]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/flow.c
datapath: Clarify locking.
[mirror_ovs.git] / datapath / flow.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47
48 #include "vlan.h"
49
50 u64 ovs_flow_used_time(unsigned long flow_jiffies)
51 {
52 struct timespec cur_ts;
53 u64 cur_ms, idle_ms;
54
55 ktime_get_ts(&cur_ts);
56 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
57 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
58 cur_ts.tv_nsec / NSEC_PER_MSEC;
59
60 return cur_ms - idle_ms;
61 }
62
63 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
64
65 void ovs_flow_stats_update(struct sw_flow *flow, struct sk_buff *skb)
66 {
67 struct flow_stats *stats;
68 __be16 tcp_flags = flow->key.tp.flags;
69 int node = numa_node_id();
70
71 stats = rcu_dereference(flow->stats[node]);
72
73 /* Check if already have node-specific stats. */
74 if (likely(stats)) {
75 spin_lock(&stats->lock);
76 /* Mark if we write on the pre-allocated stats. */
77 if (node == 0 && unlikely(flow->stats_last_writer != node))
78 flow->stats_last_writer = node;
79 } else {
80 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
81 spin_lock(&stats->lock);
82
83 /* If the current NUMA-node is the only writer on the
84 * pre-allocated stats keep using them.
85 */
86 if (unlikely(flow->stats_last_writer != node)) {
87 /* A previous locker may have already allocated the
88 * stats, so we need to check again. If node-specific
89 * stats were already allocated, we update the pre-
90 * allocated stats as we have already locked them.
91 */
92 if (likely(flow->stats_last_writer != NUMA_NO_NODE)
93 && likely(!rcu_dereference(flow->stats[node]))) {
94 /* Try to allocate node-specific stats. */
95 struct flow_stats *new_stats;
96
97 new_stats =
98 kmem_cache_alloc_node(flow_stats_cache,
99 GFP_THISNODE |
100 __GFP_NOMEMALLOC,
101 node);
102 if (likely(new_stats)) {
103 new_stats->used = jiffies;
104 new_stats->packet_count = 1;
105 new_stats->byte_count = skb->len;
106 new_stats->tcp_flags = tcp_flags;
107 spin_lock_init(&new_stats->lock);
108
109 rcu_assign_pointer(flow->stats[node],
110 new_stats);
111 goto unlock;
112 }
113 }
114 flow->stats_last_writer = node;
115 }
116 }
117
118 stats->used = jiffies;
119 stats->packet_count++;
120 stats->byte_count += skb->len;
121 stats->tcp_flags |= tcp_flags;
122 unlock:
123 spin_unlock(&stats->lock);
124 }
125
126 /* Called with ovs_mutex. */
127 void ovs_flow_stats_get(struct sw_flow *flow, struct ovs_flow_stats *ovs_stats,
128 unsigned long *used, __be16 *tcp_flags)
129 {
130 int node;
131
132 *used = 0;
133 *tcp_flags = 0;
134 memset(ovs_stats, 0, sizeof(*ovs_stats));
135
136 for_each_node(node) {
137 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
138
139 if (stats) {
140 /* Local CPU may write on non-local stats, so we must
141 * block bottom-halves here.
142 */
143 spin_lock_bh(&stats->lock);
144 if (!*used || time_after(stats->used, *used))
145 *used = stats->used;
146 *tcp_flags |= stats->tcp_flags;
147 ovs_stats->n_packets += stats->packet_count;
148 ovs_stats->n_bytes += stats->byte_count;
149 spin_unlock_bh(&stats->lock);
150 }
151 }
152 }
153
154 void ovs_flow_stats_clear(struct sw_flow *flow)
155 {
156 int node;
157
158 for_each_node(node) {
159 struct flow_stats *stats = rcu_dereference(flow->stats[node]);
160
161 if (stats) {
162 spin_lock_bh(&stats->lock);
163 stats->used = 0;
164 stats->packet_count = 0;
165 stats->byte_count = 0;
166 stats->tcp_flags = 0;
167 spin_unlock_bh(&stats->lock);
168 }
169 }
170 }
171
172 static int check_header(struct sk_buff *skb, int len)
173 {
174 if (unlikely(skb->len < len))
175 return -EINVAL;
176 if (unlikely(!pskb_may_pull(skb, len)))
177 return -ENOMEM;
178 return 0;
179 }
180
181 static bool arphdr_ok(struct sk_buff *skb)
182 {
183 return pskb_may_pull(skb, skb_network_offset(skb) +
184 sizeof(struct arp_eth_header));
185 }
186
187 static int check_iphdr(struct sk_buff *skb)
188 {
189 unsigned int nh_ofs = skb_network_offset(skb);
190 unsigned int ip_len;
191 int err;
192
193 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
194 if (unlikely(err))
195 return err;
196
197 ip_len = ip_hdrlen(skb);
198 if (unlikely(ip_len < sizeof(struct iphdr) ||
199 skb->len < nh_ofs + ip_len))
200 return -EINVAL;
201
202 skb_set_transport_header(skb, nh_ofs + ip_len);
203 return 0;
204 }
205
206 static bool tcphdr_ok(struct sk_buff *skb)
207 {
208 int th_ofs = skb_transport_offset(skb);
209 int tcp_len;
210
211 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
212 return false;
213
214 tcp_len = tcp_hdrlen(skb);
215 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
216 skb->len < th_ofs + tcp_len))
217 return false;
218
219 return true;
220 }
221
222 static bool udphdr_ok(struct sk_buff *skb)
223 {
224 return pskb_may_pull(skb, skb_transport_offset(skb) +
225 sizeof(struct udphdr));
226 }
227
228 static bool sctphdr_ok(struct sk_buff *skb)
229 {
230 return pskb_may_pull(skb, skb_transport_offset(skb) +
231 sizeof(struct sctphdr));
232 }
233
234 static bool icmphdr_ok(struct sk_buff *skb)
235 {
236 return pskb_may_pull(skb, skb_transport_offset(skb) +
237 sizeof(struct icmphdr));
238 }
239
240 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
241 {
242 unsigned int nh_ofs = skb_network_offset(skb);
243 unsigned int nh_len;
244 int payload_ofs;
245 struct ipv6hdr *nh;
246 uint8_t nexthdr;
247 __be16 frag_off;
248 int err;
249
250 err = check_header(skb, nh_ofs + sizeof(*nh));
251 if (unlikely(err))
252 return err;
253
254 nh = ipv6_hdr(skb);
255 nexthdr = nh->nexthdr;
256 payload_ofs = (u8 *)(nh + 1) - skb->data;
257
258 key->ip.proto = NEXTHDR_NONE;
259 key->ip.tos = ipv6_get_dsfield(nh);
260 key->ip.ttl = nh->hop_limit;
261 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
262 key->ipv6.addr.src = nh->saddr;
263 key->ipv6.addr.dst = nh->daddr;
264
265 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
266 if (unlikely(payload_ofs < 0))
267 return -EINVAL;
268
269 if (frag_off) {
270 if (frag_off & htons(~0x7))
271 key->ip.frag = OVS_FRAG_TYPE_LATER;
272 else
273 key->ip.frag = OVS_FRAG_TYPE_FIRST;
274 }
275
276 nh_len = payload_ofs - nh_ofs;
277 skb_set_transport_header(skb, nh_ofs + nh_len);
278 key->ip.proto = nexthdr;
279 return nh_len;
280 }
281
282 static bool icmp6hdr_ok(struct sk_buff *skb)
283 {
284 return pskb_may_pull(skb, skb_transport_offset(skb) +
285 sizeof(struct icmp6hdr));
286 }
287
288 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
289 {
290 struct qtag_prefix {
291 __be16 eth_type; /* ETH_P_8021Q */
292 __be16 tci;
293 };
294 struct qtag_prefix *qp;
295
296 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
297 return 0;
298
299 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
300 sizeof(__be16))))
301 return -ENOMEM;
302
303 qp = (struct qtag_prefix *) skb->data;
304 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
305 __skb_pull(skb, sizeof(struct qtag_prefix));
306
307 return 0;
308 }
309
310 static __be16 parse_ethertype(struct sk_buff *skb)
311 {
312 struct llc_snap_hdr {
313 u8 dsap; /* Always 0xAA */
314 u8 ssap; /* Always 0xAA */
315 u8 ctrl;
316 u8 oui[3];
317 __be16 ethertype;
318 };
319 struct llc_snap_hdr *llc;
320 __be16 proto;
321
322 proto = *(__be16 *) skb->data;
323 __skb_pull(skb, sizeof(__be16));
324
325 if (ntohs(proto) >= ETH_P_802_3_MIN)
326 return proto;
327
328 if (skb->len < sizeof(struct llc_snap_hdr))
329 return htons(ETH_P_802_2);
330
331 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
332 return htons(0);
333
334 llc = (struct llc_snap_hdr *) skb->data;
335 if (llc->dsap != LLC_SAP_SNAP ||
336 llc->ssap != LLC_SAP_SNAP ||
337 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
338 return htons(ETH_P_802_2);
339
340 __skb_pull(skb, sizeof(struct llc_snap_hdr));
341
342 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
343 return llc->ethertype;
344
345 return htons(ETH_P_802_2);
346 }
347
348 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
349 int nh_len)
350 {
351 struct icmp6hdr *icmp = icmp6_hdr(skb);
352
353 /* The ICMPv6 type and code fields use the 16-bit transport port
354 * fields, so we need to store them in 16-bit network byte order.
355 */
356 key->tp.src = htons(icmp->icmp6_type);
357 key->tp.dst = htons(icmp->icmp6_code);
358
359 if (icmp->icmp6_code == 0 &&
360 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
361 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
362 int icmp_len = skb->len - skb_transport_offset(skb);
363 struct nd_msg *nd;
364 int offset;
365
366 /* In order to process neighbor discovery options, we need the
367 * entire packet.
368 */
369 if (unlikely(icmp_len < sizeof(*nd)))
370 return 0;
371
372 if (unlikely(skb_linearize(skb)))
373 return -ENOMEM;
374
375 nd = (struct nd_msg *)skb_transport_header(skb);
376 key->ipv6.nd.target = nd->target;
377
378 icmp_len -= sizeof(*nd);
379 offset = 0;
380 while (icmp_len >= 8) {
381 struct nd_opt_hdr *nd_opt =
382 (struct nd_opt_hdr *)(nd->opt + offset);
383 int opt_len = nd_opt->nd_opt_len * 8;
384
385 if (unlikely(!opt_len || opt_len > icmp_len))
386 return 0;
387
388 /* Store the link layer address if the appropriate
389 * option is provided. It is considered an error if
390 * the same link layer option is specified twice.
391 */
392 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
393 && opt_len == 8) {
394 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
395 goto invalid;
396 ether_addr_copy(key->ipv6.nd.sll,
397 &nd->opt[offset+sizeof(*nd_opt)]);
398 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
399 && opt_len == 8) {
400 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
401 goto invalid;
402 ether_addr_copy(key->ipv6.nd.tll,
403 &nd->opt[offset+sizeof(*nd_opt)]);
404 }
405
406 icmp_len -= opt_len;
407 offset += opt_len;
408 }
409 }
410
411 return 0;
412
413 invalid:
414 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
415 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
416 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
417
418 return 0;
419 }
420
421 /**
422 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
423 * @skb: sk_buff that contains the frame, with skb->data pointing to the
424 * Ethernet header
425 * @in_port: port number on which @skb was received.
426 * @key: output flow key
427 *
428 * The caller must ensure that skb->len >= ETH_HLEN.
429 *
430 * Returns 0 if successful, otherwise a negative errno value.
431 *
432 * Initializes @skb header pointers as follows:
433 *
434 * - skb->mac_header: the Ethernet header.
435 *
436 * - skb->network_header: just past the Ethernet header, or just past the
437 * VLAN header, to the first byte of the Ethernet payload.
438 *
439 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
440 * on output, then just past the IP header, if one is present and
441 * of a correct length, otherwise the same as skb->network_header.
442 * For other key->eth.type values it is left untouched.
443 */
444 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
445 {
446 int error;
447 struct ethhdr *eth;
448
449 memset(key, 0, sizeof(*key));
450
451 key->phy.priority = skb->priority;
452 if (OVS_CB(skb)->tun_key)
453 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
454 key->phy.in_port = in_port;
455 key->phy.skb_mark = skb->mark;
456
457 skb_reset_mac_header(skb);
458
459 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
460 * header in the linear data area.
461 */
462 eth = eth_hdr(skb);
463 ether_addr_copy(key->eth.src, eth->h_source);
464 ether_addr_copy(key->eth.dst, eth->h_dest);
465
466 __skb_pull(skb, 2 * ETH_ALEN);
467 /* We are going to push all headers that we pull, so no need to
468 * update skb->csum here. */
469
470 if (vlan_tx_tag_present(skb))
471 key->eth.tci = htons(vlan_get_tci(skb));
472 else if (eth->h_proto == htons(ETH_P_8021Q))
473 if (unlikely(parse_vlan(skb, key)))
474 return -ENOMEM;
475
476 key->eth.type = parse_ethertype(skb);
477 if (unlikely(key->eth.type == htons(0)))
478 return -ENOMEM;
479
480 skb_reset_network_header(skb);
481 __skb_push(skb, skb->data - skb_mac_header(skb));
482
483 /* Network layer. */
484 if (key->eth.type == htons(ETH_P_IP)) {
485 struct iphdr *nh;
486 __be16 offset;
487
488 error = check_iphdr(skb);
489 if (unlikely(error)) {
490 if (error == -EINVAL) {
491 skb->transport_header = skb->network_header;
492 error = 0;
493 }
494 return error;
495 }
496
497 nh = ip_hdr(skb);
498 key->ipv4.addr.src = nh->saddr;
499 key->ipv4.addr.dst = nh->daddr;
500
501 key->ip.proto = nh->protocol;
502 key->ip.tos = nh->tos;
503 key->ip.ttl = nh->ttl;
504
505 offset = nh->frag_off & htons(IP_OFFSET);
506 if (offset) {
507 key->ip.frag = OVS_FRAG_TYPE_LATER;
508 return 0;
509 }
510 if (nh->frag_off & htons(IP_MF) ||
511 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
512 key->ip.frag = OVS_FRAG_TYPE_FIRST;
513
514 /* Transport layer. */
515 if (key->ip.proto == IPPROTO_TCP) {
516 if (tcphdr_ok(skb)) {
517 struct tcphdr *tcp = tcp_hdr(skb);
518 key->tp.src = tcp->source;
519 key->tp.dst = tcp->dest;
520 key->tp.flags = TCP_FLAGS_BE16(tcp);
521 }
522 } else if (key->ip.proto == IPPROTO_UDP) {
523 if (udphdr_ok(skb)) {
524 struct udphdr *udp = udp_hdr(skb);
525 key->tp.src = udp->source;
526 key->tp.dst = udp->dest;
527 }
528 } else if (key->ip.proto == IPPROTO_SCTP) {
529 if (sctphdr_ok(skb)) {
530 struct sctphdr *sctp = sctp_hdr(skb);
531 key->tp.src = sctp->source;
532 key->tp.dst = sctp->dest;
533 }
534 } else if (key->ip.proto == IPPROTO_ICMP) {
535 if (icmphdr_ok(skb)) {
536 struct icmphdr *icmp = icmp_hdr(skb);
537 /* The ICMP type and code fields use the 16-bit
538 * transport port fields, so we need to store
539 * them in 16-bit network byte order. */
540 key->tp.src = htons(icmp->type);
541 key->tp.dst = htons(icmp->code);
542 }
543 }
544
545 } else if ((key->eth.type == htons(ETH_P_ARP) ||
546 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
547 struct arp_eth_header *arp;
548
549 arp = (struct arp_eth_header *)skb_network_header(skb);
550
551 if (arp->ar_hrd == htons(ARPHRD_ETHER)
552 && arp->ar_pro == htons(ETH_P_IP)
553 && arp->ar_hln == ETH_ALEN
554 && arp->ar_pln == 4) {
555
556 /* We only match on the lower 8 bits of the opcode. */
557 if (ntohs(arp->ar_op) <= 0xff)
558 key->ip.proto = ntohs(arp->ar_op);
559 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
560 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
561 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
562 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
563 }
564 } else if (key->eth.type == htons(ETH_P_IPV6)) {
565 int nh_len; /* IPv6 Header + Extensions */
566
567 nh_len = parse_ipv6hdr(skb, key);
568 if (unlikely(nh_len < 0)) {
569 if (nh_len == -EINVAL) {
570 skb->transport_header = skb->network_header;
571 error = 0;
572 } else {
573 error = nh_len;
574 }
575 return error;
576 }
577
578 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
579 return 0;
580 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
581 key->ip.frag = OVS_FRAG_TYPE_FIRST;
582
583 /* Transport layer. */
584 if (key->ip.proto == NEXTHDR_TCP) {
585 if (tcphdr_ok(skb)) {
586 struct tcphdr *tcp = tcp_hdr(skb);
587 key->tp.src = tcp->source;
588 key->tp.dst = tcp->dest;
589 key->tp.flags = TCP_FLAGS_BE16(tcp);
590 }
591 } else if (key->ip.proto == NEXTHDR_UDP) {
592 if (udphdr_ok(skb)) {
593 struct udphdr *udp = udp_hdr(skb);
594 key->tp.src = udp->source;
595 key->tp.dst = udp->dest;
596 }
597 } else if (key->ip.proto == NEXTHDR_SCTP) {
598 if (sctphdr_ok(skb)) {
599 struct sctphdr *sctp = sctp_hdr(skb);
600 key->tp.src = sctp->source;
601 key->tp.dst = sctp->dest;
602 }
603 } else if (key->ip.proto == NEXTHDR_ICMP) {
604 if (icmp6hdr_ok(skb)) {
605 error = parse_icmpv6(skb, key, nh_len);
606 if (error)
607 return error;
608 }
609 }
610 }
611
612 return 0;
613 }