]> git.proxmox.com Git - mirror_qemu.git/blob - docs/qapi-code-gen.txt
qapi: Pseudo-type '**' is now unused, drop it
[mirror_qemu.git] / docs / qapi-code-gen.txt
1 = How to use the QAPI code generator =
2
3 Copyright IBM Corp. 2011
4 Copyright (C) 2012-2015 Red Hat, Inc.
5
6 This work is licensed under the terms of the GNU GPL, version 2 or
7 later. See the COPYING file in the top-level directory.
8
9 == Introduction ==
10
11 QAPI is a native C API within QEMU which provides management-level
12 functionality to internal and external users. For external
13 users/processes, this interface is made available by a JSON-based wire
14 format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
15 well as the QEMU Guest Agent (QGA) for communicating with the guest.
16 The remainder of this document uses "Client JSON Protocol" when
17 referring to the wire contents of a QMP or QGA connection.
18
19 To map Client JSON Protocol interfaces to the native C QAPI
20 implementations, a JSON-based schema is used to define types and
21 function signatures, and a set of scripts is used to generate types,
22 signatures, and marshaling/dispatch code. This document will describe
23 how the schemas, scripts, and resulting code are used.
24
25
26 == QMP/Guest agent schema ==
27
28 A QAPI schema file is designed to be loosely based on JSON
29 (http://www.ietf.org/rfc/rfc7159.txt) with changes for quoting style
30 and the use of comments; a QAPI schema file is then parsed by a python
31 code generation program. A valid QAPI schema consists of a series of
32 top-level expressions, with no commas between them. Where
33 dictionaries (JSON objects) are used, they are parsed as python
34 OrderedDicts so that ordering is preserved (for predictable layout of
35 generated C structs and parameter lists). Ordering doesn't matter
36 between top-level expressions or the keys within an expression, but
37 does matter within dictionary values for 'data' and 'returns' members
38 of a single expression. QAPI schema input is written using 'single
39 quotes' instead of JSON's "double quotes" (in contrast, Client JSON
40 Protocol uses no comments, and while input accepts 'single quotes' as
41 an extension, output is strict JSON using only "double quotes"). As
42 in JSON, trailing commas are not permitted in arrays or dictionaries.
43 Input must be ASCII (although QMP supports full Unicode strings, the
44 QAPI parser does not). At present, there is no place where a QAPI
45 schema requires the use of JSON numbers or null.
46
47 Comments are allowed; anything between an unquoted # and the following
48 newline is ignored. Although there is not yet a documentation
49 generator, a form of stylized comments has developed for consistently
50 documenting details about an expression and when it was added to the
51 schema. The documentation is delimited between two lines of ##, then
52 the first line names the expression, an optional overview is provided,
53 then individual documentation about each member of 'data' is provided,
54 and finally, a 'Since: x.y.z' tag lists the release that introduced
55 the expression. Optional fields are tagged with the phrase
56 '#optional', often with their default value; and extensions added
57 after the expression was first released are also given a '(since
58 x.y.z)' comment. For example:
59
60 ##
61 # @BlockStats:
62 #
63 # Statistics of a virtual block device or a block backing device.
64 #
65 # @device: #optional If the stats are for a virtual block device, the name
66 # corresponding to the virtual block device.
67 #
68 # @stats: A @BlockDeviceStats for the device.
69 #
70 # @parent: #optional This describes the file block device if it has one.
71 #
72 # @backing: #optional This describes the backing block device if it has one.
73 # (Since 2.0)
74 #
75 # Since: 0.14.0
76 ##
77 { 'struct': 'BlockStats',
78 'data': {'*device': 'str', 'stats': 'BlockDeviceStats',
79 '*parent': 'BlockStats',
80 '*backing': 'BlockStats'} }
81
82 The schema sets up a series of types, as well as commands and events
83 that will use those types. Forward references are allowed: the parser
84 scans in two passes, where the first pass learns all type names, and
85 the second validates the schema and generates the code. This allows
86 the definition of complex structs that can have mutually recursive
87 types, and allows for indefinite nesting of Client JSON Protocol that
88 satisfies the schema. A type name should not be defined more than
89 once. It is permissible for the schema to contain additional types
90 not used by any commands or events in the Client JSON Protocol, for
91 the side effect of generated C code used internally.
92
93 There are seven top-level expressions recognized by the parser:
94 'include', 'command', 'struct', 'enum', 'union', 'alternate', and
95 'event'. There are several groups of types: simple types (a number of
96 built-in types, such as 'int' and 'str'; as well as enumerations),
97 complex types (structs and two flavors of unions), and alternate types
98 (a choice between other types). The 'command' and 'event' expressions
99 can refer to existing types by name, or list an anonymous type as a
100 dictionary. Listing a type name inside an array refers to a
101 single-dimension array of that type; multi-dimension arrays are not
102 directly supported (although an array of a complex struct that
103 contains an array member is possible).
104
105 Types, commands, and events share a common namespace. Therefore,
106 generally speaking, type definitions should always use CamelCase for
107 user-defined type names, while built-in types are lowercase. Type
108 definitions should not end in 'Kind', as this namespace is used for
109 creating implicit C enums for visiting union types. Command names,
110 and field names within a type, should be all lower case with words
111 separated by a hyphen. However, some existing older commands and
112 complex types use underscore; when extending such expressions,
113 consistency is preferred over blindly avoiding underscore. Event
114 names should be ALL_CAPS with words separated by underscore.
115
116 Any name (command, event, type, field, or enum value) beginning with
117 "x-" is marked experimental, and may be withdrawn or changed
118 incompatibly in a future release. Downstream vendors may add
119 extensions; such extensions should begin with a prefix matching
120 "__RFQDN_" (for the reverse-fully-qualified-domain-name of the
121 vendor), even if the rest of the name uses dash (example:
122 __com.redhat_drive-mirror). Other than downstream extensions (with
123 leading underscore and the use of dots), all names should begin with a
124 letter, and contain only ASCII letters, digits, dash, and underscore.
125 It is okay to reuse names that match C keywords; the generator will
126 rename a field named "default" in the QAPI to "q_default" in the
127 generated C code.
128
129 In the rest of this document, usage lines are given for each
130 expression type, with literal strings written in lower case and
131 placeholders written in capitals. If a literal string includes a
132 prefix of '*', that key/value pair can be omitted from the expression.
133 For example, a usage statement that includes '*base':STRUCT-NAME
134 means that an expression has an optional key 'base', which if present
135 must have a value that forms a struct name.
136
137
138 === Built-in Types ===
139
140 The following types are predefined, and map to C as follows:
141
142 Schema C JSON
143 str char * any JSON string, UTF-8
144 number double any JSON number
145 int int64_t a JSON number without fractional part
146 that fits into the C integer type
147 int8 int8_t likewise
148 int16 int16_t likewise
149 int32 int32_t likewise
150 int64 int64_t likewise
151 uint8 uint8_t likewise
152 uint16 uint16_t likewise
153 uint32 uint32_t likewise
154 uint64 uint64_t likewise
155 size uint64_t like uint64_t, except StringInputVisitor
156 accepts size suffixes
157 bool bool JSON true or false
158 any QObject * any JSON value
159
160
161 === Includes ===
162
163 Usage: { 'include': STRING }
164
165 The QAPI schema definitions can be modularized using the 'include' directive:
166
167 { 'include': 'path/to/file.json' }
168
169 The directive is evaluated recursively, and include paths are relative to the
170 file using the directive. Multiple includes of the same file are
171 idempotent. No other keys should appear in the expression, and the include
172 value should be a string.
173
174 As a matter of style, it is a good idea to have all files be
175 self-contained, but at the moment, nothing prevents an included file
176 from making a forward reference to a type that is only introduced by
177 an outer file. The parser may be made stricter in the future to
178 prevent incomplete include files.
179
180
181 === Struct types ===
182
183 Usage: { 'struct': STRING, 'data': DICT, '*base': STRUCT-NAME }
184
185 A struct is a dictionary containing a single 'data' key whose
186 value is a dictionary. This corresponds to a struct in C or an Object
187 in JSON. Each value of the 'data' dictionary must be the name of a
188 type, or a one-element array containing a type name. An example of a
189 struct is:
190
191 { 'struct': 'MyType',
192 'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }
193
194 The use of '*' as a prefix to the name means the member is optional in
195 the corresponding JSON protocol usage.
196
197 The default initialization value of an optional argument should not be changed
198 between versions of QEMU unless the new default maintains backward
199 compatibility to the user-visible behavior of the old default.
200
201 With proper documentation, this policy still allows some flexibility; for
202 example, documenting that a default of 0 picks an optimal buffer size allows
203 one release to declare the optimal size at 512 while another release declares
204 the optimal size at 4096 - the user-visible behavior is not the bytes used by
205 the buffer, but the fact that the buffer was optimal size.
206
207 On input structures (only mentioned in the 'data' side of a command), changing
208 from mandatory to optional is safe (older clients will supply the option, and
209 newer clients can benefit from the default); changing from optional to
210 mandatory is backwards incompatible (older clients may be omitting the option,
211 and must continue to work).
212
213 On output structures (only mentioned in the 'returns' side of a command),
214 changing from mandatory to optional is in general unsafe (older clients may be
215 expecting the field, and could crash if it is missing), although it can be done
216 if the only way that the optional argument will be omitted is when it is
217 triggered by the presence of a new input flag to the command that older clients
218 don't know to send. Changing from optional to mandatory is safe.
219
220 A structure that is used in both input and output of various commands
221 must consider the backwards compatibility constraints of both directions
222 of use.
223
224 A struct definition can specify another struct as its base.
225 In this case, the fields of the base type are included as top-level fields
226 of the new struct's dictionary in the Client JSON Protocol wire
227 format. An example definition is:
228
229 { 'struct': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
230 { 'struct': 'BlockdevOptionsGenericCOWFormat',
231 'base': 'BlockdevOptionsGenericFormat',
232 'data': { '*backing': 'str' } }
233
234 An example BlockdevOptionsGenericCOWFormat object on the wire could use
235 both fields like this:
236
237 { "file": "/some/place/my-image",
238 "backing": "/some/place/my-backing-file" }
239
240
241 === Enumeration types ===
242
243 Usage: { 'enum': STRING, 'data': ARRAY-OF-STRING }
244 { 'enum': STRING, '*prefix': STRING, 'data': ARRAY-OF-STRING }
245
246 An enumeration type is a dictionary containing a single 'data' key
247 whose value is a list of strings. An example enumeration is:
248
249 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }
250
251 Nothing prevents an empty enumeration, although it is probably not
252 useful. The list of strings should be lower case; if an enum name
253 represents multiple words, use '-' between words. The string 'max' is
254 not allowed as an enum value, and values should not be repeated.
255
256 The enum constants will be named by using a heuristic to turn the
257 type name into a set of underscore separated words. For the example
258 above, 'MyEnum' will turn into 'MY_ENUM' giving a constant name
259 of 'MY_ENUM_VALUE1' for the first value. If the default heuristic
260 does not result in a desirable name, the optional 'prefix' field
261 can be used when defining the enum.
262
263 The enumeration values are passed as strings over the Client JSON
264 Protocol, but are encoded as C enum integral values in generated code.
265 While the C code starts numbering at 0, it is better to use explicit
266 comparisons to enum values than implicit comparisons to 0; the C code
267 will also include a generated enum member ending in _MAX for tracking
268 the size of the enum, useful when using common functions for
269 converting between strings and enum values. Since the wire format
270 always passes by name, it is acceptable to reorder or add new
271 enumeration members in any location without breaking clients of Client
272 JSON Protocol; however, removing enum values would break
273 compatibility. For any struct that has a field that will only contain
274 a finite set of string values, using an enum type for that field is
275 better than open-coding the field to be type 'str'.
276
277
278 === Union types ===
279
280 Usage: { 'union': STRING, 'data': DICT }
281 or: { 'union': STRING, 'data': DICT, 'base': STRUCT-NAME,
282 'discriminator': ENUM-MEMBER-OF-BASE }
283
284 Union types are used to let the user choose between several different
285 variants for an object. There are two flavors: simple (no
286 discriminator or base), flat (both discriminator and base). A union
287 type is defined using a data dictionary as explained in the following
288 paragraphs.
289
290 A simple union type defines a mapping from automatic discriminator
291 values to data types like in this example:
292
293 { 'struct': 'FileOptions', 'data': { 'filename': 'str' } }
294 { 'struct': 'Qcow2Options',
295 'data': { 'backing-file': 'str', 'lazy-refcounts': 'bool' } }
296
297 { 'union': 'BlockdevOptions',
298 'data': { 'file': 'FileOptions',
299 'qcow2': 'Qcow2Options' } }
300
301 In the Client JSON Protocol, a simple union is represented by a
302 dictionary that contains the 'type' field as a discriminator, and a
303 'data' field that is of the specified data type corresponding to the
304 discriminator value, as in these examples:
305
306 { "type": "file", "data" : { "filename": "/some/place/my-image" } }
307 { "type": "qcow2", "data" : { "backing-file": "/some/place/my-image",
308 "lazy-refcounts": true } }
309
310 The generated C code uses a struct containing a union. Additionally,
311 an implicit C enum 'NameKind' is created, corresponding to the union
312 'Name', for accessing the various branches of the union. No branch of
313 the union can be named 'max', as this would collide with the implicit
314 enum. The value for each branch can be of any type.
315
316 A flat union definition specifies a struct as its base, and
317 avoids nesting on the wire. All branches of the union must be
318 complex types, and the top-level fields of the union dictionary on
319 the wire will be combination of fields from both the base type and the
320 appropriate branch type (when merging two dictionaries, there must be
321 no keys in common). The 'discriminator' field must be the name of an
322 enum-typed member of the base struct.
323
324 The following example enhances the above simple union example by
325 adding a common field 'readonly', renaming the discriminator to
326 something more applicable, and reducing the number of {} required on
327 the wire:
328
329 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
330 { 'struct': 'BlockdevCommonOptions',
331 'data': { 'driver': 'BlockdevDriver', 'readonly': 'bool' } }
332 { 'union': 'BlockdevOptions',
333 'base': 'BlockdevCommonOptions',
334 'discriminator': 'driver',
335 'data': { 'file': 'FileOptions',
336 'qcow2': 'Qcow2Options' } }
337
338 Resulting in these JSON objects:
339
340 { "driver": "file", "readonly": true,
341 "filename": "/some/place/my-image" }
342 { "driver": "qcow2", "readonly": false,
343 "backing-file": "/some/place/my-image", "lazy-refcounts": true }
344
345 Notice that in a flat union, the discriminator name is controlled by
346 the user, but because it must map to a base member with enum type, the
347 code generator can ensure that branches exist for all values of the
348 enum (although the order of the keys need not match the declaration of
349 the enum). In the resulting generated C data types, a flat union is
350 represented as a struct with the base member fields included directly,
351 and then a union of structures for each branch of the struct.
352
353 A simple union can always be re-written as a flat union where the base
354 class has a single member named 'type', and where each branch of the
355 union has a struct with a single member named 'data'. That is,
356
357 { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }
358
359 is identical on the wire to:
360
361 { 'enum': 'Enum', 'data': ['one', 'two'] }
362 { 'struct': 'Base', 'data': { 'type': 'Enum' } }
363 { 'struct': 'Branch1', 'data': { 'data': 'str' } }
364 { 'struct': 'Branch2', 'data': { 'data': 'int' } }
365 { 'union': 'Flat', 'base': 'Base', 'discriminator': 'type',
366 'data': { 'one': 'Branch1', 'two': 'Branch2' } }
367
368
369 === Alternate types ===
370
371 Usage: { 'alternate': STRING, 'data': DICT }
372
373 An alternate type is one that allows a choice between two or more JSON
374 data types (string, integer, number, or object, but currently not
375 array) on the wire. The definition is similar to a simple union type,
376 where each branch of the union names a QAPI type. For example:
377
378 { 'alternate': 'BlockRef',
379 'data': { 'definition': 'BlockdevOptions',
380 'reference': 'str' } }
381
382 Just like for a simple union, an implicit C enum 'NameKind' is created
383 to enumerate the branches for the alternate 'Name'.
384
385 Unlike a union, the discriminator string is never passed on the wire
386 for the Client JSON Protocol. Instead, the value's JSON type serves
387 as an implicit discriminator, which in turn means that an alternate
388 can only express a choice between types represented differently in
389 JSON. If a branch is typed as the 'bool' built-in, the alternate
390 accepts true and false; if it is typed as any of the various numeric
391 built-ins, it accepts a JSON number; if it is typed as a 'str'
392 built-in or named enum type, it accepts a JSON string; and if it is
393 typed as a complex type (struct or union), it accepts a JSON object.
394 Two different complex types, for instance, aren't permitted, because
395 both are represented as a JSON object.
396
397 The example alternate declaration above allows using both of the
398 following example objects:
399
400 { "file": "my_existing_block_device_id" }
401 { "file": { "driver": "file",
402 "readonly": false,
403 "filename": "/tmp/mydisk.qcow2" } }
404
405
406 === Commands ===
407
408 Usage: { 'command': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
409 '*returns': TYPE-NAME,
410 '*gen': false, '*success-response': false }
411
412 Commands are defined by using a dictionary containing several members,
413 where three members are most common. The 'command' member is a
414 mandatory string, and determines the "execute" value passed in a
415 Client JSON Protocol command exchange.
416
417 The 'data' argument maps to the "arguments" dictionary passed in as
418 part of a Client JSON Protocol command. The 'data' member is optional
419 and defaults to {} (an empty dictionary). If present, it must be the
420 string name of a complex type, or a dictionary that declares an
421 anonymous type with the same semantics as a 'struct' expression, with
422 one exception noted below when 'gen' is used.
423
424 The 'returns' member describes what will appear in the "return" field
425 of a Client JSON Protocol reply on successful completion of a command.
426 The member is optional from the command declaration; if absent, the
427 "return" field will be an empty dictionary. If 'returns' is present,
428 it must be the string name of a complex or built-in type, a
429 one-element array containing the name of a complex or built-in type,
430 with one exception noted below when 'gen' is used. Although it is
431 permitted to have the 'returns' member name a built-in type or an
432 array of built-in types, any command that does this cannot be extended
433 to return additional information in the future; thus, new commands
434 should strongly consider returning a dictionary-based type or an array
435 of dictionaries, even if the dictionary only contains one field at the
436 present.
437
438 All commands in Client JSON Protocol use a dictionary to report
439 failure, with no way to specify that in QAPI. Where the error return
440 is different than the usual GenericError class in order to help the
441 client react differently to certain error conditions, it is worth
442 documenting this in the comments before the command declaration.
443
444 Some example commands:
445
446 { 'command': 'my-first-command',
447 'data': { 'arg1': 'str', '*arg2': 'str' } }
448 { 'struct': 'MyType', 'data': { '*value': 'str' } }
449 { 'command': 'my-second-command',
450 'returns': [ 'MyType' ] }
451
452 which would validate this Client JSON Protocol transaction:
453
454 => { "execute": "my-first-command",
455 "arguments": { "arg1": "hello" } }
456 <= { "return": { } }
457 => { "execute": "my-second-command" }
458 <= { "return": [ { "value": "one" }, { } ] }
459
460 In rare cases, QAPI cannot express a type-safe representation of a
461 corresponding Client JSON Protocol command. You then have to suppress
462 generation of a marshalling function by including a key 'gen' with
463 boolean value false, and instead write your own function. Please try
464 to avoid adding new commands that rely on this, and instead use
465 type-safe unions. For an example of this usage:
466
467 { 'command': 'netdev_add',
468 'data': {'type': 'str', 'id': 'str'},
469 'gen': false }
470
471 Normally, the QAPI schema is used to describe synchronous exchanges,
472 where a response is expected. But in some cases, the action of a
473 command is expected to change state in a way that a successful
474 response is not possible (although the command will still return a
475 normal dictionary error on failure). When a successful reply is not
476 possible, the command expression should include the optional key
477 'success-response' with boolean value false. So far, only QGA makes
478 use of this field.
479
480
481 === Events ===
482
483 Usage: { 'event': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT }
484
485 Events are defined with the keyword 'event'. It is not allowed to
486 name an event 'MAX', since the generator also produces a C enumeration
487 of all event names with a generated _MAX value at the end. When
488 'data' is also specified, additional info will be included in the
489 event, with similar semantics to a 'struct' expression. Finally there
490 will be C API generated in qapi-event.h; when called by QEMU code, a
491 message with timestamp will be emitted on the wire.
492
493 An example event is:
494
495 { 'event': 'EVENT_C',
496 'data': { '*a': 'int', 'b': 'str' } }
497
498 Resulting in this JSON object:
499
500 { "event": "EVENT_C",
501 "data": { "b": "test string" },
502 "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
503
504
505 == Code generation ==
506
507 Schemas are fed into 3 scripts to generate all the code/files that, paired
508 with the core QAPI libraries, comprise everything required to take JSON
509 commands read in by a Client JSON Protocol server, unmarshal the arguments into
510 the underlying C types, call into the corresponding C function, and map the
511 response back to a Client JSON Protocol response to be returned to the user.
512
513 As an example, we'll use the following schema, which describes a single
514 complex user-defined type (which will produce a C struct, along with a list
515 node structure that can be used to chain together a list of such types in
516 case we want to accept/return a list of this type with a command), and a
517 command which takes that type as a parameter and returns the same type:
518
519 $ cat example-schema.json
520 { 'struct': 'UserDefOne',
521 'data': { 'integer': 'int', 'string': 'str' } }
522
523 { 'command': 'my-command',
524 'data': {'arg1': 'UserDefOne'},
525 'returns': 'UserDefOne' }
526
527 { 'event': 'MY_EVENT' }
528
529 === scripts/qapi-types.py ===
530
531 Used to generate the C types defined by a schema. The following files are
532 created:
533
534 $(prefix)qapi-types.h - C types corresponding to types defined in
535 the schema you pass in
536 $(prefix)qapi-types.c - Cleanup functions for the above C types
537
538 The $(prefix) is an optional parameter used as a namespace to keep the
539 generated code from one schema/code-generation separated from others so code
540 can be generated/used from multiple schemas without clobbering previously
541 created code.
542
543 Example:
544
545 $ python scripts/qapi-types.py --output-dir="qapi-generated" \
546 --prefix="example-" example-schema.json
547 $ cat qapi-generated/example-qapi-types.c
548 [Uninteresting stuff omitted...]
549
550 void qapi_free_UserDefOne(UserDefOne *obj)
551 {
552 QapiDeallocVisitor *md;
553 Visitor *v;
554
555 if (!obj) {
556 return;
557 }
558
559 md = qapi_dealloc_visitor_new();
560 v = qapi_dealloc_get_visitor(md);
561 visit_type_UserDefOne(v, &obj, NULL, NULL);
562 qapi_dealloc_visitor_cleanup(md);
563 }
564
565 void qapi_free_UserDefOneList(UserDefOneList *obj)
566 {
567 QapiDeallocVisitor *md;
568 Visitor *v;
569
570 if (!obj) {
571 return;
572 }
573
574 md = qapi_dealloc_visitor_new();
575 v = qapi_dealloc_get_visitor(md);
576 visit_type_UserDefOneList(v, &obj, NULL, NULL);
577 qapi_dealloc_visitor_cleanup(md);
578 }
579 $ cat qapi-generated/example-qapi-types.h
580 [Uninteresting stuff omitted...]
581
582 #ifndef EXAMPLE_QAPI_TYPES_H
583 #define EXAMPLE_QAPI_TYPES_H
584
585 [Built-in types omitted...]
586
587 typedef struct UserDefOne UserDefOne;
588
589 typedef struct UserDefOneList UserDefOneList;
590
591 struct UserDefOne {
592 int64_t integer;
593 char *string;
594 };
595
596 void qapi_free_UserDefOne(UserDefOne *obj);
597
598 struct UserDefOneList {
599 union {
600 UserDefOne *value;
601 uint64_t padding;
602 };
603 UserDefOneList *next;
604 };
605
606 void qapi_free_UserDefOneList(UserDefOneList *obj);
607
608 #endif
609
610 === scripts/qapi-visit.py ===
611
612 Used to generate the visitor functions used to walk through and convert
613 a QObject (as provided by QMP) to a native C data structure and
614 vice-versa, as well as the visitor function used to dealloc a complex
615 schema-defined C type.
616
617 The following files are generated:
618
619 $(prefix)qapi-visit.c: visitor function for a particular C type, used
620 to automagically convert QObjects into the
621 corresponding C type and vice-versa, as well
622 as for deallocating memory for an existing C
623 type
624
625 $(prefix)qapi-visit.h: declarations for previously mentioned visitor
626 functions
627
628 Example:
629
630 $ python scripts/qapi-visit.py --output-dir="qapi-generated"
631 --prefix="example-" example-schema.json
632 $ cat qapi-generated/example-qapi-visit.c
633 [Uninteresting stuff omitted...]
634
635 static void visit_type_UserDefOne_fields(Visitor *m, UserDefOne **obj, Error **errp)
636 {
637 Error *err = NULL;
638
639 visit_type_int(m, &(*obj)->integer, "integer", &err);
640 if (err) {
641 goto out;
642 }
643 visit_type_str(m, &(*obj)->string, "string", &err);
644 if (err) {
645 goto out;
646 }
647
648 out:
649 error_propagate(errp, err);
650 }
651
652 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp)
653 {
654 Error *err = NULL;
655
656 visit_start_struct(m, (void **)obj, "UserDefOne", name, sizeof(UserDefOne), &err);
657 if (!err) {
658 if (*obj) {
659 visit_type_UserDefOne_fields(m, obj, errp);
660 }
661 visit_end_struct(m, &err);
662 }
663 error_propagate(errp, err);
664 }
665
666 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp)
667 {
668 Error *err = NULL;
669 GenericList *i, **prev;
670
671 visit_start_list(m, name, &err);
672 if (err) {
673 goto out;
674 }
675
676 for (prev = (GenericList **)obj;
677 !err && (i = visit_next_list(m, prev, &err)) != NULL;
678 prev = &i) {
679 UserDefOneList *native_i = (UserDefOneList *)i;
680 visit_type_UserDefOne(m, &native_i->value, NULL, &err);
681 }
682
683 error_propagate(errp, err);
684 err = NULL;
685 visit_end_list(m, &err);
686 out:
687 error_propagate(errp, err);
688 }
689 $ cat qapi-generated/example-qapi-visit.h
690 [Uninteresting stuff omitted...]
691
692 #ifndef EXAMPLE_QAPI_VISIT_H
693 #define EXAMPLE_QAPI_VISIT_H
694
695 [Visitors for built-in types omitted...]
696
697 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp);
698 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp);
699
700 #endif
701
702 === scripts/qapi-commands.py ===
703
704 Used to generate the marshaling/dispatch functions for the commands defined
705 in the schema. The following files are generated:
706
707 $(prefix)qmp-marshal.c: command marshal/dispatch functions for each
708 QMP command defined in the schema. Functions
709 generated by qapi-visit.py are used to
710 convert QObjects received from the wire into
711 function parameters, and uses the same
712 visitor functions to convert native C return
713 values to QObjects from transmission back
714 over the wire.
715
716 $(prefix)qmp-commands.h: Function prototypes for the QMP commands
717 specified in the schema.
718
719 Example:
720
721 $ python scripts/qapi-commands.py --output-dir="qapi-generated"
722 --prefix="example-" example-schema.json
723 $ cat qapi-generated/example-qmp-marshal.c
724 [Uninteresting stuff omitted...]
725
726 static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in, QObject **ret_out, Error **errp)
727 {
728 Error *local_err = NULL;
729 QmpOutputVisitor *mo = qmp_output_visitor_new();
730 QapiDeallocVisitor *md;
731 Visitor *v;
732
733 v = qmp_output_get_visitor(mo);
734 visit_type_UserDefOne(v, &ret_in, "unused", &local_err);
735 if (local_err) {
736 goto out;
737 }
738 *ret_out = qmp_output_get_qobject(mo);
739
740 out:
741 error_propagate(errp, local_err);
742 qmp_output_visitor_cleanup(mo);
743 md = qapi_dealloc_visitor_new();
744 v = qapi_dealloc_get_visitor(md);
745 visit_type_UserDefOne(v, &ret_in, "unused", NULL);
746 qapi_dealloc_visitor_cleanup(md);
747 }
748
749 static void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp)
750 {
751 Error *local_err = NULL;
752 UserDefOne *retval;
753 QmpInputVisitor *mi = qmp_input_visitor_new_strict(QOBJECT(args));
754 QapiDeallocVisitor *md;
755 Visitor *v;
756 UserDefOne *arg1 = NULL;
757
758 v = qmp_input_get_visitor(mi);
759 visit_type_UserDefOne(v, &arg1, "arg1", &local_err);
760 if (local_err) {
761 goto out;
762 }
763
764 retval = qmp_my_command(arg1, &local_err);
765 if (local_err) {
766 goto out;
767 }
768
769 qmp_marshal_output_UserDefOne(retval, ret, &local_err);
770
771 out:
772 error_propagate(errp, local_err);
773 qmp_input_visitor_cleanup(mi);
774 md = qapi_dealloc_visitor_new();
775 v = qapi_dealloc_get_visitor(md);
776 visit_type_UserDefOne(v, &arg1, "arg1", NULL);
777 qapi_dealloc_visitor_cleanup(md);
778 }
779
780 static void qmp_init_marshal(void)
781 {
782 qmp_register_command("my-command", qmp_marshal_my_command, QCO_NO_OPTIONS);
783 }
784
785 qapi_init(qmp_init_marshal);
786 $ cat qapi-generated/example-qmp-commands.h
787 [Uninteresting stuff omitted...]
788
789 #ifndef EXAMPLE_QMP_COMMANDS_H
790 #define EXAMPLE_QMP_COMMANDS_H
791
792 #include "example-qapi-types.h"
793 #include "qapi/qmp/qdict.h"
794 #include "qapi/error.h"
795
796 UserDefOne *qmp_my_command(UserDefOne *arg1, Error **errp);
797
798 #endif
799
800 === scripts/qapi-event.py ===
801
802 Used to generate the event-related C code defined by a schema. The
803 following files are created:
804
805 $(prefix)qapi-event.h - Function prototypes for each event type, plus an
806 enumeration of all event names
807 $(prefix)qapi-event.c - Implementation of functions to send an event
808
809 Example:
810
811 $ python scripts/qapi-event.py --output-dir="qapi-generated"
812 --prefix="example-" example-schema.json
813 $ cat qapi-generated/example-qapi-event.c
814 [Uninteresting stuff omitted...]
815
816 void qapi_event_send_my_event(Error **errp)
817 {
818 QDict *qmp;
819 Error *local_err = NULL;
820 QMPEventFuncEmit emit;
821 emit = qmp_event_get_func_emit();
822 if (!emit) {
823 return;
824 }
825
826 qmp = qmp_event_build_dict("MY_EVENT");
827
828 emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp, &local_err);
829
830 error_propagate(errp, local_err);
831 QDECREF(qmp);
832 }
833
834 const char *const example_QAPIEvent_lookup[] = {
835 [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT",
836 [EXAMPLE_QAPI_EVENT_MAX] = NULL,
837 };
838 $ cat qapi-generated/example-qapi-event.h
839 [Uninteresting stuff omitted...]
840
841 #ifndef EXAMPLE_QAPI_EVENT_H
842 #define EXAMPLE_QAPI_EVENT_H
843
844 #include "qapi/error.h"
845 #include "qapi/qmp/qdict.h"
846 #include "example-qapi-types.h"
847
848
849 void qapi_event_send_my_event(Error **errp);
850
851 typedef enum example_QAPIEvent {
852 EXAMPLE_QAPI_EVENT_MY_EVENT = 0,
853 EXAMPLE_QAPI_EVENT_MAX = 1,
854 } example_QAPIEvent;
855
856 extern const char *const example_QAPIEvent_lookup[];
857
858 #endif