]> git.proxmox.com Git - mirror_qemu.git/blob - docs/qapi-code-gen.txt
qapi: Introduce a first class 'any' type
[mirror_qemu.git] / docs / qapi-code-gen.txt
1 = How to use the QAPI code generator =
2
3 Copyright IBM Corp. 2011
4 Copyright (C) 2012-2015 Red Hat, Inc.
5
6 This work is licensed under the terms of the GNU GPL, version 2 or
7 later. See the COPYING file in the top-level directory.
8
9 == Introduction ==
10
11 QAPI is a native C API within QEMU which provides management-level
12 functionality to internal and external users. For external
13 users/processes, this interface is made available by a JSON-based wire
14 format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
15 well as the QEMU Guest Agent (QGA) for communicating with the guest.
16 The remainder of this document uses "Client JSON Protocol" when
17 referring to the wire contents of a QMP or QGA connection.
18
19 To map Client JSON Protocol interfaces to the native C QAPI
20 implementations, a JSON-based schema is used to define types and
21 function signatures, and a set of scripts is used to generate types,
22 signatures, and marshaling/dispatch code. This document will describe
23 how the schemas, scripts, and resulting code are used.
24
25
26 == QMP/Guest agent schema ==
27
28 A QAPI schema file is designed to be loosely based on JSON
29 (http://www.ietf.org/rfc/rfc7159.txt) with changes for quoting style
30 and the use of comments; a QAPI schema file is then parsed by a python
31 code generation program. A valid QAPI schema consists of a series of
32 top-level expressions, with no commas between them. Where
33 dictionaries (JSON objects) are used, they are parsed as python
34 OrderedDicts so that ordering is preserved (for predictable layout of
35 generated C structs and parameter lists). Ordering doesn't matter
36 between top-level expressions or the keys within an expression, but
37 does matter within dictionary values for 'data' and 'returns' members
38 of a single expression. QAPI schema input is written using 'single
39 quotes' instead of JSON's "double quotes" (in contrast, Client JSON
40 Protocol uses no comments, and while input accepts 'single quotes' as
41 an extension, output is strict JSON using only "double quotes"). As
42 in JSON, trailing commas are not permitted in arrays or dictionaries.
43 Input must be ASCII (although QMP supports full Unicode strings, the
44 QAPI parser does not). At present, there is no place where a QAPI
45 schema requires the use of JSON numbers or null.
46
47 Comments are allowed; anything between an unquoted # and the following
48 newline is ignored. Although there is not yet a documentation
49 generator, a form of stylized comments has developed for consistently
50 documenting details about an expression and when it was added to the
51 schema. The documentation is delimited between two lines of ##, then
52 the first line names the expression, an optional overview is provided,
53 then individual documentation about each member of 'data' is provided,
54 and finally, a 'Since: x.y.z' tag lists the release that introduced
55 the expression. Optional fields are tagged with the phrase
56 '#optional', often with their default value; and extensions added
57 after the expression was first released are also given a '(since
58 x.y.z)' comment. For example:
59
60 ##
61 # @BlockStats:
62 #
63 # Statistics of a virtual block device or a block backing device.
64 #
65 # @device: #optional If the stats are for a virtual block device, the name
66 # corresponding to the virtual block device.
67 #
68 # @stats: A @BlockDeviceStats for the device.
69 #
70 # @parent: #optional This describes the file block device if it has one.
71 #
72 # @backing: #optional This describes the backing block device if it has one.
73 # (Since 2.0)
74 #
75 # Since: 0.14.0
76 ##
77 { 'struct': 'BlockStats',
78 'data': {'*device': 'str', 'stats': 'BlockDeviceStats',
79 '*parent': 'BlockStats',
80 '*backing': 'BlockStats'} }
81
82 The schema sets up a series of types, as well as commands and events
83 that will use those types. Forward references are allowed: the parser
84 scans in two passes, where the first pass learns all type names, and
85 the second validates the schema and generates the code. This allows
86 the definition of complex structs that can have mutually recursive
87 types, and allows for indefinite nesting of Client JSON Protocol that
88 satisfies the schema. A type name should not be defined more than
89 once. It is permissible for the schema to contain additional types
90 not used by any commands or events in the Client JSON Protocol, for
91 the side effect of generated C code used internally.
92
93 There are seven top-level expressions recognized by the parser:
94 'include', 'command', 'struct', 'enum', 'union', 'alternate', and
95 'event'. There are several groups of types: simple types (a number of
96 built-in types, such as 'int' and 'str'; as well as enumerations),
97 complex types (structs and two flavors of unions), and alternate types
98 (a choice between other types). The 'command' and 'event' expressions
99 can refer to existing types by name, or list an anonymous type as a
100 dictionary. Listing a type name inside an array refers to a
101 single-dimension array of that type; multi-dimension arrays are not
102 directly supported (although an array of a complex struct that
103 contains an array member is possible).
104
105 Types, commands, and events share a common namespace. Therefore,
106 generally speaking, type definitions should always use CamelCase for
107 user-defined type names, while built-in types are lowercase. Type
108 definitions should not end in 'Kind', as this namespace is used for
109 creating implicit C enums for visiting union types. Command names,
110 and field names within a type, should be all lower case with words
111 separated by a hyphen. However, some existing older commands and
112 complex types use underscore; when extending such expressions,
113 consistency is preferred over blindly avoiding underscore. Event
114 names should be ALL_CAPS with words separated by underscore. The
115 special string '**' appears for some commands that manually perform
116 their own type checking rather than relying on the type-safe code
117 produced by the qapi code generators.
118
119 Any name (command, event, type, field, or enum value) beginning with
120 "x-" is marked experimental, and may be withdrawn or changed
121 incompatibly in a future release. Downstream vendors may add
122 extensions; such extensions should begin with a prefix matching
123 "__RFQDN_" (for the reverse-fully-qualified-domain-name of the
124 vendor), even if the rest of the name uses dash (example:
125 __com.redhat_drive-mirror). Other than downstream extensions (with
126 leading underscore and the use of dots), all names should begin with a
127 letter, and contain only ASCII letters, digits, dash, and underscore.
128 It is okay to reuse names that match C keywords; the generator will
129 rename a field named "default" in the QAPI to "q_default" in the
130 generated C code.
131
132 In the rest of this document, usage lines are given for each
133 expression type, with literal strings written in lower case and
134 placeholders written in capitals. If a literal string includes a
135 prefix of '*', that key/value pair can be omitted from the expression.
136 For example, a usage statement that includes '*base':STRUCT-NAME
137 means that an expression has an optional key 'base', which if present
138 must have a value that forms a struct name.
139
140
141 === Built-in Types ===
142
143 The following types are predefined, and map to C as follows:
144
145 Schema C JSON
146 str char * any JSON string, UTF-8
147 number double any JSON number
148 int int64_t a JSON number without fractional part
149 that fits into the C integer type
150 int8 int8_t likewise
151 int16 int16_t likewise
152 int32 int32_t likewise
153 int64 int64_t likewise
154 uint8 uint8_t likewise
155 uint16 uint16_t likewise
156 uint32 uint32_t likewise
157 uint64 uint64_t likewise
158 size uint64_t like uint64_t, except StringInputVisitor
159 accepts size suffixes
160 bool bool JSON true or false
161 any QObject * any JSON value
162
163
164 === Includes ===
165
166 Usage: { 'include': STRING }
167
168 The QAPI schema definitions can be modularized using the 'include' directive:
169
170 { 'include': 'path/to/file.json' }
171
172 The directive is evaluated recursively, and include paths are relative to the
173 file using the directive. Multiple includes of the same file are
174 idempotent. No other keys should appear in the expression, and the include
175 value should be a string.
176
177 As a matter of style, it is a good idea to have all files be
178 self-contained, but at the moment, nothing prevents an included file
179 from making a forward reference to a type that is only introduced by
180 an outer file. The parser may be made stricter in the future to
181 prevent incomplete include files.
182
183
184 === Struct types ===
185
186 Usage: { 'struct': STRING, 'data': DICT, '*base': STRUCT-NAME }
187
188 A struct is a dictionary containing a single 'data' key whose
189 value is a dictionary. This corresponds to a struct in C or an Object
190 in JSON. Each value of the 'data' dictionary must be the name of a
191 type, or a one-element array containing a type name. An example of a
192 struct is:
193
194 { 'struct': 'MyType',
195 'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }
196
197 The use of '*' as a prefix to the name means the member is optional in
198 the corresponding JSON protocol usage.
199
200 The default initialization value of an optional argument should not be changed
201 between versions of QEMU unless the new default maintains backward
202 compatibility to the user-visible behavior of the old default.
203
204 With proper documentation, this policy still allows some flexibility; for
205 example, documenting that a default of 0 picks an optimal buffer size allows
206 one release to declare the optimal size at 512 while another release declares
207 the optimal size at 4096 - the user-visible behavior is not the bytes used by
208 the buffer, but the fact that the buffer was optimal size.
209
210 On input structures (only mentioned in the 'data' side of a command), changing
211 from mandatory to optional is safe (older clients will supply the option, and
212 newer clients can benefit from the default); changing from optional to
213 mandatory is backwards incompatible (older clients may be omitting the option,
214 and must continue to work).
215
216 On output structures (only mentioned in the 'returns' side of a command),
217 changing from mandatory to optional is in general unsafe (older clients may be
218 expecting the field, and could crash if it is missing), although it can be done
219 if the only way that the optional argument will be omitted is when it is
220 triggered by the presence of a new input flag to the command that older clients
221 don't know to send. Changing from optional to mandatory is safe.
222
223 A structure that is used in both input and output of various commands
224 must consider the backwards compatibility constraints of both directions
225 of use.
226
227 A struct definition can specify another struct as its base.
228 In this case, the fields of the base type are included as top-level fields
229 of the new struct's dictionary in the Client JSON Protocol wire
230 format. An example definition is:
231
232 { 'struct': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
233 { 'struct': 'BlockdevOptionsGenericCOWFormat',
234 'base': 'BlockdevOptionsGenericFormat',
235 'data': { '*backing': 'str' } }
236
237 An example BlockdevOptionsGenericCOWFormat object on the wire could use
238 both fields like this:
239
240 { "file": "/some/place/my-image",
241 "backing": "/some/place/my-backing-file" }
242
243
244 === Enumeration types ===
245
246 Usage: { 'enum': STRING, 'data': ARRAY-OF-STRING }
247 { 'enum': STRING, '*prefix': STRING, 'data': ARRAY-OF-STRING }
248
249 An enumeration type is a dictionary containing a single 'data' key
250 whose value is a list of strings. An example enumeration is:
251
252 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }
253
254 Nothing prevents an empty enumeration, although it is probably not
255 useful. The list of strings should be lower case; if an enum name
256 represents multiple words, use '-' between words. The string 'max' is
257 not allowed as an enum value, and values should not be repeated.
258
259 The enum constants will be named by using a heuristic to turn the
260 type name into a set of underscore separated words. For the example
261 above, 'MyEnum' will turn into 'MY_ENUM' giving a constant name
262 of 'MY_ENUM_VALUE1' for the first value. If the default heuristic
263 does not result in a desirable name, the optional 'prefix' field
264 can be used when defining the enum.
265
266 The enumeration values are passed as strings over the Client JSON
267 Protocol, but are encoded as C enum integral values in generated code.
268 While the C code starts numbering at 0, it is better to use explicit
269 comparisons to enum values than implicit comparisons to 0; the C code
270 will also include a generated enum member ending in _MAX for tracking
271 the size of the enum, useful when using common functions for
272 converting between strings and enum values. Since the wire format
273 always passes by name, it is acceptable to reorder or add new
274 enumeration members in any location without breaking clients of Client
275 JSON Protocol; however, removing enum values would break
276 compatibility. For any struct that has a field that will only contain
277 a finite set of string values, using an enum type for that field is
278 better than open-coding the field to be type 'str'.
279
280
281 === Union types ===
282
283 Usage: { 'union': STRING, 'data': DICT }
284 or: { 'union': STRING, 'data': DICT, 'base': STRUCT-NAME,
285 'discriminator': ENUM-MEMBER-OF-BASE }
286
287 Union types are used to let the user choose between several different
288 variants for an object. There are two flavors: simple (no
289 discriminator or base), flat (both discriminator and base). A union
290 type is defined using a data dictionary as explained in the following
291 paragraphs.
292
293 A simple union type defines a mapping from automatic discriminator
294 values to data types like in this example:
295
296 { 'struct': 'FileOptions', 'data': { 'filename': 'str' } }
297 { 'struct': 'Qcow2Options',
298 'data': { 'backing-file': 'str', 'lazy-refcounts': 'bool' } }
299
300 { 'union': 'BlockdevOptions',
301 'data': { 'file': 'FileOptions',
302 'qcow2': 'Qcow2Options' } }
303
304 In the Client JSON Protocol, a simple union is represented by a
305 dictionary that contains the 'type' field as a discriminator, and a
306 'data' field that is of the specified data type corresponding to the
307 discriminator value, as in these examples:
308
309 { "type": "file", "data" : { "filename": "/some/place/my-image" } }
310 { "type": "qcow2", "data" : { "backing-file": "/some/place/my-image",
311 "lazy-refcounts": true } }
312
313 The generated C code uses a struct containing a union. Additionally,
314 an implicit C enum 'NameKind' is created, corresponding to the union
315 'Name', for accessing the various branches of the union. No branch of
316 the union can be named 'max', as this would collide with the implicit
317 enum. The value for each branch can be of any type.
318
319 A flat union definition specifies a struct as its base, and
320 avoids nesting on the wire. All branches of the union must be
321 complex types, and the top-level fields of the union dictionary on
322 the wire will be combination of fields from both the base type and the
323 appropriate branch type (when merging two dictionaries, there must be
324 no keys in common). The 'discriminator' field must be the name of an
325 enum-typed member of the base struct.
326
327 The following example enhances the above simple union example by
328 adding a common field 'readonly', renaming the discriminator to
329 something more applicable, and reducing the number of {} required on
330 the wire:
331
332 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
333 { 'struct': 'BlockdevCommonOptions',
334 'data': { 'driver': 'BlockdevDriver', 'readonly': 'bool' } }
335 { 'union': 'BlockdevOptions',
336 'base': 'BlockdevCommonOptions',
337 'discriminator': 'driver',
338 'data': { 'file': 'FileOptions',
339 'qcow2': 'Qcow2Options' } }
340
341 Resulting in these JSON objects:
342
343 { "driver": "file", "readonly": true,
344 "filename": "/some/place/my-image" }
345 { "driver": "qcow2", "readonly": false,
346 "backing-file": "/some/place/my-image", "lazy-refcounts": true }
347
348 Notice that in a flat union, the discriminator name is controlled by
349 the user, but because it must map to a base member with enum type, the
350 code generator can ensure that branches exist for all values of the
351 enum (although the order of the keys need not match the declaration of
352 the enum). In the resulting generated C data types, a flat union is
353 represented as a struct with the base member fields included directly,
354 and then a union of structures for each branch of the struct.
355
356 A simple union can always be re-written as a flat union where the base
357 class has a single member named 'type', and where each branch of the
358 union has a struct with a single member named 'data'. That is,
359
360 { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }
361
362 is identical on the wire to:
363
364 { 'enum': 'Enum', 'data': ['one', 'two'] }
365 { 'struct': 'Base', 'data': { 'type': 'Enum' } }
366 { 'struct': 'Branch1', 'data': { 'data': 'str' } }
367 { 'struct': 'Branch2', 'data': { 'data': 'int' } }
368 { 'union': 'Flat', 'base': 'Base', 'discriminator': 'type',
369 'data': { 'one': 'Branch1', 'two': 'Branch2' } }
370
371
372 === Alternate types ===
373
374 Usage: { 'alternate': STRING, 'data': DICT }
375
376 An alternate type is one that allows a choice between two or more JSON
377 data types (string, integer, number, or object, but currently not
378 array) on the wire. The definition is similar to a simple union type,
379 where each branch of the union names a QAPI type. For example:
380
381 { 'alternate': 'BlockRef',
382 'data': { 'definition': 'BlockdevOptions',
383 'reference': 'str' } }
384
385 Just like for a simple union, an implicit C enum 'NameKind' is created
386 to enumerate the branches for the alternate 'Name'.
387
388 Unlike a union, the discriminator string is never passed on the wire
389 for the Client JSON Protocol. Instead, the value's JSON type serves
390 as an implicit discriminator, which in turn means that an alternate
391 can only express a choice between types represented differently in
392 JSON. If a branch is typed as the 'bool' built-in, the alternate
393 accepts true and false; if it is typed as any of the various numeric
394 built-ins, it accepts a JSON number; if it is typed as a 'str'
395 built-in or named enum type, it accepts a JSON string; and if it is
396 typed as a complex type (struct or union), it accepts a JSON object.
397 Two different complex types, for instance, aren't permitted, because
398 both are represented as a JSON object.
399
400 The example alternate declaration above allows using both of the
401 following example objects:
402
403 { "file": "my_existing_block_device_id" }
404 { "file": { "driver": "file",
405 "readonly": false,
406 "filename": "/tmp/mydisk.qcow2" } }
407
408
409 === Commands ===
410
411 Usage: { 'command': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
412 '*returns': TYPE-NAME,
413 '*gen': false, '*success-response': false }
414
415 Commands are defined by using a dictionary containing several members,
416 where three members are most common. The 'command' member is a
417 mandatory string, and determines the "execute" value passed in a
418 Client JSON Protocol command exchange.
419
420 The 'data' argument maps to the "arguments" dictionary passed in as
421 part of a Client JSON Protocol command. The 'data' member is optional
422 and defaults to {} (an empty dictionary). If present, it must be the
423 string name of a complex type, or a dictionary that declares an
424 anonymous type with the same semantics as a 'struct' expression, with
425 one exception noted below when 'gen' is used.
426
427 The 'returns' member describes what will appear in the "return" field
428 of a Client JSON Protocol reply on successful completion of a command.
429 The member is optional from the command declaration; if absent, the
430 "return" field will be an empty dictionary. If 'returns' is present,
431 it must be the string name of a complex or built-in type, a
432 one-element array containing the name of a complex or built-in type,
433 with one exception noted below when 'gen' is used. Although it is
434 permitted to have the 'returns' member name a built-in type or an
435 array of built-in types, any command that does this cannot be extended
436 to return additional information in the future; thus, new commands
437 should strongly consider returning a dictionary-based type or an array
438 of dictionaries, even if the dictionary only contains one field at the
439 present.
440
441 All commands in Client JSON Protocol use a dictionary to report
442 failure, with no way to specify that in QAPI. Where the error return
443 is different than the usual GenericError class in order to help the
444 client react differently to certain error conditions, it is worth
445 documenting this in the comments before the command declaration.
446
447 Some example commands:
448
449 { 'command': 'my-first-command',
450 'data': { 'arg1': 'str', '*arg2': 'str' } }
451 { 'struct': 'MyType', 'data': { '*value': 'str' } }
452 { 'command': 'my-second-command',
453 'returns': [ 'MyType' ] }
454
455 which would validate this Client JSON Protocol transaction:
456
457 => { "execute": "my-first-command",
458 "arguments": { "arg1": "hello" } }
459 <= { "return": { } }
460 => { "execute": "my-second-command" }
461 <= { "return": [ { "value": "one" }, { } ] }
462
463 In rare cases, QAPI cannot express a type-safe representation of a
464 corresponding Client JSON Protocol command. In these cases, if the
465 command expression includes the key 'gen' with boolean value false,
466 then the 'data' or 'returns' member that intends to bypass generated
467 type-safety and do its own manual validation should use an inline
468 dictionary definition, with a value of '**' rather than a valid type
469 name for the keys that the generated code will not validate. Please
470 try to avoid adding new commands that rely on this, and instead use
471 type-safe unions. For an example of bypass usage:
472
473 { 'command': 'netdev_add',
474 'data': {'type': 'str', 'id': 'str', '*props': '**'},
475 'gen': false }
476
477 Normally, the QAPI schema is used to describe synchronous exchanges,
478 where a response is expected. But in some cases, the action of a
479 command is expected to change state in a way that a successful
480 response is not possible (although the command will still return a
481 normal dictionary error on failure). When a successful reply is not
482 possible, the command expression should include the optional key
483 'success-response' with boolean value false. So far, only QGA makes
484 use of this field.
485
486
487 === Events ===
488
489 Usage: { 'event': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT }
490
491 Events are defined with the keyword 'event'. It is not allowed to
492 name an event 'MAX', since the generator also produces a C enumeration
493 of all event names with a generated _MAX value at the end. When
494 'data' is also specified, additional info will be included in the
495 event, with similar semantics to a 'struct' expression. Finally there
496 will be C API generated in qapi-event.h; when called by QEMU code, a
497 message with timestamp will be emitted on the wire.
498
499 An example event is:
500
501 { 'event': 'EVENT_C',
502 'data': { '*a': 'int', 'b': 'str' } }
503
504 Resulting in this JSON object:
505
506 { "event": "EVENT_C",
507 "data": { "b": "test string" },
508 "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
509
510
511 == Code generation ==
512
513 Schemas are fed into 3 scripts to generate all the code/files that, paired
514 with the core QAPI libraries, comprise everything required to take JSON
515 commands read in by a Client JSON Protocol server, unmarshal the arguments into
516 the underlying C types, call into the corresponding C function, and map the
517 response back to a Client JSON Protocol response to be returned to the user.
518
519 As an example, we'll use the following schema, which describes a single
520 complex user-defined type (which will produce a C struct, along with a list
521 node structure that can be used to chain together a list of such types in
522 case we want to accept/return a list of this type with a command), and a
523 command which takes that type as a parameter and returns the same type:
524
525 $ cat example-schema.json
526 { 'struct': 'UserDefOne',
527 'data': { 'integer': 'int', 'string': 'str' } }
528
529 { 'command': 'my-command',
530 'data': {'arg1': 'UserDefOne'},
531 'returns': 'UserDefOne' }
532
533 { 'event': 'MY_EVENT' }
534
535 === scripts/qapi-types.py ===
536
537 Used to generate the C types defined by a schema. The following files are
538 created:
539
540 $(prefix)qapi-types.h - C types corresponding to types defined in
541 the schema you pass in
542 $(prefix)qapi-types.c - Cleanup functions for the above C types
543
544 The $(prefix) is an optional parameter used as a namespace to keep the
545 generated code from one schema/code-generation separated from others so code
546 can be generated/used from multiple schemas without clobbering previously
547 created code.
548
549 Example:
550
551 $ python scripts/qapi-types.py --output-dir="qapi-generated" \
552 --prefix="example-" example-schema.json
553 $ cat qapi-generated/example-qapi-types.c
554 [Uninteresting stuff omitted...]
555
556 void qapi_free_UserDefOne(UserDefOne *obj)
557 {
558 QapiDeallocVisitor *md;
559 Visitor *v;
560
561 if (!obj) {
562 return;
563 }
564
565 md = qapi_dealloc_visitor_new();
566 v = qapi_dealloc_get_visitor(md);
567 visit_type_UserDefOne(v, &obj, NULL, NULL);
568 qapi_dealloc_visitor_cleanup(md);
569 }
570
571 void qapi_free_UserDefOneList(UserDefOneList *obj)
572 {
573 QapiDeallocVisitor *md;
574 Visitor *v;
575
576 if (!obj) {
577 return;
578 }
579
580 md = qapi_dealloc_visitor_new();
581 v = qapi_dealloc_get_visitor(md);
582 visit_type_UserDefOneList(v, &obj, NULL, NULL);
583 qapi_dealloc_visitor_cleanup(md);
584 }
585 $ cat qapi-generated/example-qapi-types.h
586 [Uninteresting stuff omitted...]
587
588 #ifndef EXAMPLE_QAPI_TYPES_H
589 #define EXAMPLE_QAPI_TYPES_H
590
591 [Built-in types omitted...]
592
593 typedef struct UserDefOne UserDefOne;
594
595 typedef struct UserDefOneList UserDefOneList;
596
597 struct UserDefOne {
598 int64_t integer;
599 char *string;
600 };
601
602 void qapi_free_UserDefOne(UserDefOne *obj);
603
604 struct UserDefOneList {
605 union {
606 UserDefOne *value;
607 uint64_t padding;
608 };
609 UserDefOneList *next;
610 };
611
612 void qapi_free_UserDefOneList(UserDefOneList *obj);
613
614 #endif
615
616 === scripts/qapi-visit.py ===
617
618 Used to generate the visitor functions used to walk through and convert
619 a QObject (as provided by QMP) to a native C data structure and
620 vice-versa, as well as the visitor function used to dealloc a complex
621 schema-defined C type.
622
623 The following files are generated:
624
625 $(prefix)qapi-visit.c: visitor function for a particular C type, used
626 to automagically convert QObjects into the
627 corresponding C type and vice-versa, as well
628 as for deallocating memory for an existing C
629 type
630
631 $(prefix)qapi-visit.h: declarations for previously mentioned visitor
632 functions
633
634 Example:
635
636 $ python scripts/qapi-visit.py --output-dir="qapi-generated"
637 --prefix="example-" example-schema.json
638 $ cat qapi-generated/example-qapi-visit.c
639 [Uninteresting stuff omitted...]
640
641 static void visit_type_UserDefOne_fields(Visitor *m, UserDefOne **obj, Error **errp)
642 {
643 Error *err = NULL;
644
645 visit_type_int(m, &(*obj)->integer, "integer", &err);
646 if (err) {
647 goto out;
648 }
649 visit_type_str(m, &(*obj)->string, "string", &err);
650 if (err) {
651 goto out;
652 }
653
654 out:
655 error_propagate(errp, err);
656 }
657
658 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp)
659 {
660 Error *err = NULL;
661
662 visit_start_struct(m, (void **)obj, "UserDefOne", name, sizeof(UserDefOne), &err);
663 if (!err) {
664 if (*obj) {
665 visit_type_UserDefOne_fields(m, obj, errp);
666 }
667 visit_end_struct(m, &err);
668 }
669 error_propagate(errp, err);
670 }
671
672 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp)
673 {
674 Error *err = NULL;
675 GenericList *i, **prev;
676
677 visit_start_list(m, name, &err);
678 if (err) {
679 goto out;
680 }
681
682 for (prev = (GenericList **)obj;
683 !err && (i = visit_next_list(m, prev, &err)) != NULL;
684 prev = &i) {
685 UserDefOneList *native_i = (UserDefOneList *)i;
686 visit_type_UserDefOne(m, &native_i->value, NULL, &err);
687 }
688
689 error_propagate(errp, err);
690 err = NULL;
691 visit_end_list(m, &err);
692 out:
693 error_propagate(errp, err);
694 }
695 $ cat qapi-generated/example-qapi-visit.h
696 [Uninteresting stuff omitted...]
697
698 #ifndef EXAMPLE_QAPI_VISIT_H
699 #define EXAMPLE_QAPI_VISIT_H
700
701 [Visitors for built-in types omitted...]
702
703 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp);
704 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp);
705
706 #endif
707
708 === scripts/qapi-commands.py ===
709
710 Used to generate the marshaling/dispatch functions for the commands defined
711 in the schema. The following files are generated:
712
713 $(prefix)qmp-marshal.c: command marshal/dispatch functions for each
714 QMP command defined in the schema. Functions
715 generated by qapi-visit.py are used to
716 convert QObjects received from the wire into
717 function parameters, and uses the same
718 visitor functions to convert native C return
719 values to QObjects from transmission back
720 over the wire.
721
722 $(prefix)qmp-commands.h: Function prototypes for the QMP commands
723 specified in the schema.
724
725 Example:
726
727 $ python scripts/qapi-commands.py --output-dir="qapi-generated"
728 --prefix="example-" example-schema.json
729 $ cat qapi-generated/example-qmp-marshal.c
730 [Uninteresting stuff omitted...]
731
732 static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in, QObject **ret_out, Error **errp)
733 {
734 Error *local_err = NULL;
735 QmpOutputVisitor *mo = qmp_output_visitor_new();
736 QapiDeallocVisitor *md;
737 Visitor *v;
738
739 v = qmp_output_get_visitor(mo);
740 visit_type_UserDefOne(v, &ret_in, "unused", &local_err);
741 if (local_err) {
742 goto out;
743 }
744 *ret_out = qmp_output_get_qobject(mo);
745
746 out:
747 error_propagate(errp, local_err);
748 qmp_output_visitor_cleanup(mo);
749 md = qapi_dealloc_visitor_new();
750 v = qapi_dealloc_get_visitor(md);
751 visit_type_UserDefOne(v, &ret_in, "unused", NULL);
752 qapi_dealloc_visitor_cleanup(md);
753 }
754
755 static void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp)
756 {
757 Error *local_err = NULL;
758 UserDefOne *retval;
759 QmpInputVisitor *mi = qmp_input_visitor_new_strict(QOBJECT(args));
760 QapiDeallocVisitor *md;
761 Visitor *v;
762 UserDefOne *arg1 = NULL;
763
764 v = qmp_input_get_visitor(mi);
765 visit_type_UserDefOne(v, &arg1, "arg1", &local_err);
766 if (local_err) {
767 goto out;
768 }
769
770 retval = qmp_my_command(arg1, &local_err);
771 if (local_err) {
772 goto out;
773 }
774
775 qmp_marshal_output_UserDefOne(retval, ret, &local_err);
776
777 out:
778 error_propagate(errp, local_err);
779 qmp_input_visitor_cleanup(mi);
780 md = qapi_dealloc_visitor_new();
781 v = qapi_dealloc_get_visitor(md);
782 visit_type_UserDefOne(v, &arg1, "arg1", NULL);
783 qapi_dealloc_visitor_cleanup(md);
784 }
785
786 static void qmp_init_marshal(void)
787 {
788 qmp_register_command("my-command", qmp_marshal_my_command, QCO_NO_OPTIONS);
789 }
790
791 qapi_init(qmp_init_marshal);
792 $ cat qapi-generated/example-qmp-commands.h
793 [Uninteresting stuff omitted...]
794
795 #ifndef EXAMPLE_QMP_COMMANDS_H
796 #define EXAMPLE_QMP_COMMANDS_H
797
798 #include "example-qapi-types.h"
799 #include "qapi/qmp/qdict.h"
800 #include "qapi/error.h"
801
802 UserDefOne *qmp_my_command(UserDefOne *arg1, Error **errp);
803
804 #endif
805
806 === scripts/qapi-event.py ===
807
808 Used to generate the event-related C code defined by a schema. The
809 following files are created:
810
811 $(prefix)qapi-event.h - Function prototypes for each event type, plus an
812 enumeration of all event names
813 $(prefix)qapi-event.c - Implementation of functions to send an event
814
815 Example:
816
817 $ python scripts/qapi-event.py --output-dir="qapi-generated"
818 --prefix="example-" example-schema.json
819 $ cat qapi-generated/example-qapi-event.c
820 [Uninteresting stuff omitted...]
821
822 void qapi_event_send_my_event(Error **errp)
823 {
824 QDict *qmp;
825 Error *local_err = NULL;
826 QMPEventFuncEmit emit;
827 emit = qmp_event_get_func_emit();
828 if (!emit) {
829 return;
830 }
831
832 qmp = qmp_event_build_dict("MY_EVENT");
833
834 emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp, &local_err);
835
836 error_propagate(errp, local_err);
837 QDECREF(qmp);
838 }
839
840 const char *const example_QAPIEvent_lookup[] = {
841 [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT",
842 [EXAMPLE_QAPI_EVENT_MAX] = NULL,
843 };
844 $ cat qapi-generated/example-qapi-event.h
845 [Uninteresting stuff omitted...]
846
847 #ifndef EXAMPLE_QAPI_EVENT_H
848 #define EXAMPLE_QAPI_EVENT_H
849
850 #include "qapi/error.h"
851 #include "qapi/qmp/qdict.h"
852 #include "example-qapi-types.h"
853
854
855 void qapi_event_send_my_event(Error **errp);
856
857 typedef enum example_QAPIEvent {
858 EXAMPLE_QAPI_EVENT_MY_EVENT = 0,
859 EXAMPLE_QAPI_EVENT_MAX = 1,
860 } example_QAPIEvent;
861
862 extern const char *const example_QAPIEvent_lookup[];
863
864 #endif