]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/tunnel.c
datapath: Merge "struct dp_port" into "struct vport".
[mirror_ovs.git] / datapath / tunnel.c
1 /*
2 * Copyright (c) 2010 Nicira Networks.
3 * Distributed under the terms of the GNU GPL version 2.
4 *
5 * Significant portions of this file may be copied from parts of the Linux
6 * kernel, by Linus Torvalds and others.
7 */
8
9 #include <linux/if_arp.h>
10 #include <linux/if_ether.h>
11 #include <linux/ip.h>
12 #include <linux/if_vlan.h>
13 #include <linux/in.h>
14 #include <linux/in_route.h>
15 #include <linux/jhash.h>
16 #include <linux/kernel.h>
17 #include <linux/version.h>
18 #include <linux/workqueue.h>
19
20 #include <net/dsfield.h>
21 #include <net/dst.h>
22 #include <net/icmp.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
26 #include <net/ipv6.h>
27 #endif
28 #include <net/route.h>
29 #include <net/xfrm.h>
30
31 #include "actions.h"
32 #include "datapath.h"
33 #include "table.h"
34 #include "tunnel.h"
35 #include "vport.h"
36 #include "vport-generic.h"
37 #include "vport-internal_dev.h"
38
39 #ifdef NEED_CACHE_TIMEOUT
40 /*
41 * On kernels where we can't quickly detect changes in the rest of the system
42 * we use an expiration time to invalidate the cache. A shorter expiration
43 * reduces the length of time that we may potentially blackhole packets while
44 * a longer time increases performance by reducing the frequency that the
45 * cache needs to be rebuilt. A variety of factors may cause the cache to be
46 * invalidated before the expiration time but this is the maximum. The time
47 * is expressed in jiffies.
48 */
49 #define MAX_CACHE_EXP HZ
50 #endif
51
52 /*
53 * Interval to check for and remove caches that are no longer valid. Caches
54 * are checked for validity before they are used for packet encapsulation and
55 * old caches are removed at that time. However, if no packets are sent through
56 * the tunnel then the cache will never be destroyed. Since it holds
57 * references to a number of system objects, the cache will continue to use
58 * system resources by not allowing those objects to be destroyed. The cache
59 * cleaner is periodically run to free invalid caches. It does not
60 * significantly affect system performance. A lower interval will release
61 * resources faster but will itself consume resources by requiring more frequent
62 * checks. A longer interval may result in messages being printed to the kernel
63 * message buffer about unreleased resources. The interval is expressed in
64 * jiffies.
65 */
66 #define CACHE_CLEANER_INTERVAL (5 * HZ)
67
68 #define CACHE_DATA_ALIGN 16
69
70 /* Protected by RCU. */
71 static struct tbl *port_table __read_mostly;
72
73 static void cache_cleaner(struct work_struct *work);
74 DECLARE_DELAYED_WORK(cache_cleaner_wq, cache_cleaner);
75
76 /*
77 * These are just used as an optimization: they don't require any kind of
78 * synchronization because we could have just as easily read the value before
79 * the port change happened.
80 */
81 static unsigned int key_local_remote_ports __read_mostly;
82 static unsigned int key_remote_ports __read_mostly;
83 static unsigned int local_remote_ports __read_mostly;
84 static unsigned int remote_ports __read_mostly;
85
86 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36)
87 #define rt_dst(rt) (rt->dst)
88 #else
89 #define rt_dst(rt) (rt->u.dst)
90 #endif
91
92 static inline struct vport *tnl_vport_to_vport(const struct tnl_vport *tnl_vport)
93 {
94 return vport_from_priv(tnl_vport);
95 }
96
97 static inline struct tnl_vport *tnl_vport_table_cast(const struct tbl_node *node)
98 {
99 return container_of(node, struct tnl_vport, tbl_node);
100 }
101
102 static inline void schedule_cache_cleaner(void)
103 {
104 schedule_delayed_work(&cache_cleaner_wq, CACHE_CLEANER_INTERVAL);
105 }
106
107 static void free_cache(struct tnl_cache *cache)
108 {
109 if (!cache)
110 return;
111
112 flow_put(cache->flow);
113 ip_rt_put(cache->rt);
114 kfree(cache);
115 }
116
117 static void free_config_rcu(struct rcu_head *rcu)
118 {
119 struct tnl_mutable_config *c = container_of(rcu, struct tnl_mutable_config, rcu);
120 kfree(c);
121 }
122
123 static void free_cache_rcu(struct rcu_head *rcu)
124 {
125 struct tnl_cache *c = container_of(rcu, struct tnl_cache, rcu);
126 free_cache(c);
127 }
128
129 static void assign_config_rcu(struct vport *vport,
130 struct tnl_mutable_config *new_config)
131 {
132 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
133 struct tnl_mutable_config *old_config;
134
135 old_config = tnl_vport->mutable;
136 rcu_assign_pointer(tnl_vport->mutable, new_config);
137 call_rcu(&old_config->rcu, free_config_rcu);
138 }
139
140 static void assign_cache_rcu(struct vport *vport, struct tnl_cache *new_cache)
141 {
142 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
143 struct tnl_cache *old_cache;
144
145 old_cache = tnl_vport->cache;
146 rcu_assign_pointer(tnl_vport->cache, new_cache);
147
148 if (old_cache)
149 call_rcu(&old_cache->rcu, free_cache_rcu);
150 }
151
152 static unsigned int *find_port_pool(const struct tnl_mutable_config *mutable)
153 {
154 if (mutable->port_config.flags & TNL_F_IN_KEY_MATCH) {
155 if (mutable->port_config.saddr)
156 return &local_remote_ports;
157 else
158 return &remote_ports;
159 } else {
160 if (mutable->port_config.saddr)
161 return &key_local_remote_ports;
162 else
163 return &key_remote_ports;
164 }
165 }
166
167 struct port_lookup_key {
168 u32 tunnel_type;
169 __be32 saddr;
170 __be32 daddr;
171 __be32 key;
172 const struct tnl_mutable_config *mutable;
173 };
174
175 /*
176 * Modifies 'target' to store the rcu_dereferenced pointer that was used to do
177 * the comparision.
178 */
179 static int port_cmp(const struct tbl_node *node, void *target)
180 {
181 const struct tnl_vport *tnl_vport = tnl_vport_table_cast(node);
182 struct port_lookup_key *lookup = target;
183
184 lookup->mutable = rcu_dereference(tnl_vport->mutable);
185
186 return (lookup->mutable->tunnel_type == lookup->tunnel_type &&
187 lookup->mutable->port_config.daddr == lookup->daddr &&
188 lookup->mutable->port_config.in_key == lookup->key &&
189 lookup->mutable->port_config.saddr == lookup->saddr);
190 }
191
192 static u32 port_hash(struct port_lookup_key *k)
193 {
194 return jhash_3words(k->key, k->saddr, k->daddr, k->tunnel_type);
195 }
196
197 static u32 mutable_hash(const struct tnl_mutable_config *mutable)
198 {
199 struct port_lookup_key lookup;
200
201 lookup.saddr = mutable->port_config.saddr;
202 lookup.daddr = mutable->port_config.daddr;
203 lookup.key = mutable->port_config.in_key;
204 lookup.tunnel_type = mutable->tunnel_type;
205
206 return port_hash(&lookup);
207 }
208
209 static void check_table_empty(void)
210 {
211 if (tbl_count(port_table) == 0) {
212 struct tbl *old_table = port_table;
213
214 cancel_delayed_work_sync(&cache_cleaner_wq);
215 rcu_assign_pointer(port_table, NULL);
216 tbl_deferred_destroy(old_table, NULL);
217 }
218 }
219
220 static int add_port(struct vport *vport)
221 {
222 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
223 int err;
224
225 if (!port_table) {
226 struct tbl *new_table;
227
228 new_table = tbl_create(0);
229 if (!new_table)
230 return -ENOMEM;
231
232 rcu_assign_pointer(port_table, new_table);
233 schedule_cache_cleaner();
234
235 } else if (tbl_count(port_table) > tbl_n_buckets(port_table)) {
236 struct tbl *old_table = port_table;
237 struct tbl *new_table;
238
239 new_table = tbl_expand(old_table);
240 if (IS_ERR(new_table))
241 return PTR_ERR(new_table);
242
243 rcu_assign_pointer(port_table, new_table);
244 tbl_deferred_destroy(old_table, NULL);
245 }
246
247 err = tbl_insert(port_table, &tnl_vport->tbl_node, mutable_hash(tnl_vport->mutable));
248 if (err) {
249 check_table_empty();
250 return err;
251 }
252
253 (*find_port_pool(tnl_vport->mutable))++;
254
255 return 0;
256 }
257
258 static int move_port(struct vport *vport, struct tnl_mutable_config *new_mutable)
259 {
260 int err;
261 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
262 u32 hash;
263
264 hash = mutable_hash(new_mutable);
265 if (hash == tnl_vport->tbl_node.hash)
266 goto table_updated;
267
268 /*
269 * Ideally we should make this move atomic to avoid having gaps in
270 * finding tunnels or the possibility of failure. However, if we do
271 * find a tunnel it will always be consistent.
272 */
273 err = tbl_remove(port_table, &tnl_vport->tbl_node);
274 if (err)
275 return err;
276
277 err = tbl_insert(port_table, &tnl_vport->tbl_node, hash);
278 if (err) {
279 check_table_empty();
280 return err;
281 }
282
283 table_updated:
284 assign_config_rcu(vport, new_mutable);
285
286 return 0;
287 }
288
289 static int del_port(struct vport *vport)
290 {
291 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
292 int err;
293
294 err = tbl_remove(port_table, &tnl_vport->tbl_node);
295 if (err)
296 return err;
297
298 check_table_empty();
299 (*find_port_pool(tnl_vport->mutable))--;
300
301 return 0;
302 }
303
304 struct vport *tnl_find_port(__be32 saddr, __be32 daddr, __be32 key,
305 int tunnel_type,
306 const struct tnl_mutable_config **mutable)
307 {
308 struct port_lookup_key lookup;
309 struct tbl *table = rcu_dereference(port_table);
310 struct tbl_node *tbl_node;
311
312 if (unlikely(!table))
313 return NULL;
314
315 lookup.saddr = saddr;
316 lookup.daddr = daddr;
317
318 if (tunnel_type & TNL_T_KEY_EXACT) {
319 lookup.key = key;
320 lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_MATCH;
321
322 if (key_local_remote_ports) {
323 tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
324 if (tbl_node)
325 goto found;
326 }
327
328 if (key_remote_ports) {
329 lookup.saddr = 0;
330
331 tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
332 if (tbl_node)
333 goto found;
334
335 lookup.saddr = saddr;
336 }
337 }
338
339 if (tunnel_type & TNL_T_KEY_MATCH) {
340 lookup.key = 0;
341 lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_EXACT;
342
343 if (local_remote_ports) {
344 tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
345 if (tbl_node)
346 goto found;
347 }
348
349 if (remote_ports) {
350 lookup.saddr = 0;
351
352 tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
353 if (tbl_node)
354 goto found;
355 }
356 }
357
358 return NULL;
359
360 found:
361 *mutable = lookup.mutable;
362 return tnl_vport_to_vport(tnl_vport_table_cast(tbl_node));
363 }
364
365 static inline void ecn_decapsulate(struct sk_buff *skb)
366 {
367 u8 tos = ip_hdr(skb)->tos;
368
369 if (INET_ECN_is_ce(tos)) {
370 __be16 protocol = skb->protocol;
371 unsigned int nw_header = skb_network_offset(skb);
372
373 if (skb->protocol == htons(ETH_P_8021Q)) {
374 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
375 return;
376
377 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
378 nw_header += VLAN_HLEN;
379 }
380
381 if (protocol == htons(ETH_P_IP)) {
382 if (unlikely(!pskb_may_pull(skb, nw_header
383 + sizeof(struct iphdr))))
384 return;
385
386 IP_ECN_set_ce((struct iphdr *)(skb->data + nw_header));
387 }
388 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
389 else if (protocol == htons(ETH_P_IPV6)) {
390 if (unlikely(!pskb_may_pull(skb, nw_header
391 + sizeof(struct ipv6hdr))))
392 return;
393
394 IP6_ECN_set_ce((struct ipv6hdr *)(skb->data + nw_header));
395 }
396 #endif
397 }
398 }
399
400 /* Called with rcu_read_lock. */
401 void tnl_rcv(struct vport *vport, struct sk_buff *skb)
402 {
403 skb->pkt_type = PACKET_HOST;
404 skb->protocol = eth_type_trans(skb, skb->dev);
405
406 skb_dst_drop(skb);
407 nf_reset(skb);
408 secpath_reset(skb);
409 skb_reset_network_header(skb);
410
411 ecn_decapsulate(skb);
412
413 skb_push(skb, ETH_HLEN);
414 compute_ip_summed(skb, false);
415
416 vport_receive(vport, skb);
417 }
418
419 static bool check_ipv4_address(__be32 addr)
420 {
421 if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr)
422 || ipv4_is_loopback(addr) || ipv4_is_zeronet(addr))
423 return false;
424
425 return true;
426 }
427
428 static bool ipv4_should_icmp(struct sk_buff *skb)
429 {
430 struct iphdr *old_iph = ip_hdr(skb);
431
432 /* Don't respond to L2 broadcast. */
433 if (is_multicast_ether_addr(eth_hdr(skb)->h_dest))
434 return false;
435
436 /* Don't respond to L3 broadcast or invalid addresses. */
437 if (!check_ipv4_address(old_iph->daddr) ||
438 !check_ipv4_address(old_iph->saddr))
439 return false;
440
441 /* Only respond to the first fragment. */
442 if (old_iph->frag_off & htons(IP_OFFSET))
443 return false;
444
445 /* Don't respond to ICMP error messages. */
446 if (old_iph->protocol == IPPROTO_ICMP) {
447 u8 icmp_type, *icmp_typep;
448
449 icmp_typep = skb_header_pointer(skb, (u8 *)old_iph +
450 (old_iph->ihl << 2) +
451 offsetof(struct icmphdr, type) -
452 skb->data, sizeof(icmp_type),
453 &icmp_type);
454
455 if (!icmp_typep)
456 return false;
457
458 if (*icmp_typep > NR_ICMP_TYPES
459 || (*icmp_typep <= ICMP_PARAMETERPROB
460 && *icmp_typep != ICMP_ECHOREPLY
461 && *icmp_typep != ICMP_ECHO))
462 return false;
463 }
464
465 return true;
466 }
467
468 static void ipv4_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
469 unsigned int mtu, unsigned int payload_length)
470 {
471 struct iphdr *iph, *old_iph = ip_hdr(skb);
472 struct icmphdr *icmph;
473 u8 *payload;
474
475 iph = (struct iphdr *)skb_put(nskb, sizeof(struct iphdr));
476 icmph = (struct icmphdr *)skb_put(nskb, sizeof(struct icmphdr));
477 payload = skb_put(nskb, payload_length);
478
479 /* IP */
480 iph->version = 4;
481 iph->ihl = sizeof(struct iphdr) >> 2;
482 iph->tos = (old_iph->tos & IPTOS_TOS_MASK) |
483 IPTOS_PREC_INTERNETCONTROL;
484 iph->tot_len = htons(sizeof(struct iphdr)
485 + sizeof(struct icmphdr)
486 + payload_length);
487 get_random_bytes(&iph->id, sizeof(iph->id));
488 iph->frag_off = 0;
489 iph->ttl = IPDEFTTL;
490 iph->protocol = IPPROTO_ICMP;
491 iph->daddr = old_iph->saddr;
492 iph->saddr = old_iph->daddr;
493
494 ip_send_check(iph);
495
496 /* ICMP */
497 icmph->type = ICMP_DEST_UNREACH;
498 icmph->code = ICMP_FRAG_NEEDED;
499 icmph->un.gateway = htonl(mtu);
500 icmph->checksum = 0;
501
502 nskb->csum = csum_partial((u8 *)icmph, sizeof(struct icmphdr), 0);
503 nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_iph - skb->data,
504 payload, payload_length,
505 nskb->csum);
506 icmph->checksum = csum_fold(nskb->csum);
507 }
508
509 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
510 static bool ipv6_should_icmp(struct sk_buff *skb)
511 {
512 struct ipv6hdr *old_ipv6h = ipv6_hdr(skb);
513 int addr_type;
514 int payload_off = (u8 *)(old_ipv6h + 1) - skb->data;
515 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
516
517 /* Check source address is valid. */
518 addr_type = ipv6_addr_type(&old_ipv6h->saddr);
519 if (addr_type & IPV6_ADDR_MULTICAST || addr_type == IPV6_ADDR_ANY)
520 return false;
521
522 /* Don't reply to unspecified addresses. */
523 if (ipv6_addr_type(&old_ipv6h->daddr) == IPV6_ADDR_ANY)
524 return false;
525
526 /* Don't respond to ICMP error messages. */
527 payload_off = ipv6_skip_exthdr(skb, payload_off, &nexthdr);
528 if (payload_off < 0)
529 return false;
530
531 if (nexthdr == NEXTHDR_ICMP) {
532 u8 icmp_type, *icmp_typep;
533
534 icmp_typep = skb_header_pointer(skb, payload_off +
535 offsetof(struct icmp6hdr,
536 icmp6_type),
537 sizeof(icmp_type), &icmp_type);
538
539 if (!icmp_typep || !(*icmp_typep & ICMPV6_INFOMSG_MASK))
540 return false;
541 }
542
543 return true;
544 }
545
546 static void ipv6_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
547 unsigned int mtu, unsigned int payload_length)
548 {
549 struct ipv6hdr *ipv6h, *old_ipv6h = ipv6_hdr(skb);
550 struct icmp6hdr *icmp6h;
551 u8 *payload;
552
553 ipv6h = (struct ipv6hdr *)skb_put(nskb, sizeof(struct ipv6hdr));
554 icmp6h = (struct icmp6hdr *)skb_put(nskb, sizeof(struct icmp6hdr));
555 payload = skb_put(nskb, payload_length);
556
557 /* IPv6 */
558 ipv6h->version = 6;
559 ipv6h->priority = 0;
560 memset(&ipv6h->flow_lbl, 0, sizeof(ipv6h->flow_lbl));
561 ipv6h->payload_len = htons(sizeof(struct icmp6hdr)
562 + payload_length);
563 ipv6h->nexthdr = NEXTHDR_ICMP;
564 ipv6h->hop_limit = IPV6_DEFAULT_HOPLIMIT;
565 ipv6_addr_copy(&ipv6h->daddr, &old_ipv6h->saddr);
566 ipv6_addr_copy(&ipv6h->saddr, &old_ipv6h->daddr);
567
568 /* ICMPv6 */
569 icmp6h->icmp6_type = ICMPV6_PKT_TOOBIG;
570 icmp6h->icmp6_code = 0;
571 icmp6h->icmp6_cksum = 0;
572 icmp6h->icmp6_mtu = htonl(mtu);
573
574 nskb->csum = csum_partial((u8 *)icmp6h, sizeof(struct icmp6hdr), 0);
575 nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_ipv6h - skb->data,
576 payload, payload_length,
577 nskb->csum);
578 icmp6h->icmp6_cksum = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
579 sizeof(struct icmp6hdr)
580 + payload_length,
581 ipv6h->nexthdr, nskb->csum);
582 }
583 #endif /* IPv6 */
584
585 bool tnl_frag_needed(struct vport *vport, const struct tnl_mutable_config *mutable,
586 struct sk_buff *skb, unsigned int mtu, __be32 flow_key)
587 {
588 unsigned int eth_hdr_len = ETH_HLEN;
589 unsigned int total_length = 0, header_length = 0, payload_length;
590 struct ethhdr *eh, *old_eh = eth_hdr(skb);
591 struct sk_buff *nskb;
592
593 /* Sanity check */
594 if (skb->protocol == htons(ETH_P_IP)) {
595 if (mtu < IP_MIN_MTU)
596 return false;
597
598 if (!ipv4_should_icmp(skb))
599 return true;
600 }
601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
602 else if (skb->protocol == htons(ETH_P_IPV6)) {
603 if (mtu < IPV6_MIN_MTU)
604 return false;
605
606 /*
607 * In theory we should do PMTUD on IPv6 multicast messages but
608 * we don't have an address to send from so just fragment.
609 */
610 if (ipv6_addr_type(&ipv6_hdr(skb)->daddr) & IPV6_ADDR_MULTICAST)
611 return false;
612
613 if (!ipv6_should_icmp(skb))
614 return true;
615 }
616 #endif
617 else
618 return false;
619
620 /* Allocate */
621 if (old_eh->h_proto == htons(ETH_P_8021Q))
622 eth_hdr_len = VLAN_ETH_HLEN;
623
624 payload_length = skb->len - eth_hdr_len;
625 if (skb->protocol == htons(ETH_P_IP)) {
626 header_length = sizeof(struct iphdr) + sizeof(struct icmphdr);
627 total_length = min_t(unsigned int, header_length +
628 payload_length, 576);
629 }
630 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
631 else {
632 header_length = sizeof(struct ipv6hdr) +
633 sizeof(struct icmp6hdr);
634 total_length = min_t(unsigned int, header_length +
635 payload_length, IPV6_MIN_MTU);
636 }
637 #endif
638
639 total_length = min(total_length, mutable->mtu);
640 payload_length = total_length - header_length;
641
642 nskb = dev_alloc_skb(NET_IP_ALIGN + eth_hdr_len + header_length +
643 payload_length);
644 if (!nskb)
645 return false;
646
647 skb_reserve(nskb, NET_IP_ALIGN);
648
649 /* Ethernet / VLAN */
650 eh = (struct ethhdr *)skb_put(nskb, eth_hdr_len);
651 memcpy(eh->h_dest, old_eh->h_source, ETH_ALEN);
652 memcpy(eh->h_source, mutable->eth_addr, ETH_ALEN);
653 nskb->protocol = eh->h_proto = old_eh->h_proto;
654 if (old_eh->h_proto == htons(ETH_P_8021Q)) {
655 struct vlan_ethhdr *vh = (struct vlan_ethhdr *)eh;
656
657 vh->h_vlan_TCI = vlan_eth_hdr(skb)->h_vlan_TCI;
658 vh->h_vlan_encapsulated_proto = skb->protocol;
659 }
660 skb_reset_mac_header(nskb);
661
662 /* Protocol */
663 if (skb->protocol == htons(ETH_P_IP))
664 ipv4_build_icmp(skb, nskb, mtu, payload_length);
665 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
666 else
667 ipv6_build_icmp(skb, nskb, mtu, payload_length);
668 #endif
669
670 /*
671 * Assume that flow based keys are symmetric with respect to input
672 * and output and use the key that we were going to put on the
673 * outgoing packet for the fake received packet. If the keys are
674 * not symmetric then PMTUD needs to be disabled since we won't have
675 * any way of synthesizing packets.
676 */
677 if ((mutable->port_config.flags & (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION)) ==
678 (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION))
679 OVS_CB(nskb)->tun_id = flow_key;
680
681 compute_ip_summed(nskb, false);
682 vport_receive(vport, nskb);
683
684 return true;
685 }
686
687 static bool check_mtu(struct sk_buff *skb,
688 struct vport *vport,
689 const struct tnl_mutable_config *mutable,
690 const struct rtable *rt, __be16 *frag_offp)
691 {
692 int mtu;
693 __be16 frag_off;
694
695 frag_off = (mutable->port_config.flags & TNL_F_PMTUD) ? htons(IP_DF) : 0;
696 if (frag_off)
697 mtu = dst_mtu(&rt_dst(rt))
698 - ETH_HLEN
699 - mutable->tunnel_hlen
700 - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
701 else
702 mtu = mutable->mtu;
703
704 if (skb->protocol == htons(ETH_P_IP)) {
705 struct iphdr *old_iph = ip_hdr(skb);
706
707 frag_off |= old_iph->frag_off & htons(IP_DF);
708 mtu = max(mtu, IP_MIN_MTU);
709
710 if ((old_iph->frag_off & htons(IP_DF)) &&
711 mtu < ntohs(old_iph->tot_len)) {
712 if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
713 goto drop;
714 }
715 }
716 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
717 else if (skb->protocol == htons(ETH_P_IPV6)) {
718 unsigned int packet_length = skb->len - ETH_HLEN
719 - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
720
721 mtu = max(mtu, IPV6_MIN_MTU);
722
723 /* IPv6 requires PMTUD if the packet is above the minimum MTU. */
724 if (packet_length > IPV6_MIN_MTU)
725 frag_off = htons(IP_DF);
726
727 if (mtu < packet_length) {
728 if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
729 goto drop;
730 }
731 }
732 #endif
733
734 *frag_offp = frag_off;
735 return true;
736
737 drop:
738 *frag_offp = 0;
739 return false;
740 }
741
742 static void create_tunnel_header(const struct vport *vport,
743 const struct tnl_mutable_config *mutable,
744 const struct rtable *rt, void *header)
745 {
746 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
747 struct iphdr *iph = header;
748
749 iph->version = 4;
750 iph->ihl = sizeof(struct iphdr) >> 2;
751 iph->frag_off = htons(IP_DF);
752 iph->protocol = tnl_vport->tnl_ops->ipproto;
753 iph->tos = mutable->port_config.tos;
754 iph->daddr = rt->rt_dst;
755 iph->saddr = rt->rt_src;
756 iph->ttl = mutable->port_config.ttl;
757 if (!iph->ttl)
758 iph->ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
759
760 tnl_vport->tnl_ops->build_header(vport, mutable, iph + 1);
761 }
762
763 static inline void *get_cached_header(const struct tnl_cache *cache)
764 {
765 return (void *)cache + ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN);
766 }
767
768 static inline bool check_cache_valid(const struct tnl_cache *cache,
769 const struct tnl_mutable_config *mutable)
770 {
771 return cache &&
772 #ifdef NEED_CACHE_TIMEOUT
773 time_before(jiffies, cache->expiration) &&
774 #endif
775 #ifdef HAVE_RT_GENID
776 atomic_read(&init_net.ipv4.rt_genid) == cache->rt->rt_genid &&
777 #endif
778 #ifdef HAVE_HH_SEQ
779 rt_dst(cache->rt).hh->hh_lock.sequence == cache->hh_seq &&
780 #endif
781 mutable->seq == cache->mutable_seq &&
782 (!is_internal_dev(rt_dst(cache->rt).dev) ||
783 (cache->flow && !cache->flow->dead));
784 }
785
786 static int cache_cleaner_cb(struct tbl_node *tbl_node, void *aux)
787 {
788 struct tnl_vport *tnl_vport = tnl_vport_table_cast(tbl_node);
789 const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
790 const struct tnl_cache *cache = rcu_dereference(tnl_vport->cache);
791
792 if (cache && !check_cache_valid(cache, mutable) &&
793 spin_trylock_bh(&tnl_vport->cache_lock)) {
794 assign_cache_rcu(tnl_vport_to_vport(tnl_vport), NULL);
795 spin_unlock_bh(&tnl_vport->cache_lock);
796 }
797
798 return 0;
799 }
800
801 static void cache_cleaner(struct work_struct *work)
802 {
803 schedule_cache_cleaner();
804
805 rcu_read_lock();
806 tbl_foreach(port_table, cache_cleaner_cb, NULL);
807 rcu_read_unlock();
808 }
809
810 static inline void create_eth_hdr(struct tnl_cache *cache,
811 const struct rtable *rt)
812 {
813 void *cache_data = get_cached_header(cache);
814 int hh_len = rt_dst(rt).hh->hh_len;
815 int hh_off = HH_DATA_ALIGN(rt_dst(rt).hh->hh_len) - hh_len;
816
817 #ifdef HAVE_HH_SEQ
818 unsigned hh_seq;
819
820 do {
821 hh_seq = read_seqbegin(&rt_dst(rt).hh->hh_lock);
822 memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
823 } while (read_seqretry(&rt_dst(rt).hh->hh_lock, hh_seq));
824
825 cache->hh_seq = hh_seq;
826 #else
827 read_lock_bh(&rt_dst(rt).hh->hh_lock);
828 memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
829 read_unlock_bh(&rt_dst(rt).hh->hh_lock);
830 #endif
831 }
832
833 static struct tnl_cache *build_cache(struct vport *vport,
834 const struct tnl_mutable_config *mutable,
835 struct rtable *rt)
836 {
837 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
838 struct tnl_cache *cache;
839 void *cache_data;
840 int cache_len;
841
842 if (!(mutable->port_config.flags & TNL_F_HDR_CACHE))
843 return NULL;
844
845 /*
846 * If there is no entry in the ARP cache or if this device does not
847 * support hard header caching just fall back to the IP stack.
848 */
849 if (!rt_dst(rt).hh)
850 return NULL;
851
852 /*
853 * If lock is contended fall back to directly building the header.
854 * We're not going to help performance by sitting here spinning.
855 */
856 if (!spin_trylock_bh(&tnl_vport->cache_lock))
857 return NULL;
858
859 cache = tnl_vport->cache;
860 if (check_cache_valid(cache, mutable))
861 goto unlock;
862 else
863 cache = NULL;
864
865 cache_len = rt_dst(rt).hh->hh_len + mutable->tunnel_hlen;
866
867 cache = kzalloc(ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN) +
868 cache_len, GFP_ATOMIC);
869 if (!cache)
870 goto unlock;
871
872 cache->len = cache_len;
873
874 create_eth_hdr(cache, rt);
875 cache_data = get_cached_header(cache) + rt_dst(rt).hh->hh_len;
876
877 create_tunnel_header(vport, mutable, rt, cache_data);
878
879 cache->mutable_seq = mutable->seq;
880 cache->rt = rt;
881 #ifdef NEED_CACHE_TIMEOUT
882 cache->expiration = jiffies + tnl_vport->cache_exp_interval;
883 #endif
884
885 if (is_internal_dev(rt_dst(rt).dev)) {
886 struct odp_flow_key flow_key;
887 struct tbl_node *flow_node;
888 struct vport *vport;
889 struct sk_buff *skb;
890 bool is_frag;
891 int err;
892
893 vport = internal_dev_get_vport(rt_dst(rt).dev);
894 if (!vport)
895 goto done;
896
897 skb = alloc_skb(cache->len, GFP_ATOMIC);
898 if (!skb)
899 goto done;
900
901 __skb_put(skb, cache->len);
902 memcpy(skb->data, get_cached_header(cache), cache->len);
903
904 err = flow_extract(skb, vport->port_no, &flow_key, &is_frag);
905
906 kfree_skb(skb);
907 if (err || is_frag)
908 goto done;
909
910 flow_node = tbl_lookup(rcu_dereference(vport->dp->table),
911 &flow_key, flow_hash(&flow_key),
912 flow_cmp);
913 if (flow_node) {
914 struct sw_flow *flow = flow_cast(flow_node);
915
916 cache->flow = flow;
917 flow_hold(flow);
918 }
919 }
920
921 done:
922 assign_cache_rcu(vport, cache);
923
924 unlock:
925 spin_unlock_bh(&tnl_vport->cache_lock);
926
927 return cache;
928 }
929
930 static struct rtable *find_route(struct vport *vport,
931 const struct tnl_mutable_config *mutable,
932 u8 tos, struct tnl_cache **cache)
933 {
934 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
935 struct tnl_cache *cur_cache = rcu_dereference(tnl_vport->cache);
936
937 *cache = NULL;
938 tos = RT_TOS(tos);
939
940 if (likely(tos == mutable->port_config.tos &&
941 check_cache_valid(cur_cache, mutable))) {
942 *cache = cur_cache;
943 return cur_cache->rt;
944 } else {
945 struct rtable *rt;
946 struct flowi fl = { .nl_u = { .ip4_u =
947 { .daddr = mutable->port_config.daddr,
948 .saddr = mutable->port_config.saddr,
949 .tos = tos } },
950 .proto = tnl_vport->tnl_ops->ipproto };
951
952 if (unlikely(ip_route_output_key(&init_net, &rt, &fl)))
953 return NULL;
954
955 if (likely(tos == mutable->port_config.tos))
956 *cache = build_cache(vport, mutable, rt);
957
958 return rt;
959 }
960 }
961
962 static struct sk_buff *check_headroom(struct sk_buff *skb, int headroom)
963 {
964 if (skb_headroom(skb) < headroom || skb_header_cloned(skb)) {
965 struct sk_buff *nskb = skb_realloc_headroom(skb, headroom + 16);
966 if (unlikely(!nskb)) {
967 kfree_skb(skb);
968 return ERR_PTR(-ENOMEM);
969 }
970
971 set_skb_csum_bits(skb, nskb);
972
973 if (skb->sk)
974 skb_set_owner_w(nskb, skb->sk);
975
976 kfree_skb(skb);
977 return nskb;
978 }
979
980 return skb;
981 }
982
983 static inline bool need_linearize(const struct sk_buff *skb)
984 {
985 int i;
986
987 if (unlikely(skb_shinfo(skb)->frag_list))
988 return true;
989
990 /*
991 * Generally speaking we should linearize if there are paged frags.
992 * However, if all of the refcounts are 1 we know nobody else can
993 * change them from underneath us and we can skip the linearization.
994 */
995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
996 if (unlikely(page_count(skb_shinfo(skb)->frags[0].page) > 1))
997 return true;
998
999 return false;
1000 }
1001
1002 static struct sk_buff *handle_offloads(struct sk_buff *skb,
1003 const struct tnl_mutable_config *mutable,
1004 const struct rtable *rt)
1005 {
1006 int min_headroom;
1007 int err;
1008
1009 forward_ip_summed(skb);
1010
1011 err = vswitch_skb_checksum_setup(skb);
1012 if (unlikely(err))
1013 goto error_free;
1014
1015 min_headroom = LL_RESERVED_SPACE(rt_dst(rt).dev) + rt_dst(rt).header_len
1016 + mutable->tunnel_hlen;
1017
1018 if (skb_is_gso(skb)) {
1019 struct sk_buff *nskb;
1020
1021 /*
1022 * If we are doing GSO on a pskb it is better to make sure that
1023 * the headroom is correct now. We will only have to copy the
1024 * portion in the linear data area and GSO will preserve
1025 * headroom when it creates the segments. This is particularly
1026 * beneficial on Xen where we get a lot of GSO pskbs.
1027 * Conversely, we avoid copying if it is just to get our own
1028 * writable clone because GSO will do the copy for us.
1029 */
1030 if (skb_headroom(skb) < min_headroom) {
1031 skb = check_headroom(skb, min_headroom);
1032 if (unlikely(IS_ERR(skb))) {
1033 err = PTR_ERR(skb);
1034 goto error;
1035 }
1036 }
1037
1038 nskb = skb_gso_segment(skb, 0);
1039 kfree_skb(skb);
1040 if (unlikely(IS_ERR(nskb))) {
1041 err = PTR_ERR(nskb);
1042 goto error;
1043 }
1044
1045 skb = nskb;
1046 } else {
1047 skb = check_headroom(skb, min_headroom);
1048 if (unlikely(IS_ERR(skb))) {
1049 err = PTR_ERR(skb);
1050 goto error;
1051 }
1052
1053 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1054 /*
1055 * Pages aren't locked and could change at any time.
1056 * If this happens after we compute the checksum, the
1057 * checksum will be wrong. We linearize now to avoid
1058 * this problem.
1059 */
1060 if (unlikely(need_linearize(skb))) {
1061 err = __skb_linearize(skb);
1062 if (unlikely(err))
1063 goto error_free;
1064 }
1065
1066 err = skb_checksum_help(skb);
1067 if (unlikely(err))
1068 goto error_free;
1069 } else if (skb->ip_summed == CHECKSUM_COMPLETE)
1070 skb->ip_summed = CHECKSUM_NONE;
1071 }
1072
1073 return skb;
1074
1075 error_free:
1076 kfree_skb(skb);
1077 error:
1078 return ERR_PTR(err);
1079 }
1080
1081 static int send_frags(struct sk_buff *skb,
1082 const struct tnl_mutable_config *mutable)
1083 {
1084 int sent_len;
1085 int err;
1086
1087 sent_len = 0;
1088 while (skb) {
1089 struct sk_buff *next = skb->next;
1090 int frag_len = skb->len - mutable->tunnel_hlen;
1091
1092 skb->next = NULL;
1093 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
1094
1095 err = ip_local_out(skb);
1096 if (likely(net_xmit_eval(err) == 0))
1097 sent_len += frag_len;
1098 else {
1099 skb = next;
1100 goto free_frags;
1101 }
1102
1103 skb = next;
1104 }
1105
1106 return sent_len;
1107
1108 free_frags:
1109 /*
1110 * There's no point in continuing to send fragments once one has been
1111 * dropped so just free the rest. This may help improve the congestion
1112 * that caused the first packet to be dropped.
1113 */
1114 tnl_free_linked_skbs(skb);
1115 return sent_len;
1116 }
1117
1118 int tnl_send(struct vport *vport, struct sk_buff *skb)
1119 {
1120 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1121 const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
1122
1123 enum vport_err_type err = VPORT_E_TX_ERROR;
1124 struct rtable *rt;
1125 struct dst_entry *unattached_dst = NULL;
1126 struct tnl_cache *cache;
1127 int sent_len = 0;
1128 __be16 frag_off;
1129 u8 ttl;
1130 u8 inner_tos;
1131 u8 tos;
1132
1133 /* Validate the protocol headers before we try to use them. */
1134 if (skb->protocol == htons(ETH_P_8021Q)) {
1135 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
1136 goto error_free;
1137
1138 skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
1139 skb_set_network_header(skb, VLAN_ETH_HLEN);
1140 }
1141
1142 if (skb->protocol == htons(ETH_P_IP)) {
1143 if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
1144 + sizeof(struct iphdr))))
1145 skb->protocol = 0;
1146 }
1147 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1148 else if (skb->protocol == htons(ETH_P_IPV6)) {
1149 if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
1150 + sizeof(struct ipv6hdr))))
1151 skb->protocol = 0;
1152 }
1153 #endif
1154
1155 /* ToS */
1156 if (skb->protocol == htons(ETH_P_IP))
1157 inner_tos = ip_hdr(skb)->tos;
1158 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1159 else if (skb->protocol == htons(ETH_P_IPV6))
1160 inner_tos = ipv6_get_dsfield(ipv6_hdr(skb));
1161 #endif
1162 else
1163 inner_tos = 0;
1164
1165 if (mutable->port_config.flags & TNL_F_TOS_INHERIT)
1166 tos = inner_tos;
1167 else
1168 tos = mutable->port_config.tos;
1169
1170 tos = INET_ECN_encapsulate(tos, inner_tos);
1171
1172 /* Route lookup */
1173 rt = find_route(vport, mutable, tos, &cache);
1174 if (unlikely(!rt))
1175 goto error_free;
1176 if (unlikely(!cache))
1177 unattached_dst = &rt_dst(rt);
1178
1179 /* Reset SKB */
1180 nf_reset(skb);
1181 secpath_reset(skb);
1182 skb_dst_drop(skb);
1183
1184 /* Offloading */
1185 skb = handle_offloads(skb, mutable, rt);
1186 if (unlikely(IS_ERR(skb)))
1187 goto error;
1188
1189 /* MTU */
1190 if (unlikely(!check_mtu(skb, vport, mutable, rt, &frag_off))) {
1191 err = VPORT_E_TX_DROPPED;
1192 goto error_free;
1193 }
1194
1195 /*
1196 * If we are over the MTU, allow the IP stack to handle fragmentation.
1197 * Fragmentation is a slow path anyways.
1198 */
1199 if (unlikely(skb->len + mutable->tunnel_hlen > dst_mtu(&rt_dst(rt)) &&
1200 cache)) {
1201 unattached_dst = &rt_dst(rt);
1202 dst_hold(unattached_dst);
1203 cache = NULL;
1204 }
1205
1206 /* TTL */
1207 ttl = mutable->port_config.ttl;
1208 if (!ttl)
1209 ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
1210
1211 if (mutable->port_config.flags & TNL_F_TTL_INHERIT) {
1212 if (skb->protocol == htons(ETH_P_IP))
1213 ttl = ip_hdr(skb)->ttl;
1214 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1215 else if (skb->protocol == htons(ETH_P_IPV6))
1216 ttl = ipv6_hdr(skb)->hop_limit;
1217 #endif
1218 }
1219
1220 while (skb) {
1221 struct iphdr *iph;
1222 struct sk_buff *next_skb = skb->next;
1223 skb->next = NULL;
1224
1225 if (likely(cache)) {
1226 skb_push(skb, cache->len);
1227 memcpy(skb->data, get_cached_header(cache), cache->len);
1228 skb_reset_mac_header(skb);
1229 skb_set_network_header(skb, rt_dst(rt).hh->hh_len);
1230
1231 } else {
1232 skb_push(skb, mutable->tunnel_hlen);
1233 create_tunnel_header(vport, mutable, rt, skb->data);
1234 skb_reset_network_header(skb);
1235
1236 if (next_skb)
1237 skb_dst_set(skb, dst_clone(unattached_dst));
1238 else {
1239 skb_dst_set(skb, unattached_dst);
1240 unattached_dst = NULL;
1241 }
1242 }
1243 skb_set_transport_header(skb, skb_network_offset(skb) + sizeof(struct iphdr));
1244
1245 iph = ip_hdr(skb);
1246 iph->tos = tos;
1247 iph->ttl = ttl;
1248 iph->frag_off = frag_off;
1249 ip_select_ident(iph, &rt_dst(rt), NULL);
1250
1251 skb = tnl_vport->tnl_ops->update_header(vport, mutable, &rt_dst(rt), skb);
1252 if (unlikely(!skb))
1253 goto next;
1254
1255 if (likely(cache)) {
1256 int orig_len = skb->len - cache->len;
1257 struct vport *cache_vport = internal_dev_get_vport(rt_dst(rt).dev);
1258
1259 skb->protocol = htons(ETH_P_IP);
1260 iph->tot_len = htons(skb->len - skb_network_offset(skb));
1261 ip_send_check(iph);
1262
1263 if (cache_vport) {
1264 OVS_CB(skb)->flow = cache->flow;
1265 compute_ip_summed(skb, true);
1266 vport_receive(cache_vport, skb);
1267 sent_len += orig_len;
1268 } else {
1269 int err;
1270
1271 skb->dev = rt_dst(rt).dev;
1272 err = dev_queue_xmit(skb);
1273
1274 if (likely(net_xmit_eval(err) == 0))
1275 sent_len += orig_len;
1276 }
1277 } else
1278 sent_len += send_frags(skb, mutable);
1279
1280 next:
1281 skb = next_skb;
1282 }
1283
1284 if (unlikely(sent_len == 0))
1285 vport_record_error(vport, VPORT_E_TX_DROPPED);
1286
1287 goto out;
1288
1289 error_free:
1290 tnl_free_linked_skbs(skb);
1291 error:
1292 dst_release(unattached_dst);
1293 vport_record_error(vport, err);
1294 out:
1295 return sent_len;
1296 }
1297
1298 static int set_config(const void *config, const struct tnl_ops *tnl_ops,
1299 const struct vport *cur_vport,
1300 struct tnl_mutable_config *mutable)
1301 {
1302 const struct vport *old_vport;
1303 const struct tnl_mutable_config *old_mutable;
1304
1305 mutable->port_config = *(struct tnl_port_config *)config;
1306
1307 if (mutable->port_config.daddr == 0)
1308 return -EINVAL;
1309
1310 if (mutable->port_config.tos != RT_TOS(mutable->port_config.tos))
1311 return -EINVAL;
1312
1313 mutable->tunnel_hlen = tnl_ops->hdr_len(&mutable->port_config);
1314 if (mutable->tunnel_hlen < 0)
1315 return mutable->tunnel_hlen;
1316
1317 mutable->tunnel_hlen += sizeof(struct iphdr);
1318
1319 mutable->tunnel_type = tnl_ops->tunnel_type;
1320 if (mutable->port_config.flags & TNL_F_IN_KEY_MATCH) {
1321 mutable->tunnel_type |= TNL_T_KEY_MATCH;
1322 mutable->port_config.in_key = 0;
1323 } else
1324 mutable->tunnel_type |= TNL_T_KEY_EXACT;
1325
1326 old_vport = tnl_find_port(mutable->port_config.saddr,
1327 mutable->port_config.daddr,
1328 mutable->port_config.in_key,
1329 mutable->tunnel_type,
1330 &old_mutable);
1331
1332 if (old_vport && old_vport != cur_vport)
1333 return -EEXIST;
1334
1335 if (mutable->port_config.flags & TNL_F_OUT_KEY_ACTION)
1336 mutable->port_config.out_key = 0;
1337
1338 return 0;
1339 }
1340
1341 struct vport *tnl_create(const struct vport_parms *parms,
1342 const struct vport_ops *vport_ops,
1343 const struct tnl_ops *tnl_ops)
1344 {
1345 struct vport *vport;
1346 struct tnl_vport *tnl_vport;
1347 int initial_frag_id;
1348 int err;
1349
1350 vport = vport_alloc(sizeof(struct tnl_vport), vport_ops, parms);
1351 if (IS_ERR(vport)) {
1352 err = PTR_ERR(vport);
1353 goto error;
1354 }
1355
1356 tnl_vport = tnl_vport_priv(vport);
1357
1358 strcpy(tnl_vport->name, parms->name);
1359 tnl_vport->tnl_ops = tnl_ops;
1360
1361 tnl_vport->mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL);
1362 if (!tnl_vport->mutable) {
1363 err = -ENOMEM;
1364 goto error_free_vport;
1365 }
1366
1367 vport_gen_rand_ether_addr(tnl_vport->mutable->eth_addr);
1368 tnl_vport->mutable->mtu = ETH_DATA_LEN;
1369
1370 get_random_bytes(&initial_frag_id, sizeof(int));
1371 atomic_set(&tnl_vport->frag_id, initial_frag_id);
1372
1373 err = set_config(parms->config, tnl_ops, NULL, tnl_vport->mutable);
1374 if (err)
1375 goto error_free_mutable;
1376
1377 spin_lock_init(&tnl_vport->cache_lock);
1378
1379 #ifdef NEED_CACHE_TIMEOUT
1380 tnl_vport->cache_exp_interval = MAX_CACHE_EXP -
1381 (net_random() % (MAX_CACHE_EXP / 2));
1382 #endif
1383
1384 err = add_port(vport);
1385 if (err)
1386 goto error_free_mutable;
1387
1388 return vport;
1389
1390 error_free_mutable:
1391 kfree(tnl_vport->mutable);
1392 error_free_vport:
1393 vport_free(vport);
1394 error:
1395 return ERR_PTR(err);
1396 }
1397
1398 int tnl_modify(struct vport *vport, struct odp_port *port)
1399 {
1400 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1401 struct tnl_mutable_config *mutable;
1402 int err;
1403
1404 mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1405 if (!mutable) {
1406 err = -ENOMEM;
1407 goto error;
1408 }
1409
1410 err = set_config(port->config, tnl_vport->tnl_ops, vport, mutable);
1411 if (err)
1412 goto error_free;
1413
1414 mutable->seq++;
1415
1416 err = move_port(vport, mutable);
1417 if (err)
1418 goto error_free;
1419
1420 return 0;
1421
1422 error_free:
1423 kfree(mutable);
1424 error:
1425 return err;
1426 }
1427
1428 static void free_port_rcu(struct rcu_head *rcu)
1429 {
1430 struct tnl_vport *tnl_vport = container_of(rcu, struct tnl_vport, rcu);
1431
1432 spin_lock_bh(&tnl_vport->cache_lock);
1433 free_cache(tnl_vport->cache);
1434 spin_unlock_bh(&tnl_vport->cache_lock);
1435
1436 kfree(tnl_vport->mutable);
1437 vport_free(tnl_vport_to_vport(tnl_vport));
1438 }
1439
1440 int tnl_destroy(struct vport *vport)
1441 {
1442 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1443 const struct tnl_mutable_config *old_mutable;
1444
1445 if (vport == tnl_find_port(tnl_vport->mutable->port_config.saddr,
1446 tnl_vport->mutable->port_config.daddr,
1447 tnl_vport->mutable->port_config.in_key,
1448 tnl_vport->mutable->tunnel_type,
1449 &old_mutable))
1450 del_port(vport);
1451
1452 call_rcu(&tnl_vport->rcu, free_port_rcu);
1453
1454 return 0;
1455 }
1456
1457 int tnl_set_mtu(struct vport *vport, int mtu)
1458 {
1459 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1460 struct tnl_mutable_config *mutable;
1461
1462 mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1463 if (!mutable)
1464 return -ENOMEM;
1465
1466 mutable->mtu = mtu;
1467 assign_config_rcu(vport, mutable);
1468
1469 return 0;
1470 }
1471
1472 int tnl_set_addr(struct vport *vport, const unsigned char *addr)
1473 {
1474 struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1475 struct tnl_mutable_config *mutable;
1476
1477 mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1478 if (!mutable)
1479 return -ENOMEM;
1480
1481 memcpy(mutable->eth_addr, addr, ETH_ALEN);
1482 assign_config_rcu(vport, mutable);
1483
1484 return 0;
1485 }
1486
1487 const char *tnl_get_name(const struct vport *vport)
1488 {
1489 const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1490 return tnl_vport->name;
1491 }
1492
1493 const unsigned char *tnl_get_addr(const struct vport *vport)
1494 {
1495 const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1496 return rcu_dereference(tnl_vport->mutable)->eth_addr;
1497 }
1498
1499 int tnl_get_mtu(const struct vport *vport)
1500 {
1501 const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1502 return rcu_dereference(tnl_vport->mutable)->mtu;
1503 }
1504
1505 void tnl_free_linked_skbs(struct sk_buff *skb)
1506 {
1507 if (unlikely(!skb))
1508 return;
1509
1510 while (skb) {
1511 struct sk_buff *next = skb->next;
1512 kfree_skb(skb);
1513 skb = next;
1514 }
1515 }