
90
91 cur_cpu = get_cpu();
92 for_each_possible_cpu(cpu) {
93 struct sw_flow_stats *stats = &flow->stats[cpu];
94
95 if (cpu == cur_cpu)
96 local_bh_disable();
97
98 spin_lock(&stats->lock);
99 if (time_after(stats->used, res->used))
100 res->used = stats->used;
101 res->packet_count += stats->packet_count;
102 res->byte_count += stats->byte_count;
103 res->tcp_flags |= stats->tcp_flags;
104 spin_unlock(&stats->lock);
105
106 if (cpu == cur_cpu)
107 local_bh_enable();
108
109 }
110 put_cpu();
111 }
112
113 void ovs_flow_stats_clear(struct sw_flow *flow)
114 {
115 int cpu, cur_cpu;
116
117 cur_cpu = get_cpu();
118 for_each_possible_cpu(cpu) {
119 struct sw_flow_stats *stats = &flow->stats[cpu];
120
121 if (cpu == cur_cpu)
122 local_bh_disable();
123
124 spin_lock(&stats->lock);
125 stats->used = 0;
126 stats->packet_count = 0;
127 stats->byte_count = 0;
128 stats->tcp_flags = 0;
129 spin_unlock(&stats->lock);
130
131 if (cpu == cur_cpu)
132 local_bh_enable();
133 }
134 put_cpu();
135 }
136
137 static int check_header(struct sk_buff *skb, int len)
138 {
139 if (unlikely(skb->len < len))
140 return -EINVAL;
141 if (unlikely(!pskb_may_pull(skb, len)))
142 return -ENOMEM;
143 return 0;
144 }
145
146 static bool arphdr_ok(struct sk_buff *skb)
147 {
148 return pskb_may_pull(skb, skb_network_offset(skb) +
149 sizeof(struct arp_eth_header));
150 }
151
152 static int check_iphdr(struct sk_buff *skb)
153 {
154 unsigned int nh_ofs = skb_network_offset(skb);
155 unsigned int ip_len;
156 int err;
157
158 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
159 if (unlikely(err))
160 return err;
161
162 ip_len = ip_hdrlen(skb);
163 if (unlikely(ip_len < sizeof(struct iphdr) ||
164 skb->len < nh_ofs + ip_len))
165 return -EINVAL;
166
167 skb_set_transport_header(skb, nh_ofs + ip_len);
168 return 0;
169 }
170
171 static bool tcphdr_ok(struct sk_buff *skb)
172 {
173 int th_ofs = skb_transport_offset(skb);
174 int tcp_len;
175
176 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
177 return false;
178
179 tcp_len = tcp_hdrlen(skb);
180 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
181 skb->len < th_ofs + tcp_len))
182 return false;
183
184 return true;
185 }
186
187 static bool udphdr_ok(struct sk_buff *skb)
188 {
189 return pskb_may_pull(skb, skb_transport_offset(skb) +
190 sizeof(struct udphdr));
191 }
192
193 static bool sctphdr_ok(struct sk_buff *skb)
194 {
195 return pskb_may_pull(skb, skb_transport_offset(skb) +
196 sizeof(struct sctphdr));
197 }
198
199 static bool icmphdr_ok(struct sk_buff *skb)
200 {
201 return pskb_may_pull(skb, skb_transport_offset(skb) +
202 sizeof(struct icmphdr));
203 }
204
205 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
206 {
207 unsigned int nh_ofs = skb_network_offset(skb);
208 unsigned int nh_len;
209 int payload_ofs;
210 struct ipv6hdr *nh;
211 uint8_t nexthdr;
212 __be16 frag_off;
213 int err;
214
215 err = check_header(skb, nh_ofs + sizeof(*nh));
216 if (unlikely(err))
217 return err;
218
219 nh = ipv6_hdr(skb);
220 nexthdr = nh->nexthdr;
221 payload_ofs = (u8 *)(nh + 1) - skb->data;
222
223 key->ip.proto = NEXTHDR_NONE;
224 key->ip.tos = ipv6_get_dsfield(nh);
225 key->ip.ttl = nh->hop_limit;
226 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
227 key->ipv6.addr.src = nh->saddr;
228 key->ipv6.addr.dst = nh->daddr;
229
230 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
231 if (unlikely(payload_ofs < 0))
232 return -EINVAL;
233
234 if (frag_off) {
235 if (frag_off & htons(~0x7))
236 key->ip.frag = OVS_FRAG_TYPE_LATER;
237 else
238 key->ip.frag = OVS_FRAG_TYPE_FIRST;
239 }
240
241 nh_len = payload_ofs - nh_ofs;
242 skb_set_transport_header(skb, nh_ofs + nh_len);
243 key->ip.proto = nexthdr;
244 return nh_len;
245 }
246
247 static bool icmp6hdr_ok(struct sk_buff *skb)
248 {
249 return pskb_may_pull(skb, skb_transport_offset(skb) +
250 sizeof(struct icmp6hdr));
251 }
252
253 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
254 {
255 struct qtag_prefix {
256 __be16 eth_type; /* ETH_P_8021Q */
257 __be16 tci;
258 };
259 struct qtag_prefix *qp;
260
261 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
262 return 0;
263
264 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
265 sizeof(__be16))))
266 return -ENOMEM;
267
268 qp = (struct qtag_prefix *) skb->data;
269 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
270 __skb_pull(skb, sizeof(struct qtag_prefix));
271
272 return 0;
273 }
274
275 static __be16 parse_ethertype(struct sk_buff *skb)
276 {
277 struct llc_snap_hdr {
278 u8 dsap; /* Always 0xAA */
279 u8 ssap; /* Always 0xAA */
280 u8 ctrl;
281 u8 oui[3];
282 __be16 ethertype;
283 };
284 struct llc_snap_hdr *llc;
285 __be16 proto;
286
287 proto = *(__be16 *) skb->data;
288 __skb_pull(skb, sizeof(__be16));
289
290 if (ntohs(proto) >= ETH_P_802_3_MIN)
291 return proto;
292
293 if (skb->len < sizeof(struct llc_snap_hdr))
294 return htons(ETH_P_802_2);
295
296 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
297 return htons(0);
298
299 llc = (struct llc_snap_hdr *) skb->data;
300 if (llc->dsap != LLC_SAP_SNAP ||
301 llc->ssap != LLC_SAP_SNAP ||
302 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
303 return htons(ETH_P_802_2);
304
305 __skb_pull(skb, sizeof(struct llc_snap_hdr));
306
307 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
308 return llc->ethertype;
309
310 return htons(ETH_P_802_2);
311 }
312
313 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
314 int nh_len)
315 {
316 struct icmp6hdr *icmp = icmp6_hdr(skb);
317
318 /* The ICMPv6 type and code fields use the 16-bit transport port
319 * fields, so we need to store them in 16-bit network byte order.
320 */
321 key->ipv6.tp.src = htons(icmp->icmp6_type);
322 key->ipv6.tp.dst = htons(icmp->icmp6_code);
323
324 if (icmp->icmp6_code == 0 &&
325 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
326 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
327 int icmp_len = skb->len - skb_transport_offset(skb);
328 struct nd_msg *nd;
329 int offset;
330
331 /* In order to process neighbor discovery options, we need the
332 * entire packet.
333 */
334 if (unlikely(icmp_len < sizeof(*nd)))
335 return 0;
336
337 if (unlikely(skb_linearize(skb)))
338 return -ENOMEM;
339
340 nd = (struct nd_msg *)skb_transport_header(skb);
341 key->ipv6.nd.target = nd->target;
342
343 icmp_len -= sizeof(*nd);
344 offset = 0;
345 while (icmp_len >= 8) {
346 struct nd_opt_hdr *nd_opt =
347 (struct nd_opt_hdr *)(nd->opt + offset);
348 int opt_len = nd_opt->nd_opt_len * 8;
349
350 if (unlikely(!opt_len || opt_len > icmp_len))
351 return 0;
352
353 /* Store the link layer address if the appropriate
354 * option is provided. It is considered an error if
355 * the same link layer option is specified twice.
356 */
357 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
358 && opt_len == 8) {
359 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
360 goto invalid;
361 memcpy(key->ipv6.nd.sll,
362 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
363 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
364 && opt_len == 8) {
365 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
366 goto invalid;
367 memcpy(key->ipv6.nd.tll,
368 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
369 }
370
371 icmp_len -= opt_len;
372 offset += opt_len;
373 }
374 }
375
376 return 0;
377
378 invalid:
379 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
380 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
381 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
382
383 return 0;
384 }
385
386 /**
387 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
388 * @skb: sk_buff that contains the frame, with skb->data pointing to the
389 * Ethernet header
390 * @in_port: port number on which @skb was received.
391 * @key: output flow key
392 *
393 * The caller must ensure that skb->len >= ETH_HLEN.
394 *
395 * Returns 0 if successful, otherwise a negative errno value.
396 *
397 * Initializes @skb header pointers as follows:
398 *
399 * - skb->mac_header: the Ethernet header.
400 *
401 * - skb->network_header: just past the Ethernet header, or just past the
402 * VLAN header, to the first byte of the Ethernet payload.
403 *
404 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
405 * on output, then just past the IP header, if one is present and
406 * of a correct length, otherwise the same as skb->network_header.
407 * For other key->eth.type values it is left untouched.
408 */
409 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
410 {
411 int error;
412 struct ethhdr *eth;
413
414 memset(key, 0, sizeof(*key));
415
416 key->phy.priority = skb->priority;
417 if (OVS_CB(skb)->tun_key)
418 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
419 key->phy.in_port = in_port;
420 key->phy.skb_mark = skb->mark;
421
422 skb_reset_mac_header(skb);
423
424 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
425 * header in the linear data area.
426 */
427 eth = eth_hdr(skb);
428 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
429 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
430
431 __skb_pull(skb, 2 * ETH_ALEN);
432 /* We are going to push all headers that we pull, so no need to
433 * update skb->csum here. */
434
435 if (vlan_tx_tag_present(skb))
436 key->eth.tci = htons(vlan_get_tci(skb));
437 else if (eth->h_proto == htons(ETH_P_8021Q))
438 if (unlikely(parse_vlan(skb, key)))
439 return -ENOMEM;
440
441 key->eth.type = parse_ethertype(skb);
442 if (unlikely(key->eth.type == htons(0)))
443 return -ENOMEM;
444
445 skb_reset_network_header(skb);
446 __skb_push(skb, skb->data - skb_mac_header(skb));
447
448 /* Network layer. */
449 if (key->eth.type == htons(ETH_P_IP)) {
450 struct iphdr *nh;
451 __be16 offset;
452
453 error = check_iphdr(skb);
454 if (unlikely(error)) {
455 if (error == -EINVAL) {
456 skb->transport_header = skb->network_header;
457 error = 0;
458 }
459 return error;
460 }
461
462 nh = ip_hdr(skb);
463 key->ipv4.addr.src = nh->saddr;
464 key->ipv4.addr.dst = nh->daddr;
465
466 key->ip.proto = nh->protocol;
467 key->ip.tos = nh->tos;
468 key->ip.ttl = nh->ttl;
469
470 offset = nh->frag_off & htons(IP_OFFSET);
471 if (offset) {
472 key->ip.frag = OVS_FRAG_TYPE_LATER;
473 return 0;
474 }
475 if (nh->frag_off & htons(IP_MF) ||
476 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
477 key->ip.frag = OVS_FRAG_TYPE_FIRST;
478
479 /* Transport layer. */
480 if (key->ip.proto == IPPROTO_TCP) {
481 if (tcphdr_ok(skb)) {
482 struct tcphdr *tcp = tcp_hdr(skb);
483 key->ipv4.tp.src = tcp->source;
484 key->ipv4.tp.dst = tcp->dest;
485 }
486 } else if (key->ip.proto == IPPROTO_UDP) {
487 if (udphdr_ok(skb)) {
488 struct udphdr *udp = udp_hdr(skb);
489 key->ipv4.tp.src = udp->source;
490 key->ipv4.tp.dst = udp->dest;
491 }
492 } else if (key->ip.proto == IPPROTO_SCTP) {
493 if (sctphdr_ok(skb)) {
494 struct sctphdr *sctp = sctp_hdr(skb);
495 key->ipv4.tp.src = sctp->source;
496 key->ipv4.tp.dst = sctp->dest;
497 }
498 } else if (key->ip.proto == IPPROTO_ICMP) {
499 if (icmphdr_ok(skb)) {
500 struct icmphdr *icmp = icmp_hdr(skb);
501 /* The ICMP type and code fields use the 16-bit
502 * transport port fields, so we need to store
503 * them in 16-bit network byte order. */
504 key->ipv4.tp.src = htons(icmp->type);
505 key->ipv4.tp.dst = htons(icmp->code);
506 }
507 }
508
509 } else if ((key->eth.type == htons(ETH_P_ARP) ||
510 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
511 struct arp_eth_header *arp;
512
513 arp = (struct arp_eth_header *)skb_network_header(skb);
514
515 if (arp->ar_hrd == htons(ARPHRD_ETHER)
516 && arp->ar_pro == htons(ETH_P_IP)
517 && arp->ar_hln == ETH_ALEN
518 && arp->ar_pln == 4) {
519
520 /* We only match on the lower 8 bits of the opcode. */
521 if (ntohs(arp->ar_op) <= 0xff)
522 key->ip.proto = ntohs(arp->ar_op);
523 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
524 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
525 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
526 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
527 }
528 } else if (key->eth.type == htons(ETH_P_IPV6)) {
529 int nh_len; /* IPv6 Header + Extensions */
530
531 nh_len = parse_ipv6hdr(skb, key);
532 if (unlikely(nh_len < 0)) {
533 if (nh_len == -EINVAL) {
534 skb->transport_header = skb->network_header;
535 error = 0;
536 } else {
537 error = nh_len;
538 }
539 return error;
540 }
541
542 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
543 return 0;
544 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
545 key->ip.frag = OVS_FRAG_TYPE_FIRST;
546
547 /* Transport layer. */
548 if (key->ip.proto == NEXTHDR_TCP) {
549 if (tcphdr_ok(skb)) {
550 struct tcphdr *tcp = tcp_hdr(skb);
551 key->ipv6.tp.src = tcp->source;
552 key->ipv6.tp.dst = tcp->dest;
553 }
554 } else if (key->ip.proto == NEXTHDR_UDP) {
555 if (udphdr_ok(skb)) {
556 struct udphdr *udp = udp_hdr(skb);
557 key->ipv6.tp.src = udp->source;
558 key->ipv6.tp.dst = udp->dest;
559 }
560 } else if (key->ip.proto == NEXTHDR_SCTP) {
561 if (sctphdr_ok(skb)) {
562 struct sctphdr *sctp = sctp_hdr(skb);
563 key->ipv6.tp.src = sctp->source;
564 key->ipv6.tp.dst = sctp->dest;
565 }
566 } else if (key->ip.proto == NEXTHDR_ICMP) {
567 if (icmp6hdr_ok(skb)) {
568 error = parse_icmpv6(skb, key, nh_len);
569 if (error)
570 return error;
571 }
572 }
573 }
574
575 return 0;
576 }