]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/flow_netlink.c
datapath: compat: Use dst-cache for Geneve and VxLAN tunnels.
[mirror_ovs.git] / datapath / flow_netlink.c
1 /*
2 * Copyright (c) 2007-2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/geneve.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47 #include <net/mpls.h>
48 #include <net/vxlan.h>
49
50 #include "datapath.h"
51 #include "conntrack.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "gso.h"
55
56 struct ovs_len_tbl {
57 int len;
58 const struct ovs_len_tbl *next;
59 };
60
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
63
64 static void update_range(struct sw_flow_match *match,
65 size_t offset, size_t size, bool is_mask)
66 {
67 struct sw_flow_key_range *range;
68 size_t start = rounddown(offset, sizeof(long));
69 size_t end = roundup(offset + size, sizeof(long));
70
71 if (!is_mask)
72 range = &match->range;
73 else
74 range = &match->mask->range;
75
76 if (range->start == range->end) {
77 range->start = start;
78 range->end = end;
79 return;
80 }
81
82 if (range->start > start)
83 range->start = start;
84
85 if (range->end < end)
86 range->end = end;
87 }
88
89 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
90 do { \
91 update_range(match, offsetof(struct sw_flow_key, field), \
92 sizeof((match)->key->field), is_mask); \
93 if (is_mask) \
94 (match)->mask->key.field = value; \
95 else \
96 (match)->key->field = value; \
97 } while (0)
98
99 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
100 do { \
101 update_range(match, offset, len, is_mask); \
102 if (is_mask) \
103 memcpy((u8 *)&(match)->mask->key + offset, value_p, len);\
104 else \
105 memcpy((u8 *)(match)->key + offset, value_p, len); \
106 } while (0)
107
108 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
109 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
110 value_p, len, is_mask)
111
112 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
113 do { \
114 update_range(match, offsetof(struct sw_flow_key, field), \
115 sizeof((match)->key->field), is_mask); \
116 if (is_mask) \
117 memset((u8 *)&(match)->mask->key.field, value, \
118 sizeof((match)->mask->key.field)); \
119 else \
120 memset((u8 *)&(match)->key->field, value, \
121 sizeof((match)->key->field)); \
122 } while (0)
123
124 static bool match_validate(const struct sw_flow_match *match,
125 u64 key_attrs, u64 mask_attrs, bool log)
126 {
127 u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
128 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
129
130 /* The following mask attributes allowed only if they
131 * pass the validation tests.
132 */
133 mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
134 | (1ULL << OVS_KEY_ATTR_IPV6)
135 | (1ULL << OVS_KEY_ATTR_TCP)
136 | (1ULL << OVS_KEY_ATTR_TCP_FLAGS)
137 | (1ULL << OVS_KEY_ATTR_UDP)
138 | (1ULL << OVS_KEY_ATTR_SCTP)
139 | (1ULL << OVS_KEY_ATTR_ICMP)
140 | (1ULL << OVS_KEY_ATTR_ICMPV6)
141 | (1ULL << OVS_KEY_ATTR_ARP)
142 | (1ULL << OVS_KEY_ATTR_ND)
143 | (1ULL << OVS_KEY_ATTR_MPLS));
144
145 /* Always allowed mask fields. */
146 mask_allowed |= ((1ULL << OVS_KEY_ATTR_TUNNEL)
147 | (1ULL << OVS_KEY_ATTR_IN_PORT)
148 | (1ULL << OVS_KEY_ATTR_ETHERTYPE));
149
150 /* Check key attributes. */
151 if (match->key->eth.type == htons(ETH_P_ARP)
152 || match->key->eth.type == htons(ETH_P_RARP)) {
153 key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
154 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
155 mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
156 }
157
158 if (eth_p_mpls(match->key->eth.type)) {
159 key_expected |= 1ULL << OVS_KEY_ATTR_MPLS;
160 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
161 mask_allowed |= 1ULL << OVS_KEY_ATTR_MPLS;
162 }
163
164 if (match->key->eth.type == htons(ETH_P_IP)) {
165 key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
166 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
167 mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
168
169 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
170 if (match->key->ip.proto == IPPROTO_UDP) {
171 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
172 if (match->mask && (match->mask->key.ip.proto == 0xff))
173 mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
174 }
175
176 if (match->key->ip.proto == IPPROTO_SCTP) {
177 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
178 if (match->mask && (match->mask->key.ip.proto == 0xff))
179 mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
180 }
181
182 if (match->key->ip.proto == IPPROTO_TCP) {
183 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
184 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
185 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
186 mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
187 mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
188 }
189 }
190
191 if (match->key->ip.proto == IPPROTO_ICMP) {
192 key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
193 if (match->mask && (match->mask->key.ip.proto == 0xff))
194 mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
195 }
196 }
197 }
198
199 if (match->key->eth.type == htons(ETH_P_IPV6)) {
200 key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
201 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202 mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
203
204 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205 if (match->key->ip.proto == IPPROTO_UDP) {
206 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
207 if (match->mask && (match->mask->key.ip.proto == 0xff))
208 mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
209 }
210
211 if (match->key->ip.proto == IPPROTO_SCTP) {
212 key_expected |= 1ULL << OVS_KEY_ATTR_SCTP;
213 if (match->mask && (match->mask->key.ip.proto == 0xff))
214 mask_allowed |= 1ULL << OVS_KEY_ATTR_SCTP;
215 }
216
217 if (match->key->ip.proto == IPPROTO_TCP) {
218 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
219 key_expected |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
220 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221 mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
222 mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP_FLAGS;
223 }
224 }
225
226 if (match->key->ip.proto == IPPROTO_ICMPV6) {
227 key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
228 if (match->mask && (match->mask->key.ip.proto == 0xff))
229 mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
230
231 if (match->key->tp.src ==
232 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
233 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
234 key_expected |= 1ULL << OVS_KEY_ATTR_ND;
235 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
236 mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
237 }
238 }
239 }
240 }
241
242 if ((key_attrs & key_expected) != key_expected) {
243 /* Key attributes check failed. */
244 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
245 (unsigned long long)key_attrs,
246 (unsigned long long)key_expected);
247 return false;
248 }
249
250 if ((mask_attrs & mask_allowed) != mask_attrs) {
251 /* Mask attributes check failed. */
252 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
253 (unsigned long long)mask_attrs,
254 (unsigned long long)mask_allowed);
255 return false;
256 }
257
258 return true;
259 }
260
261 size_t ovs_tun_key_attr_size(void)
262 {
263 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
264 * updating this function.
265 */
266 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */
267 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
268 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
269 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
270 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
272 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
273 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
274 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
275 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
276 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
277 */
278 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
279 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
280 }
281
282 size_t ovs_key_attr_size(void)
283 {
284 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
285 * updating this function.
286 */
287 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
288
289 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
290 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
291 + ovs_tun_key_attr_size()
292 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
293 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
294 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
295 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
297 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
298 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
299 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
300 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
301 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
302 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
303 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
304 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
305 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
306 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
307 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
308 }
309
310 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
311 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
312 };
313
314 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
315 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
316 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
317 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
318 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
319 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
320 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
321 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
322 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
323 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
324 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
325 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
326 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
327 .next = ovs_vxlan_ext_key_lens },
328 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
329 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
330 };
331
332 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
333 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
334 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
335 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
336 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
337 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
338 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
339 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
340 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
341 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
342 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
343 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
344 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
345 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
346 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
347 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
348 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
349 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
350 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
351 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
352 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
353 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
354 .next = ovs_tunnel_key_lens, },
355 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
356 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
357 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
358 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
359 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
360 };
361
362 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
363 {
364 return expected_len == attr_len ||
365 expected_len == OVS_ATTR_NESTED ||
366 expected_len == OVS_ATTR_VARIABLE;
367 }
368
369 static bool is_all_zero(const u8 *fp, size_t size)
370 {
371 int i;
372
373 if (!fp)
374 return false;
375
376 for (i = 0; i < size; i++)
377 if (fp[i])
378 return false;
379
380 return true;
381 }
382
383 static int __parse_flow_nlattrs(const struct nlattr *attr,
384 const struct nlattr *a[],
385 u64 *attrsp, bool log, bool nz)
386 {
387 const struct nlattr *nla;
388 u64 attrs;
389 int rem;
390
391 attrs = *attrsp;
392 nla_for_each_nested(nla, attr, rem) {
393 u16 type = nla_type(nla);
394 int expected_len;
395
396 if (type > OVS_KEY_ATTR_MAX) {
397 OVS_NLERR(log, "Key type %d is out of range max %d",
398 type, OVS_KEY_ATTR_MAX);
399 return -EINVAL;
400 }
401
402 if (attrs & (1ULL << type)) {
403 OVS_NLERR(log, "Duplicate key (type %d).", type);
404 return -EINVAL;
405 }
406
407 expected_len = ovs_key_lens[type].len;
408 if (!check_attr_len(nla_len(nla), expected_len)) {
409 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
410 type, nla_len(nla), expected_len);
411 return -EINVAL;
412 }
413
414 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
415 attrs |= 1ULL << type;
416 a[type] = nla;
417 }
418 }
419 if (rem) {
420 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
421 return -EINVAL;
422 }
423
424 *attrsp = attrs;
425 return 0;
426 }
427
428 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
429 const struct nlattr *a[], u64 *attrsp,
430 bool log)
431 {
432 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
433 }
434
435 static int parse_flow_nlattrs(const struct nlattr *attr,
436 const struct nlattr *a[], u64 *attrsp,
437 bool log)
438 {
439 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
440 }
441
442 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
443 struct sw_flow_match *match, bool is_mask,
444 bool log)
445 {
446 unsigned long opt_key_offset;
447
448 if (nla_len(a) > sizeof(match->key->tun_opts)) {
449 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
450 nla_len(a), sizeof(match->key->tun_opts));
451 return -EINVAL;
452 }
453
454 if (nla_len(a) % 4 != 0) {
455 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
456 nla_len(a));
457 return -EINVAL;
458 }
459
460 /* We need to record the length of the options passed
461 * down, otherwise packets with the same format but
462 * additional options will be silently matched.
463 */
464 if (!is_mask) {
465 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
466 false);
467 } else {
468 /* This is somewhat unusual because it looks at
469 * both the key and mask while parsing the
470 * attributes (and by extension assumes the key
471 * is parsed first). Normally, we would verify
472 * that each is the correct length and that the
473 * attributes line up in the validate function.
474 * However, that is difficult because this is
475 * variable length and we won't have the
476 * information later.
477 */
478 if (match->key->tun_opts_len != nla_len(a)) {
479 OVS_NLERR(log, "Geneve option len %d != mask len %d",
480 match->key->tun_opts_len, nla_len(a));
481 return -EINVAL;
482 }
483
484 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
485 }
486
487 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
488 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
489 nla_len(a), is_mask);
490 return 0;
491 }
492
493 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
494 struct sw_flow_match *match, bool is_mask,
495 bool log)
496 {
497 struct nlattr *a;
498 int rem;
499 unsigned long opt_key_offset;
500 struct vxlan_metadata opts;
501
502 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
503
504 memset(&opts, 0, sizeof(opts));
505 nla_for_each_nested(a, attr, rem) {
506 int type = nla_type(a);
507
508 if (type > OVS_VXLAN_EXT_MAX) {
509 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
510 type, OVS_VXLAN_EXT_MAX);
511 return -EINVAL;
512 }
513
514 if (!check_attr_len(nla_len(a),
515 ovs_vxlan_ext_key_lens[type].len)) {
516 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
517 type, nla_len(a),
518 ovs_vxlan_ext_key_lens[type].len);
519 return -EINVAL;
520 }
521
522 switch (type) {
523 case OVS_VXLAN_EXT_GBP:
524 opts.gbp = nla_get_u32(a);
525 break;
526 default:
527 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
528 type);
529 return -EINVAL;
530 }
531 }
532 if (rem) {
533 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
534 rem);
535 return -EINVAL;
536 }
537
538 if (!is_mask)
539 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
540 else
541 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
542
543 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
544 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
545 is_mask);
546 return 0;
547 }
548
549 static int ip_tun_from_nlattr(const struct nlattr *attr,
550 struct sw_flow_match *match, bool is_mask,
551 bool log)
552 {
553 bool ttl = false, ipv4 = false, ipv6 = false;
554 __be16 tun_flags = 0;
555 int opts_type = 0;
556 struct nlattr *a;
557 int rem;
558
559 nla_for_each_nested(a, attr, rem) {
560 int type = nla_type(a);
561 int err;
562
563 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
564 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
565 type, OVS_TUNNEL_KEY_ATTR_MAX);
566 return -EINVAL;
567 }
568
569 if (!check_attr_len(nla_len(a),
570 ovs_tunnel_key_lens[type].len)) {
571 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
572 type, nla_len(a), ovs_tunnel_key_lens[type].len);
573 return -EINVAL;
574 }
575
576 switch (type) {
577 case OVS_TUNNEL_KEY_ATTR_ID:
578 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
579 nla_get_be64(a), is_mask);
580 tun_flags |= TUNNEL_KEY;
581 break;
582 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
583 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
584 nla_get_in_addr(a), is_mask);
585 ipv4 = true;
586 break;
587 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
588 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
589 nla_get_in_addr(a), is_mask);
590 ipv4 = true;
591 break;
592 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
593 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
594 nla_get_in6_addr(a), is_mask);
595 ipv6 = true;
596 break;
597 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
598 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
599 nla_get_in6_addr(a), is_mask);
600 ipv6 = true;
601 break;
602 case OVS_TUNNEL_KEY_ATTR_TOS:
603 SW_FLOW_KEY_PUT(match, tun_key.tos,
604 nla_get_u8(a), is_mask);
605 break;
606 case OVS_TUNNEL_KEY_ATTR_TTL:
607 SW_FLOW_KEY_PUT(match, tun_key.ttl,
608 nla_get_u8(a), is_mask);
609 ttl = true;
610 break;
611 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
612 tun_flags |= TUNNEL_DONT_FRAGMENT;
613 break;
614 case OVS_TUNNEL_KEY_ATTR_CSUM:
615 tun_flags |= TUNNEL_CSUM;
616 break;
617 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
618 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
619 nla_get_be16(a), is_mask);
620 break;
621 case OVS_TUNNEL_KEY_ATTR_TP_DST:
622 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
623 nla_get_be16(a), is_mask);
624 break;
625 case OVS_TUNNEL_KEY_ATTR_OAM:
626 tun_flags |= TUNNEL_OAM;
627 break;
628 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
629 if (opts_type) {
630 OVS_NLERR(log, "Multiple metadata blocks provided");
631 return -EINVAL;
632 }
633
634 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
635 if (err)
636 return err;
637
638 tun_flags |= TUNNEL_GENEVE_OPT;
639 opts_type = type;
640 break;
641 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
642 if (opts_type) {
643 OVS_NLERR(log, "Multiple metadata blocks provided");
644 return -EINVAL;
645 }
646
647 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
648 if (err)
649 return err;
650
651 tun_flags |= TUNNEL_VXLAN_OPT;
652 opts_type = type;
653 break;
654 default:
655 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
656 type);
657 return -EINVAL;
658 }
659 }
660
661 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
662 if (is_mask)
663 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
664 else
665 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
666 false);
667
668 if (rem > 0) {
669 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
670 rem);
671 return -EINVAL;
672 }
673
674 if (ipv4 && ipv6) {
675 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
676 return -EINVAL;
677 }
678
679 if (!is_mask) {
680 if (!ipv4 && !ipv6) {
681 OVS_NLERR(log, "IP tunnel dst address not specified");
682 return -EINVAL;
683 }
684 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
685 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
686 return -EINVAL;
687 }
688 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
689 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
690 return -EINVAL;
691 }
692
693 if (!ttl) {
694 OVS_NLERR(log, "IP tunnel TTL not specified.");
695 return -EINVAL;
696 }
697 }
698
699 return opts_type;
700 }
701
702 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
703 const void *tun_opts, int swkey_tun_opts_len)
704 {
705 const struct vxlan_metadata *opts = tun_opts;
706 struct nlattr *nla;
707
708 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
709 if (!nla)
710 return -EMSGSIZE;
711
712 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
713 return -EMSGSIZE;
714
715 nla_nest_end(skb, nla);
716 return 0;
717 }
718
719 static int __ip_tun_to_nlattr(struct sk_buff *skb,
720 const struct ip_tunnel_key *output,
721 const void *tun_opts, int swkey_tun_opts_len,
722 unsigned short tun_proto)
723 {
724 if (output->tun_flags & TUNNEL_KEY &&
725 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
726 return -EMSGSIZE;
727 switch (tun_proto) {
728 case AF_INET:
729 if (output->u.ipv4.src &&
730 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
731 output->u.ipv4.src))
732 return -EMSGSIZE;
733 if (output->u.ipv4.dst &&
734 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
735 output->u.ipv4.dst))
736 return -EMSGSIZE;
737 break;
738 case AF_INET6:
739 if (!ipv6_addr_any(&output->u.ipv6.src) &&
740 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
741 &output->u.ipv6.src))
742 return -EMSGSIZE;
743 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
744 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
745 &output->u.ipv6.dst))
746 return -EMSGSIZE;
747 break;
748 }
749 if (output->tos &&
750 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
751 return -EMSGSIZE;
752 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
753 return -EMSGSIZE;
754 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
755 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
756 return -EMSGSIZE;
757 if ((output->tun_flags & TUNNEL_CSUM) &&
758 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
759 return -EMSGSIZE;
760 if (output->tp_src &&
761 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
762 return -EMSGSIZE;
763 if (output->tp_dst &&
764 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
765 return -EMSGSIZE;
766 if ((output->tun_flags & TUNNEL_OAM) &&
767 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
768 return -EMSGSIZE;
769 if (swkey_tun_opts_len) {
770 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
771 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
772 swkey_tun_opts_len, tun_opts))
773 return -EMSGSIZE;
774 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
775 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
776 return -EMSGSIZE;
777 }
778
779 return 0;
780 }
781
782 static int ip_tun_to_nlattr(struct sk_buff *skb,
783 const struct ip_tunnel_key *output,
784 const void *tun_opts, int swkey_tun_opts_len,
785 unsigned short tun_proto)
786 {
787 struct nlattr *nla;
788 int err;
789
790 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
791 if (!nla)
792 return -EMSGSIZE;
793
794 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
795 tun_proto);
796 if (err)
797 return err;
798
799 nla_nest_end(skb, nla);
800 return 0;
801 }
802
803 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
804 struct ip_tunnel_info *tun_info)
805 {
806 return __ip_tun_to_nlattr(skb, &tun_info->key,
807 ip_tunnel_info_opts(tun_info),
808 tun_info->options_len,
809 ip_tunnel_info_af(tun_info));
810 }
811
812 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
813 u64 *attrs, const struct nlattr **a,
814 bool is_mask, bool log)
815 {
816 if (*attrs & (1ULL << OVS_KEY_ATTR_DP_HASH)) {
817 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
818
819 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
820 *attrs &= ~(1ULL << OVS_KEY_ATTR_DP_HASH);
821 }
822
823 if (*attrs & (1ULL << OVS_KEY_ATTR_RECIRC_ID)) {
824 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
825
826 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
827 *attrs &= ~(1ULL << OVS_KEY_ATTR_RECIRC_ID);
828 }
829
830 if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
831 SW_FLOW_KEY_PUT(match, phy.priority,
832 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
833 *attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
834 }
835
836 if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
837 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
838
839 if (is_mask) {
840 in_port = 0xffffffff; /* Always exact match in_port. */
841 } else if (in_port >= DP_MAX_PORTS) {
842 OVS_NLERR(log, "Port %d exceeds max allowable %d",
843 in_port, DP_MAX_PORTS);
844 return -EINVAL;
845 }
846
847 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
848 *attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
849 } else if (!is_mask) {
850 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
851 }
852
853 if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
854 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
855
856 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
857 *attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
858 }
859 if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
860 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
861 is_mask, log) < 0)
862 return -EINVAL;
863 *attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
864 }
865
866 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
867 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
868 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
869
870 if (ct_state & ~CT_SUPPORTED_MASK) {
871 OVS_NLERR(log, "ct_state flags %08x unsupported",
872 ct_state);
873 return -EINVAL;
874 }
875
876 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
877 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
878 }
879 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
880 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
881 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
882
883 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
884 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
885 }
886 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
887 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
888 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
889
890 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
891 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
892 }
893 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
894 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
895 const struct ovs_key_ct_labels *cl;
896
897 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
898 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
899 sizeof(*cl), is_mask);
900 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
901 }
902 return 0;
903 }
904
905 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
906 u64 attrs, const struct nlattr **a,
907 bool is_mask, bool log)
908 {
909 int err;
910
911 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
912 if (err)
913 return err;
914
915 if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
916 const struct ovs_key_ethernet *eth_key;
917
918 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
919 SW_FLOW_KEY_MEMCPY(match, eth.src,
920 eth_key->eth_src, ETH_ALEN, is_mask);
921 SW_FLOW_KEY_MEMCPY(match, eth.dst,
922 eth_key->eth_dst, ETH_ALEN, is_mask);
923 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
924 }
925
926 if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
927 __be16 tci;
928
929 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
930 if (!(tci & htons(VLAN_TAG_PRESENT))) {
931 if (is_mask)
932 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
933 else
934 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
935
936 return -EINVAL;
937 }
938
939 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
940 attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
941 }
942
943 if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
944 __be16 eth_type;
945
946 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
947 if (is_mask) {
948 /* Always exact match EtherType. */
949 eth_type = htons(0xffff);
950 } else if (!eth_proto_is_802_3(eth_type)) {
951 OVS_NLERR(log, "EtherType %x is less than min %x",
952 ntohs(eth_type), ETH_P_802_3_MIN);
953 return -EINVAL;
954 }
955
956 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
957 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
958 } else if (!is_mask) {
959 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
960 }
961
962 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
963 const struct ovs_key_ipv4 *ipv4_key;
964
965 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
966 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
967 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
968 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
969 return -EINVAL;
970 }
971 SW_FLOW_KEY_PUT(match, ip.proto,
972 ipv4_key->ipv4_proto, is_mask);
973 SW_FLOW_KEY_PUT(match, ip.tos,
974 ipv4_key->ipv4_tos, is_mask);
975 SW_FLOW_KEY_PUT(match, ip.ttl,
976 ipv4_key->ipv4_ttl, is_mask);
977 SW_FLOW_KEY_PUT(match, ip.frag,
978 ipv4_key->ipv4_frag, is_mask);
979 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
980 ipv4_key->ipv4_src, is_mask);
981 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
982 ipv4_key->ipv4_dst, is_mask);
983 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
984 }
985
986 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
987 const struct ovs_key_ipv6 *ipv6_key;
988
989 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
990 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
991 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
992 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
993 return -EINVAL;
994 }
995
996 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
997 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
998 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
999 return -EINVAL;
1000 }
1001
1002 SW_FLOW_KEY_PUT(match, ipv6.label,
1003 ipv6_key->ipv6_label, is_mask);
1004 SW_FLOW_KEY_PUT(match, ip.proto,
1005 ipv6_key->ipv6_proto, is_mask);
1006 SW_FLOW_KEY_PUT(match, ip.tos,
1007 ipv6_key->ipv6_tclass, is_mask);
1008 SW_FLOW_KEY_PUT(match, ip.ttl,
1009 ipv6_key->ipv6_hlimit, is_mask);
1010 SW_FLOW_KEY_PUT(match, ip.frag,
1011 ipv6_key->ipv6_frag, is_mask);
1012 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1013 ipv6_key->ipv6_src,
1014 sizeof(match->key->ipv6.addr.src),
1015 is_mask);
1016 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1017 ipv6_key->ipv6_dst,
1018 sizeof(match->key->ipv6.addr.dst),
1019 is_mask);
1020
1021 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
1022 }
1023
1024 if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
1025 const struct ovs_key_arp *arp_key;
1026
1027 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1028 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1029 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1030 arp_key->arp_op);
1031 return -EINVAL;
1032 }
1033
1034 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1035 arp_key->arp_sip, is_mask);
1036 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1037 arp_key->arp_tip, is_mask);
1038 SW_FLOW_KEY_PUT(match, ip.proto,
1039 ntohs(arp_key->arp_op), is_mask);
1040 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1041 arp_key->arp_sha, ETH_ALEN, is_mask);
1042 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1043 arp_key->arp_tha, ETH_ALEN, is_mask);
1044
1045 attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
1046 }
1047
1048 if (attrs & (1ULL << OVS_KEY_ATTR_MPLS)) {
1049 const struct ovs_key_mpls *mpls_key;
1050
1051 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1052 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1053 mpls_key->mpls_lse, is_mask);
1054
1055 attrs &= ~(1ULL << OVS_KEY_ATTR_MPLS);
1056 }
1057
1058 if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
1059 const struct ovs_key_tcp *tcp_key;
1060
1061 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1062 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1063 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1064 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
1065 }
1066
1067 if (attrs & (1ULL << OVS_KEY_ATTR_TCP_FLAGS)) {
1068 SW_FLOW_KEY_PUT(match, tp.flags,
1069 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1070 is_mask);
1071 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP_FLAGS);
1072 }
1073
1074 if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
1075 const struct ovs_key_udp *udp_key;
1076
1077 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1078 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1079 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1080 attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
1081 }
1082
1083 if (attrs & (1ULL << OVS_KEY_ATTR_SCTP)) {
1084 const struct ovs_key_sctp *sctp_key;
1085
1086 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1087 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1088 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1089 attrs &= ~(1ULL << OVS_KEY_ATTR_SCTP);
1090 }
1091
1092 if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
1093 const struct ovs_key_icmp *icmp_key;
1094
1095 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1096 SW_FLOW_KEY_PUT(match, tp.src,
1097 htons(icmp_key->icmp_type), is_mask);
1098 SW_FLOW_KEY_PUT(match, tp.dst,
1099 htons(icmp_key->icmp_code), is_mask);
1100 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
1101 }
1102
1103 if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
1104 const struct ovs_key_icmpv6 *icmpv6_key;
1105
1106 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1107 SW_FLOW_KEY_PUT(match, tp.src,
1108 htons(icmpv6_key->icmpv6_type), is_mask);
1109 SW_FLOW_KEY_PUT(match, tp.dst,
1110 htons(icmpv6_key->icmpv6_code), is_mask);
1111 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
1112 }
1113
1114 if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
1115 const struct ovs_key_nd *nd_key;
1116
1117 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1118 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1119 nd_key->nd_target,
1120 sizeof(match->key->ipv6.nd.target),
1121 is_mask);
1122 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1123 nd_key->nd_sll, ETH_ALEN, is_mask);
1124 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1125 nd_key->nd_tll, ETH_ALEN, is_mask);
1126 attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
1127 }
1128
1129 if (attrs != 0) {
1130 OVS_NLERR(log, "Unknown key attributes %llx",
1131 (unsigned long long)attrs);
1132 return -EINVAL;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void nlattr_set(struct nlattr *attr, u8 val,
1139 const struct ovs_len_tbl *tbl)
1140 {
1141 struct nlattr *nla;
1142 int rem;
1143
1144 /* The nlattr stream should already have been validated */
1145 nla_for_each_nested(nla, attr, rem) {
1146 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1147 if (tbl[nla_type(nla)].next)
1148 tbl = tbl[nla_type(nla)].next;
1149 nlattr_set(nla, val, tbl);
1150 } else {
1151 memset(nla_data(nla), val, nla_len(nla));
1152 }
1153
1154 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1155 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1156 }
1157 }
1158
1159 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1160 {
1161 nlattr_set(attr, val, ovs_key_lens);
1162 }
1163
1164 /**
1165 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1166 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1167 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1168 * does not include any don't care bit.
1169 * @net: Used to determine per-namespace field support.
1170 * @match: receives the extracted flow match information.
1171 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1172 * sequence. The fields should of the packet that triggered the creation
1173 * of this flow.
1174 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1175 * attribute specifies the mask field of the wildcarded flow.
1176 * @log: Boolean to allow kernel error logging. Normally true, but when
1177 * probing for feature compatibility this should be passed in as false to
1178 * suppress unnecessary error logging.
1179 */
1180 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1181 const struct nlattr *nla_key,
1182 const struct nlattr *nla_mask,
1183 bool log)
1184 {
1185 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1186 const struct nlattr *encap;
1187 struct nlattr *newmask = NULL;
1188 u64 key_attrs = 0;
1189 u64 mask_attrs = 0;
1190 bool encap_valid = false;
1191 int err;
1192
1193 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1194 if (err)
1195 return err;
1196
1197 if ((key_attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1198 (key_attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) &&
1199 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1200 __be16 tci;
1201
1202 if (!((key_attrs & (1ULL << OVS_KEY_ATTR_VLAN)) &&
1203 (key_attrs & (1ULL << OVS_KEY_ATTR_ENCAP)))) {
1204 OVS_NLERR(log, "Invalid Vlan frame.");
1205 return -EINVAL;
1206 }
1207
1208 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1209 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1210 encap = a[OVS_KEY_ATTR_ENCAP];
1211 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1212 encap_valid = true;
1213
1214 if (tci & htons(VLAN_TAG_PRESENT)) {
1215 err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1216 if (err)
1217 return err;
1218 } else if (!tci) {
1219 /* Corner case for truncated 802.1Q header. */
1220 if (nla_len(encap)) {
1221 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1222 return -EINVAL;
1223 }
1224 } else {
1225 OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1226 return -EINVAL;
1227 }
1228 }
1229
1230 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1231 if (err)
1232 return err;
1233
1234 if (match->mask) {
1235 if (!nla_mask) {
1236 /* Create an exact match mask. We need to set to 0xff
1237 * all the 'match->mask' fields that have been touched
1238 * in 'match->key'. We cannot simply memset
1239 * 'match->mask', because padding bytes and fields not
1240 * specified in 'match->key' should be left to 0.
1241 * Instead, we use a stream of netlink attributes,
1242 * copied from 'key' and set to 0xff.
1243 * ovs_key_from_nlattrs() will take care of filling
1244 * 'match->mask' appropriately.
1245 */
1246 newmask = kmemdup(nla_key,
1247 nla_total_size(nla_len(nla_key)),
1248 GFP_KERNEL);
1249 if (!newmask)
1250 return -ENOMEM;
1251
1252 mask_set_nlattr(newmask, 0xff);
1253
1254 /* The userspace does not send tunnel attributes that
1255 * are 0, but we should not wildcard them nonetheless.
1256 */
1257 if (match->key->tun_key.u.ipv4.dst)
1258 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1259 0xff, true);
1260
1261 nla_mask = newmask;
1262 }
1263
1264 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1265 if (err)
1266 goto free_newmask;
1267
1268 /* Always match on tci. */
1269 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1270
1271 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1272 __be16 eth_type = 0;
1273 __be16 tci = 0;
1274
1275 if (!encap_valid) {
1276 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1277 err = -EINVAL;
1278 goto free_newmask;
1279 }
1280
1281 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1282 if (a[OVS_KEY_ATTR_ETHERTYPE])
1283 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1284
1285 if (eth_type == htons(0xffff)) {
1286 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1287 encap = a[OVS_KEY_ATTR_ENCAP];
1288 err = parse_flow_mask_nlattrs(encap, a,
1289 &mask_attrs, log);
1290 if (err)
1291 goto free_newmask;
1292 } else {
1293 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1294 ntohs(eth_type));
1295 err = -EINVAL;
1296 goto free_newmask;
1297 }
1298
1299 if (a[OVS_KEY_ATTR_VLAN])
1300 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1301
1302 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1303 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1304 ntohs(tci));
1305 err = -EINVAL;
1306 goto free_newmask;
1307 }
1308 }
1309
1310 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1311 log);
1312 if (err)
1313 goto free_newmask;
1314 }
1315
1316 if (!match_validate(match, key_attrs, mask_attrs, log))
1317 err = -EINVAL;
1318
1319 free_newmask:
1320 kfree(newmask);
1321 return err;
1322 }
1323
1324 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1325 {
1326 size_t len;
1327
1328 if (!attr)
1329 return 0;
1330
1331 len = nla_len(attr);
1332 if (len < 1 || len > MAX_UFID_LENGTH) {
1333 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1334 nla_len(attr), MAX_UFID_LENGTH);
1335 return 0;
1336 }
1337
1338 return len;
1339 }
1340
1341 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1342 * or false otherwise.
1343 */
1344 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1345 bool log)
1346 {
1347 sfid->ufid_len = get_ufid_len(attr, log);
1348 if (sfid->ufid_len)
1349 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1350
1351 return sfid->ufid_len;
1352 }
1353
1354 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1355 const struct sw_flow_key *key, bool log)
1356 {
1357 struct sw_flow_key *new_key;
1358
1359 if (ovs_nla_get_ufid(sfid, ufid, log))
1360 return 0;
1361
1362 /* If UFID was not provided, use unmasked key. */
1363 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1364 if (!new_key)
1365 return -ENOMEM;
1366 memcpy(new_key, key, sizeof(*key));
1367 sfid->unmasked_key = new_key;
1368
1369 return 0;
1370 }
1371
1372 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1373 {
1374 return attr ? nla_get_u32(attr) : 0;
1375 }
1376
1377 /**
1378 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1379 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1380 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1381 * sequence.
1382 * @log: Boolean to allow kernel error logging. Normally true, but when
1383 * probing for feature compatibility this should be passed in as false to
1384 * suppress unnecessary error logging.
1385 *
1386 * This parses a series of Netlink attributes that form a flow key, which must
1387 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1388 * get the metadata, that is, the parts of the flow key that cannot be
1389 * extracted from the packet itself.
1390 */
1391
1392 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1393 struct sw_flow_key *key,
1394 bool log)
1395 {
1396 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1397 struct sw_flow_match match;
1398 u64 attrs = 0;
1399 int err;
1400
1401 err = parse_flow_nlattrs(attr, a, &attrs, log);
1402 if (err)
1403 return -EINVAL;
1404
1405 memset(&match, 0, sizeof(match));
1406 match.key = key;
1407
1408 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
1409 memset(&key->ct, 0, sizeof(key->ct));
1410 key->phy.in_port = DP_MAX_PORTS;
1411
1412 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1413 }
1414
1415 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1416 const struct sw_flow_key *output, bool is_mask,
1417 struct sk_buff *skb)
1418 {
1419 struct ovs_key_ethernet *eth_key;
1420 struct nlattr *nla, *encap;
1421
1422 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1423 goto nla_put_failure;
1424
1425 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1426 goto nla_put_failure;
1427
1428 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1429 goto nla_put_failure;
1430
1431 if ((swkey->tun_proto || is_mask)) {
1432 const void *opts = NULL;
1433
1434 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1435 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1436
1437 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1438 swkey->tun_opts_len, swkey->tun_proto))
1439 goto nla_put_failure;
1440 }
1441
1442 if (swkey->phy.in_port == DP_MAX_PORTS) {
1443 if (is_mask && (output->phy.in_port == 0xffff))
1444 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1445 goto nla_put_failure;
1446 } else {
1447 u16 upper_u16;
1448 upper_u16 = !is_mask ? 0 : 0xffff;
1449
1450 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1451 (upper_u16 << 16) | output->phy.in_port))
1452 goto nla_put_failure;
1453 }
1454
1455 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1456 goto nla_put_failure;
1457
1458 if (ovs_ct_put_key(output, skb))
1459 goto nla_put_failure;
1460
1461 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1462 if (!nla)
1463 goto nla_put_failure;
1464
1465 eth_key = nla_data(nla);
1466 ether_addr_copy(eth_key->eth_src, output->eth.src);
1467 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1468
1469 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1470 __be16 eth_type;
1471 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1472 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1473 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1474 goto nla_put_failure;
1475 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1476 if (!swkey->eth.tci)
1477 goto unencap;
1478 } else
1479 encap = NULL;
1480
1481 if (swkey->eth.type == htons(ETH_P_802_2)) {
1482 /*
1483 * Ethertype 802.2 is represented in the netlink with omitted
1484 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1485 * 0xffff in the mask attribute. Ethertype can also
1486 * be wildcarded.
1487 */
1488 if (is_mask && output->eth.type)
1489 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1490 output->eth.type))
1491 goto nla_put_failure;
1492 goto unencap;
1493 }
1494
1495 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1496 goto nla_put_failure;
1497
1498 if (swkey->eth.type == htons(ETH_P_IP)) {
1499 struct ovs_key_ipv4 *ipv4_key;
1500
1501 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1502 if (!nla)
1503 goto nla_put_failure;
1504 ipv4_key = nla_data(nla);
1505 ipv4_key->ipv4_src = output->ipv4.addr.src;
1506 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1507 ipv4_key->ipv4_proto = output->ip.proto;
1508 ipv4_key->ipv4_tos = output->ip.tos;
1509 ipv4_key->ipv4_ttl = output->ip.ttl;
1510 ipv4_key->ipv4_frag = output->ip.frag;
1511 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1512 struct ovs_key_ipv6 *ipv6_key;
1513
1514 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1515 if (!nla)
1516 goto nla_put_failure;
1517 ipv6_key = nla_data(nla);
1518 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1519 sizeof(ipv6_key->ipv6_src));
1520 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1521 sizeof(ipv6_key->ipv6_dst));
1522 ipv6_key->ipv6_label = output->ipv6.label;
1523 ipv6_key->ipv6_proto = output->ip.proto;
1524 ipv6_key->ipv6_tclass = output->ip.tos;
1525 ipv6_key->ipv6_hlimit = output->ip.ttl;
1526 ipv6_key->ipv6_frag = output->ip.frag;
1527 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1528 swkey->eth.type == htons(ETH_P_RARP)) {
1529 struct ovs_key_arp *arp_key;
1530
1531 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1532 if (!nla)
1533 goto nla_put_failure;
1534 arp_key = nla_data(nla);
1535 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1536 arp_key->arp_sip = output->ipv4.addr.src;
1537 arp_key->arp_tip = output->ipv4.addr.dst;
1538 arp_key->arp_op = htons(output->ip.proto);
1539 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1540 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1541 } else if (eth_p_mpls(swkey->eth.type)) {
1542 struct ovs_key_mpls *mpls_key;
1543
1544 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1545 if (!nla)
1546 goto nla_put_failure;
1547 mpls_key = nla_data(nla);
1548 mpls_key->mpls_lse = output->mpls.top_lse;
1549 }
1550
1551 if ((swkey->eth.type == htons(ETH_P_IP) ||
1552 swkey->eth.type == htons(ETH_P_IPV6)) &&
1553 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1554
1555 if (swkey->ip.proto == IPPROTO_TCP) {
1556 struct ovs_key_tcp *tcp_key;
1557
1558 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1559 if (!nla)
1560 goto nla_put_failure;
1561 tcp_key = nla_data(nla);
1562 tcp_key->tcp_src = output->tp.src;
1563 tcp_key->tcp_dst = output->tp.dst;
1564 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1565 output->tp.flags))
1566 goto nla_put_failure;
1567 } else if (swkey->ip.proto == IPPROTO_UDP) {
1568 struct ovs_key_udp *udp_key;
1569
1570 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1571 if (!nla)
1572 goto nla_put_failure;
1573 udp_key = nla_data(nla);
1574 udp_key->udp_src = output->tp.src;
1575 udp_key->udp_dst = output->tp.dst;
1576 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1577 struct ovs_key_sctp *sctp_key;
1578
1579 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1580 if (!nla)
1581 goto nla_put_failure;
1582 sctp_key = nla_data(nla);
1583 sctp_key->sctp_src = output->tp.src;
1584 sctp_key->sctp_dst = output->tp.dst;
1585 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1586 swkey->ip.proto == IPPROTO_ICMP) {
1587 struct ovs_key_icmp *icmp_key;
1588
1589 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1590 if (!nla)
1591 goto nla_put_failure;
1592 icmp_key = nla_data(nla);
1593 icmp_key->icmp_type = ntohs(output->tp.src);
1594 icmp_key->icmp_code = ntohs(output->tp.dst);
1595 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1596 swkey->ip.proto == IPPROTO_ICMPV6) {
1597 struct ovs_key_icmpv6 *icmpv6_key;
1598
1599 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1600 sizeof(*icmpv6_key));
1601 if (!nla)
1602 goto nla_put_failure;
1603 icmpv6_key = nla_data(nla);
1604 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1605 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1606
1607 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1608 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1609 struct ovs_key_nd *nd_key;
1610
1611 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1612 if (!nla)
1613 goto nla_put_failure;
1614 nd_key = nla_data(nla);
1615 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1616 sizeof(nd_key->nd_target));
1617 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1618 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1619 }
1620 }
1621 }
1622
1623 unencap:
1624 if (encap)
1625 nla_nest_end(skb, encap);
1626
1627 return 0;
1628
1629 nla_put_failure:
1630 return -EMSGSIZE;
1631 }
1632
1633 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1634 const struct sw_flow_key *output, int attr, bool is_mask,
1635 struct sk_buff *skb)
1636 {
1637 int err;
1638 struct nlattr *nla;
1639
1640 nla = nla_nest_start(skb, attr);
1641 if (!nla)
1642 return -EMSGSIZE;
1643 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1644 if (err)
1645 return err;
1646 nla_nest_end(skb, nla);
1647
1648 return 0;
1649 }
1650
1651 /* Called with ovs_mutex or RCU read lock. */
1652 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1653 {
1654 if (ovs_identifier_is_ufid(&flow->id))
1655 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1656 flow->id.ufid);
1657
1658 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1659 OVS_FLOW_ATTR_KEY, false, skb);
1660 }
1661
1662 /* Called with ovs_mutex or RCU read lock. */
1663 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1664 {
1665 return ovs_nla_put_key(&flow->key, &flow->key,
1666 OVS_FLOW_ATTR_KEY, false, skb);
1667 }
1668
1669 /* Called with ovs_mutex or RCU read lock. */
1670 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1671 {
1672 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1673 OVS_FLOW_ATTR_MASK, true, skb);
1674 }
1675
1676 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1677
1678 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1679 {
1680 struct sw_flow_actions *sfa;
1681
1682 if (size > MAX_ACTIONS_BUFSIZE) {
1683 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1684 return ERR_PTR(-EINVAL);
1685 }
1686
1687 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1688 if (!sfa)
1689 return ERR_PTR(-ENOMEM);
1690
1691 sfa->actions_len = 0;
1692 return sfa;
1693 }
1694
1695 static void ovs_nla_free_set_action(const struct nlattr *a)
1696 {
1697 const struct nlattr *ovs_key = nla_data(a);
1698 struct ovs_tunnel_info *ovs_tun;
1699
1700 switch (nla_type(ovs_key)) {
1701 case OVS_KEY_ATTR_TUNNEL_INFO:
1702 ovs_tun = nla_data(ovs_key);
1703 ovs_dst_release((struct dst_entry *)ovs_tun->tun_dst);
1704 break;
1705 }
1706 }
1707
1708 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1709 {
1710 const struct nlattr *a;
1711 int rem;
1712
1713 if (!sf_acts)
1714 return;
1715
1716 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1717 switch (nla_type(a)) {
1718 case OVS_ACTION_ATTR_SET:
1719 ovs_nla_free_set_action(a);
1720 break;
1721 case OVS_ACTION_ATTR_CT:
1722 ovs_ct_free_action(a);
1723 break;
1724 }
1725 }
1726
1727 kfree(sf_acts);
1728 }
1729
1730 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1731 {
1732 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1733 }
1734
1735 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1736 * The caller must hold rcu_read_lock for this to be sensible. */
1737 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1738 {
1739 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1740 }
1741
1742 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1743 int attr_len, bool log)
1744 {
1745
1746 struct sw_flow_actions *acts;
1747 int new_acts_size;
1748 int req_size = NLA_ALIGN(attr_len);
1749 int next_offset = offsetof(struct sw_flow_actions, actions) +
1750 (*sfa)->actions_len;
1751
1752 if (req_size <= (ksize(*sfa) - next_offset))
1753 goto out;
1754
1755 new_acts_size = ksize(*sfa) * 2;
1756
1757 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1758 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1759 return ERR_PTR(-EMSGSIZE);
1760 new_acts_size = MAX_ACTIONS_BUFSIZE;
1761 }
1762
1763 acts = nla_alloc_flow_actions(new_acts_size, log);
1764 if (IS_ERR(acts))
1765 return (void *)acts;
1766
1767 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1768 acts->actions_len = (*sfa)->actions_len;
1769 acts->orig_len = (*sfa)->orig_len;
1770 kfree(*sfa);
1771 *sfa = acts;
1772
1773 out:
1774 (*sfa)->actions_len += req_size;
1775 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1776 }
1777
1778 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1779 int attrtype, void *data, int len, bool log)
1780 {
1781 struct nlattr *a;
1782
1783 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1784 if (IS_ERR(a))
1785 return a;
1786
1787 a->nla_type = attrtype;
1788 a->nla_len = nla_attr_size(len);
1789
1790 if (data)
1791 memcpy(nla_data(a), data, len);
1792 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1793
1794 return a;
1795 }
1796
1797 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1798 int len, bool log)
1799 {
1800 struct nlattr *a;
1801
1802 a = __add_action(sfa, attrtype, data, len, log);
1803 if (IS_ERR(a))
1804 return PTR_ERR(a);
1805
1806 return 0;
1807 }
1808
1809 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1810 int attrtype, bool log)
1811 {
1812 int used = (*sfa)->actions_len;
1813 int err;
1814
1815 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1816 if (err)
1817 return err;
1818
1819 return used;
1820 }
1821
1822 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1823 int st_offset)
1824 {
1825 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1826 st_offset);
1827
1828 a->nla_len = sfa->actions_len - st_offset;
1829 }
1830
1831 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1832 const struct sw_flow_key *key,
1833 int depth, struct sw_flow_actions **sfa,
1834 __be16 eth_type, __be16 vlan_tci, bool log);
1835
1836 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1837 const struct sw_flow_key *key, int depth,
1838 struct sw_flow_actions **sfa,
1839 __be16 eth_type, __be16 vlan_tci, bool log)
1840 {
1841 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1842 const struct nlattr *probability, *actions;
1843 const struct nlattr *a;
1844 int rem, start, err, st_acts;
1845
1846 memset(attrs, 0, sizeof(attrs));
1847 nla_for_each_nested(a, attr, rem) {
1848 int type = nla_type(a);
1849 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1850 return -EINVAL;
1851 attrs[type] = a;
1852 }
1853 if (rem)
1854 return -EINVAL;
1855
1856 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1857 if (!probability || nla_len(probability) != sizeof(u32))
1858 return -EINVAL;
1859
1860 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1861 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1862 return -EINVAL;
1863
1864 /* validation done, copy sample action. */
1865 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1866 if (start < 0)
1867 return start;
1868 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1869 nla_data(probability), sizeof(u32), log);
1870 if (err)
1871 return err;
1872 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1873 if (st_acts < 0)
1874 return st_acts;
1875
1876 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1877 eth_type, vlan_tci, log);
1878 if (err)
1879 return err;
1880
1881 add_nested_action_end(*sfa, st_acts);
1882 add_nested_action_end(*sfa, start);
1883
1884 return 0;
1885 }
1886
1887 void ovs_match_init(struct sw_flow_match *match,
1888 struct sw_flow_key *key,
1889 struct sw_flow_mask *mask)
1890 {
1891 memset(match, 0, sizeof(*match));
1892 match->key = key;
1893 match->mask = mask;
1894
1895 memset(key, 0, sizeof(*key));
1896
1897 if (mask) {
1898 memset(&mask->key, 0, sizeof(mask->key));
1899 mask->range.start = mask->range.end = 0;
1900 }
1901 }
1902
1903 static int validate_geneve_opts(struct sw_flow_key *key)
1904 {
1905 struct geneve_opt *option;
1906 int opts_len = key->tun_opts_len;
1907 bool crit_opt = false;
1908
1909 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1910 while (opts_len > 0) {
1911 int len;
1912
1913 if (opts_len < sizeof(*option))
1914 return -EINVAL;
1915
1916 len = sizeof(*option) + option->length * 4;
1917 if (len > opts_len)
1918 return -EINVAL;
1919
1920 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1921
1922 option = (struct geneve_opt *)((u8 *)option + len);
1923 opts_len -= len;
1924 };
1925
1926 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1927
1928 return 0;
1929 }
1930
1931 static int validate_and_copy_set_tun(const struct nlattr *attr,
1932 struct sw_flow_actions **sfa, bool log)
1933 {
1934 struct sw_flow_match match;
1935 struct sw_flow_key key;
1936 struct metadata_dst *tun_dst;
1937 struct ip_tunnel_info *tun_info;
1938 struct ovs_tunnel_info *ovs_tun;
1939 struct nlattr *a;
1940 int err = 0, start, opts_type;
1941
1942 ovs_match_init(&match, &key, NULL);
1943 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1944 if (opts_type < 0)
1945 return opts_type;
1946
1947 if (key.tun_opts_len) {
1948 switch (opts_type) {
1949 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1950 err = validate_geneve_opts(&key);
1951 if (err < 0)
1952 return err;
1953 break;
1954 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1955 break;
1956 }
1957 };
1958
1959 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1960 if (start < 0)
1961 return start;
1962
1963 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1964 if (!tun_dst)
1965 return -ENOMEM;
1966
1967 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1968 if (err) {
1969 dst_release((struct dst_entry *)tun_dst);
1970 return err;
1971 }
1972 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1973 sizeof(*ovs_tun), log);
1974 if (IS_ERR(a)) {
1975 ovs_dst_release((struct dst_entry *)tun_dst);
1976 return PTR_ERR(a);
1977 }
1978
1979 ovs_tun = nla_data(a);
1980 ovs_tun->tun_dst = tun_dst;
1981
1982 tun_info = &tun_dst->u.tun_info;
1983 tun_info->mode = IP_TUNNEL_INFO_TX;
1984 if (key.tun_proto == AF_INET6)
1985 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1986 tun_info->key = key.tun_key;
1987
1988 /* We need to store the options in the action itself since
1989 * everything else will go away after flow setup. We can append
1990 * it to tun_info and then point there.
1991 */
1992 ip_tunnel_info_opts_set(tun_info,
1993 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1994 key.tun_opts_len);
1995 add_nested_action_end(*sfa, start);
1996
1997 return err;
1998 }
1999
2000 /* Return false if there are any non-masked bits set.
2001 * Mask follows data immediately, before any netlink padding.
2002 */
2003 static bool validate_masked(u8 *data, int len)
2004 {
2005 u8 *mask = data + len;
2006
2007 while (len--)
2008 if (*data++ & ~*mask++)
2009 return false;
2010
2011 return true;
2012 }
2013
2014 static int validate_set(const struct nlattr *a,
2015 const struct sw_flow_key *flow_key,
2016 struct sw_flow_actions **sfa,
2017 bool *skip_copy, __be16 eth_type, bool masked, bool log)
2018 {
2019 const struct nlattr *ovs_key = nla_data(a);
2020 int key_type = nla_type(ovs_key);
2021 size_t key_len;
2022
2023 /* There can be only one key in a action */
2024 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2025 return -EINVAL;
2026
2027 key_len = nla_len(ovs_key);
2028 if (masked)
2029 key_len /= 2;
2030
2031 if (key_type > OVS_KEY_ATTR_MAX ||
2032 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2033 return -EINVAL;
2034
2035 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2036 return -EINVAL;
2037
2038 switch (key_type) {
2039 const struct ovs_key_ipv4 *ipv4_key;
2040 const struct ovs_key_ipv6 *ipv6_key;
2041 int err;
2042
2043 case OVS_KEY_ATTR_PRIORITY:
2044 case OVS_KEY_ATTR_SKB_MARK:
2045 case OVS_KEY_ATTR_CT_MARK:
2046 case OVS_KEY_ATTR_CT_LABELS:
2047 case OVS_KEY_ATTR_ETHERNET:
2048 break;
2049
2050 case OVS_KEY_ATTR_TUNNEL:
2051 if (eth_p_mpls(eth_type))
2052 return -EINVAL;
2053
2054 if (masked)
2055 return -EINVAL; /* Masked tunnel set not supported. */
2056
2057 *skip_copy = true;
2058 err = validate_and_copy_set_tun(a, sfa, log);
2059 if (err)
2060 return err;
2061 break;
2062
2063 case OVS_KEY_ATTR_IPV4:
2064 if (eth_type != htons(ETH_P_IP))
2065 return -EINVAL;
2066
2067 ipv4_key = nla_data(ovs_key);
2068
2069 if (masked) {
2070 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2071
2072 /* Non-writeable fields. */
2073 if (mask->ipv4_proto || mask->ipv4_frag)
2074 return -EINVAL;
2075 } else {
2076 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2077 return -EINVAL;
2078
2079 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2080 return -EINVAL;
2081 }
2082 break;
2083
2084 case OVS_KEY_ATTR_IPV6:
2085 if (eth_type != htons(ETH_P_IPV6))
2086 return -EINVAL;
2087
2088 ipv6_key = nla_data(ovs_key);
2089
2090 if (masked) {
2091 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2092
2093 /* Non-writeable fields. */
2094 if (mask->ipv6_proto || mask->ipv6_frag)
2095 return -EINVAL;
2096
2097 /* Invalid bits in the flow label mask? */
2098 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2099 return -EINVAL;
2100 } else {
2101 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2102 return -EINVAL;
2103
2104 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2105 return -EINVAL;
2106 }
2107 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2108 return -EINVAL;
2109
2110 break;
2111
2112 case OVS_KEY_ATTR_TCP:
2113 if ((eth_type != htons(ETH_P_IP) &&
2114 eth_type != htons(ETH_P_IPV6)) ||
2115 flow_key->ip.proto != IPPROTO_TCP)
2116 return -EINVAL;
2117
2118 break;
2119
2120 case OVS_KEY_ATTR_UDP:
2121 if ((eth_type != htons(ETH_P_IP) &&
2122 eth_type != htons(ETH_P_IPV6)) ||
2123 flow_key->ip.proto != IPPROTO_UDP)
2124 return -EINVAL;
2125
2126 break;
2127
2128 case OVS_KEY_ATTR_MPLS:
2129 if (!eth_p_mpls(eth_type))
2130 return -EINVAL;
2131 break;
2132
2133 case OVS_KEY_ATTR_SCTP:
2134 if ((eth_type != htons(ETH_P_IP) &&
2135 eth_type != htons(ETH_P_IPV6)) ||
2136 flow_key->ip.proto != IPPROTO_SCTP)
2137 return -EINVAL;
2138
2139 break;
2140
2141 default:
2142 return -EINVAL;
2143 }
2144
2145 /* Convert non-masked non-tunnel set actions to masked set actions. */
2146 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2147 int start, len = key_len * 2;
2148 struct nlattr *at;
2149
2150 *skip_copy = true;
2151
2152 start = add_nested_action_start(sfa,
2153 OVS_ACTION_ATTR_SET_TO_MASKED,
2154 log);
2155 if (start < 0)
2156 return start;
2157
2158 at = __add_action(sfa, key_type, NULL, len, log);
2159 if (IS_ERR(at))
2160 return PTR_ERR(at);
2161
2162 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2163 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2164 /* Clear non-writeable bits from otherwise writeable fields. */
2165 if (key_type == OVS_KEY_ATTR_IPV6) {
2166 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2167
2168 mask->ipv6_label &= htonl(0x000FFFFF);
2169 }
2170 add_nested_action_end(*sfa, start);
2171 }
2172
2173 return 0;
2174 }
2175
2176 static int validate_userspace(const struct nlattr *attr)
2177 {
2178 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2179 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2180 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2181 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2182 };
2183 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2184 int error;
2185
2186 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2187 attr, userspace_policy);
2188 if (error)
2189 return error;
2190
2191 if (!a[OVS_USERSPACE_ATTR_PID] ||
2192 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2193 return -EINVAL;
2194
2195 return 0;
2196 }
2197
2198 static int copy_action(const struct nlattr *from,
2199 struct sw_flow_actions **sfa, bool log)
2200 {
2201 int totlen = NLA_ALIGN(from->nla_len);
2202 struct nlattr *to;
2203
2204 to = reserve_sfa_size(sfa, from->nla_len, log);
2205 if (IS_ERR(to))
2206 return PTR_ERR(to);
2207
2208 memcpy(to, from, totlen);
2209 return 0;
2210 }
2211
2212 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2213 const struct sw_flow_key *key,
2214 int depth, struct sw_flow_actions **sfa,
2215 __be16 eth_type, __be16 vlan_tci, bool log)
2216 {
2217 const struct nlattr *a;
2218 int rem, err;
2219
2220 if (depth >= SAMPLE_ACTION_DEPTH)
2221 return -EOVERFLOW;
2222
2223 nla_for_each_nested(a, attr, rem) {
2224 /* Expected argument lengths, (u32)-1 for variable length. */
2225 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2226 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2227 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2228 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2229 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2230 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2231 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2232 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2233 [OVS_ACTION_ATTR_SET] = (u32)-1,
2234 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2235 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2236 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2237 [OVS_ACTION_ATTR_CT] = (u32)-1,
2238 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2239 };
2240 const struct ovs_action_push_vlan *vlan;
2241 int type = nla_type(a);
2242 bool skip_copy;
2243
2244 if (type > OVS_ACTION_ATTR_MAX ||
2245 (action_lens[type] != nla_len(a) &&
2246 action_lens[type] != (u32)-1))
2247 return -EINVAL;
2248
2249 skip_copy = false;
2250 switch (type) {
2251 case OVS_ACTION_ATTR_UNSPEC:
2252 return -EINVAL;
2253
2254 case OVS_ACTION_ATTR_USERSPACE:
2255 err = validate_userspace(a);
2256 if (err)
2257 return err;
2258 break;
2259
2260 case OVS_ACTION_ATTR_OUTPUT:
2261 if (nla_get_u32(a) >= DP_MAX_PORTS)
2262 return -EINVAL;
2263 break;
2264
2265 case OVS_ACTION_ATTR_TRUNC: {
2266 const struct ovs_action_trunc *trunc = nla_data(a);
2267
2268 if (trunc->max_len < ETH_HLEN)
2269 return -EINVAL;
2270 break;
2271 }
2272
2273 case OVS_ACTION_ATTR_HASH: {
2274 const struct ovs_action_hash *act_hash = nla_data(a);
2275
2276 switch (act_hash->hash_alg) {
2277 case OVS_HASH_ALG_L4:
2278 break;
2279 default:
2280 return -EINVAL;
2281 }
2282
2283 break;
2284 }
2285
2286 case OVS_ACTION_ATTR_POP_VLAN:
2287 vlan_tci = htons(0);
2288 break;
2289
2290 case OVS_ACTION_ATTR_PUSH_VLAN:
2291 vlan = nla_data(a);
2292 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2293 return -EINVAL;
2294 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2295 return -EINVAL;
2296 vlan_tci = vlan->vlan_tci;
2297 break;
2298
2299 case OVS_ACTION_ATTR_RECIRC:
2300 break;
2301
2302 case OVS_ACTION_ATTR_PUSH_MPLS: {
2303 const struct ovs_action_push_mpls *mpls = nla_data(a);
2304
2305 if (!eth_p_mpls(mpls->mpls_ethertype))
2306 return -EINVAL;
2307 /* Prohibit push MPLS other than to a white list
2308 * for packets that have a known tag order.
2309 */
2310 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2311 (eth_type != htons(ETH_P_IP) &&
2312 eth_type != htons(ETH_P_IPV6) &&
2313 eth_type != htons(ETH_P_ARP) &&
2314 eth_type != htons(ETH_P_RARP) &&
2315 !eth_p_mpls(eth_type)))
2316 return -EINVAL;
2317 eth_type = mpls->mpls_ethertype;
2318 break;
2319 }
2320
2321 case OVS_ACTION_ATTR_POP_MPLS:
2322 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2323 !eth_p_mpls(eth_type))
2324 return -EINVAL;
2325
2326 /* Disallow subsequent L2.5+ set and mpls_pop actions
2327 * as there is no check here to ensure that the new
2328 * eth_type is valid and thus set actions could
2329 * write off the end of the packet or otherwise
2330 * corrupt it.
2331 *
2332 * Support for these actions is planned using packet
2333 * recirculation.
2334 */
2335 eth_type = htons(0);
2336 break;
2337
2338 case OVS_ACTION_ATTR_SET:
2339 err = validate_set(a, key, sfa,
2340 &skip_copy, eth_type, false, log);
2341 if (err)
2342 return err;
2343 break;
2344
2345 case OVS_ACTION_ATTR_SET_MASKED:
2346 err = validate_set(a, key, sfa,
2347 &skip_copy, eth_type, true, log);
2348 if (err)
2349 return err;
2350 break;
2351
2352 case OVS_ACTION_ATTR_SAMPLE:
2353 err = validate_and_copy_sample(net, a, key, depth, sfa,
2354 eth_type, vlan_tci, log);
2355 if (err)
2356 return err;
2357 skip_copy = true;
2358 break;
2359
2360 case OVS_ACTION_ATTR_CT:
2361 err = ovs_ct_copy_action(net, a, key, sfa, log);
2362 if (err)
2363 return err;
2364 skip_copy = true;
2365 break;
2366
2367 default:
2368 OVS_NLERR(log, "Unknown Action type %d", type);
2369 return -EINVAL;
2370 }
2371 if (!skip_copy) {
2372 err = copy_action(a, sfa, log);
2373 if (err)
2374 return err;
2375 }
2376 }
2377
2378 if (rem > 0)
2379 return -EINVAL;
2380
2381 return 0;
2382 }
2383
2384 /* 'key' must be the masked key. */
2385 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2386 const struct sw_flow_key *key,
2387 struct sw_flow_actions **sfa, bool log)
2388 {
2389 int err;
2390
2391 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2392 if (IS_ERR(*sfa))
2393 return PTR_ERR(*sfa);
2394
2395 (*sfa)->orig_len = nla_len(attr);
2396 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2397 key->eth.tci, log);
2398 if (err)
2399 ovs_nla_free_flow_actions(*sfa);
2400
2401 return err;
2402 }
2403
2404 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2405 {
2406 const struct nlattr *a;
2407 struct nlattr *start;
2408 int err = 0, rem;
2409
2410 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2411 if (!start)
2412 return -EMSGSIZE;
2413
2414 nla_for_each_nested(a, attr, rem) {
2415 int type = nla_type(a);
2416 struct nlattr *st_sample;
2417
2418 switch (type) {
2419 case OVS_SAMPLE_ATTR_PROBABILITY:
2420 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2421 sizeof(u32), nla_data(a)))
2422 return -EMSGSIZE;
2423 break;
2424 case OVS_SAMPLE_ATTR_ACTIONS:
2425 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2426 if (!st_sample)
2427 return -EMSGSIZE;
2428 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2429 if (err)
2430 return err;
2431 nla_nest_end(skb, st_sample);
2432 break;
2433 }
2434 }
2435
2436 nla_nest_end(skb, start);
2437 return err;
2438 }
2439
2440 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2441 {
2442 const struct nlattr *ovs_key = nla_data(a);
2443 int key_type = nla_type(ovs_key);
2444 struct nlattr *start;
2445 int err;
2446
2447 switch (key_type) {
2448 case OVS_KEY_ATTR_TUNNEL_INFO: {
2449 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2450 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2451
2452 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2453 if (!start)
2454 return -EMSGSIZE;
2455
2456 err = ovs_nla_put_tunnel_info(skb, tun_info);
2457 if (err)
2458 return err;
2459 nla_nest_end(skb, start);
2460 break;
2461 }
2462 default:
2463 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2464 return -EMSGSIZE;
2465 break;
2466 }
2467
2468 return 0;
2469 }
2470
2471 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2472 struct sk_buff *skb)
2473 {
2474 const struct nlattr *ovs_key = nla_data(a);
2475 struct nlattr *nla;
2476 size_t key_len = nla_len(ovs_key) / 2;
2477
2478 /* Revert the conversion we did from a non-masked set action to
2479 * masked set action.
2480 */
2481 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2482 if (!nla)
2483 return -EMSGSIZE;
2484
2485 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2486 return -EMSGSIZE;
2487
2488 nla_nest_end(skb, nla);
2489 return 0;
2490 }
2491
2492 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2493 {
2494 const struct nlattr *a;
2495 int rem, err;
2496
2497 nla_for_each_attr(a, attr, len, rem) {
2498 int type = nla_type(a);
2499
2500 switch (type) {
2501 case OVS_ACTION_ATTR_SET:
2502 err = set_action_to_attr(a, skb);
2503 if (err)
2504 return err;
2505 break;
2506
2507 case OVS_ACTION_ATTR_SET_TO_MASKED:
2508 err = masked_set_action_to_set_action_attr(a, skb);
2509 if (err)
2510 return err;
2511 break;
2512
2513 case OVS_ACTION_ATTR_SAMPLE:
2514 err = sample_action_to_attr(a, skb);
2515 if (err)
2516 return err;
2517 break;
2518
2519 case OVS_ACTION_ATTR_CT:
2520 err = ovs_ct_action_to_attr(nla_data(a), skb);
2521 if (err)
2522 return err;
2523 break;
2524
2525 default:
2526 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2527 return -EMSGSIZE;
2528 break;
2529 }
2530 }
2531
2532 return 0;
2533 }