]> git.proxmox.com Git - mirror_qemu.git/blob - docs/qapi-code-gen.txt
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / docs / qapi-code-gen.txt
1 = How to use the QAPI code generator =
2
3 Copyright IBM Corp. 2011
4 Copyright (C) 2012-2015 Red Hat, Inc.
5
6 This work is licensed under the terms of the GNU GPL, version 2 or
7 later. See the COPYING file in the top-level directory.
8
9 == Introduction ==
10
11 QAPI is a native C API within QEMU which provides management-level
12 functionality to internal and external users. For external
13 users/processes, this interface is made available by a JSON-based wire
14 format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
15 well as the QEMU Guest Agent (QGA) for communicating with the guest.
16 The remainder of this document uses "Client JSON Protocol" when
17 referring to the wire contents of a QMP or QGA connection.
18
19 To map Client JSON Protocol interfaces to the native C QAPI
20 implementations, a JSON-based schema is used to define types and
21 function signatures, and a set of scripts is used to generate types,
22 signatures, and marshaling/dispatch code. This document will describe
23 how the schemas, scripts, and resulting code are used.
24
25
26 == QMP/Guest agent schema ==
27
28 A QAPI schema file is designed to be loosely based on JSON
29 (http://www.ietf.org/rfc/rfc7159.txt) with changes for quoting style
30 and the use of comments; a QAPI schema file is then parsed by a python
31 code generation program. A valid QAPI schema consists of a series of
32 top-level expressions, with no commas between them. Where
33 dictionaries (JSON objects) are used, they are parsed as python
34 OrderedDicts so that ordering is preserved (for predictable layout of
35 generated C structs and parameter lists). Ordering doesn't matter
36 between top-level expressions or the keys within an expression, but
37 does matter within dictionary values for 'data' and 'returns' members
38 of a single expression. QAPI schema input is written using 'single
39 quotes' instead of JSON's "double quotes" (in contrast, Client JSON
40 Protocol uses no comments, and while input accepts 'single quotes' as
41 an extension, output is strict JSON using only "double quotes"). As
42 in JSON, trailing commas are not permitted in arrays or dictionaries.
43 Input must be ASCII (although QMP supports full Unicode strings, the
44 QAPI parser does not). At present, there is no place where a QAPI
45 schema requires the use of JSON numbers or null.
46
47 Comments are allowed; anything between an unquoted # and the following
48 newline is ignored. Although there is not yet a documentation
49 generator, a form of stylized comments has developed for consistently
50 documenting details about an expression and when it was added to the
51 schema. The documentation is delimited between two lines of ##, then
52 the first line names the expression, an optional overview is provided,
53 then individual documentation about each member of 'data' is provided,
54 and finally, a 'Since: x.y.z' tag lists the release that introduced
55 the expression. Optional fields are tagged with the phrase
56 '#optional', often with their default value; and extensions added
57 after the expression was first released are also given a '(since
58 x.y.z)' comment. For example:
59
60 ##
61 # @BlockStats:
62 #
63 # Statistics of a virtual block device or a block backing device.
64 #
65 # @device: #optional If the stats are for a virtual block device, the name
66 # corresponding to the virtual block device.
67 #
68 # @stats: A @BlockDeviceStats for the device.
69 #
70 # @parent: #optional This describes the file block device if it has one.
71 #
72 # @backing: #optional This describes the backing block device if it has one.
73 # (Since 2.0)
74 #
75 # Since: 0.14.0
76 ##
77 { 'struct': 'BlockStats',
78 'data': {'*device': 'str', 'stats': 'BlockDeviceStats',
79 '*parent': 'BlockStats',
80 '*backing': 'BlockStats'} }
81
82 The schema sets up a series of types, as well as commands and events
83 that will use those types. Forward references are allowed: the parser
84 scans in two passes, where the first pass learns all type names, and
85 the second validates the schema and generates the code. This allows
86 the definition of complex structs that can have mutually recursive
87 types, and allows for indefinite nesting of Client JSON Protocol that
88 satisfies the schema. A type name should not be defined more than
89 once. It is permissible for the schema to contain additional types
90 not used by any commands or events in the Client JSON Protocol, for
91 the side effect of generated C code used internally.
92
93 There are seven top-level expressions recognized by the parser:
94 'include', 'command', 'struct', 'enum', 'union', 'alternate', and
95 'event'. There are several groups of types: simple types (a number of
96 built-in types, such as 'int' and 'str'; as well as enumerations),
97 complex types (structs and two flavors of unions), and alternate types
98 (a choice between other types). The 'command' and 'event' expressions
99 can refer to existing types by name, or list an anonymous type as a
100 dictionary. Listing a type name inside an array refers to a
101 single-dimension array of that type; multi-dimension arrays are not
102 directly supported (although an array of a complex struct that
103 contains an array member is possible).
104
105 Types, commands, and events share a common namespace. Therefore,
106 generally speaking, type definitions should always use CamelCase for
107 user-defined type names, while built-in types are lowercase. Type
108 definitions should not end in 'Kind', as this namespace is used for
109 creating implicit C enums for visiting union types. Command names,
110 and field names within a type, should be all lower case with words
111 separated by a hyphen. However, some existing older commands and
112 complex types use underscore; when extending such expressions,
113 consistency is preferred over blindly avoiding underscore. Event
114 names should be ALL_CAPS with words separated by underscore. The
115 special string '**' appears for some commands that manually perform
116 their own type checking rather than relying on the type-safe code
117 produced by the qapi code generators.
118
119 Any name (command, event, type, field, or enum value) beginning with
120 "x-" is marked experimental, and may be withdrawn or changed
121 incompatibly in a future release. Downstream vendors may add
122 extensions; such extensions should begin with a prefix matching
123 "__RFQDN_" (for the reverse-fully-qualified-domain-name of the
124 vendor), even if the rest of the name uses dash (example:
125 __com.redhat_drive-mirror). Other than downstream extensions (with
126 leading underscore and the use of dots), all names should begin with a
127 letter, and contain only ASCII letters, digits, dash, and underscore.
128 It is okay to reuse names that match C keywords; the generator will
129 rename a field named "default" in the QAPI to "q_default" in the
130 generated C code.
131
132 In the rest of this document, usage lines are given for each
133 expression type, with literal strings written in lower case and
134 placeholders written in capitals. If a literal string includes a
135 prefix of '*', that key/value pair can be omitted from the expression.
136 For example, a usage statement that includes '*base':STRUCT-NAME
137 means that an expression has an optional key 'base', which if present
138 must have a value that forms a struct name.
139
140
141 === Built-in Types ===
142
143 The following types are built-in to the parser:
144 'str' - arbitrary UTF-8 string
145 'int' - 64-bit signed integer (although the C code may place further
146 restrictions on acceptable range)
147 'number' - floating point number
148 'bool' - JSON value of true or false
149 'int8', 'int16', 'int32', 'int64' - like 'int', but enforce maximum
150 bit size
151 'uint8', 'uint16', 'uint32', 'uint64' - unsigned counterparts
152 'size' - like 'uint64', but allows scaled suffix from command line
153 visitor
154
155
156 === Includes ===
157
158 Usage: { 'include': STRING }
159
160 The QAPI schema definitions can be modularized using the 'include' directive:
161
162 { 'include': 'path/to/file.json' }
163
164 The directive is evaluated recursively, and include paths are relative to the
165 file using the directive. Multiple includes of the same file are
166 idempotent. No other keys should appear in the expression, and the include
167 value should be a string.
168
169 As a matter of style, it is a good idea to have all files be
170 self-contained, but at the moment, nothing prevents an included file
171 from making a forward reference to a type that is only introduced by
172 an outer file. The parser may be made stricter in the future to
173 prevent incomplete include files.
174
175
176 === Struct types ===
177
178 Usage: { 'struct': STRING, 'data': DICT, '*base': STRUCT-NAME }
179
180 A struct is a dictionary containing a single 'data' key whose
181 value is a dictionary. This corresponds to a struct in C or an Object
182 in JSON. Each value of the 'data' dictionary must be the name of a
183 type, or a one-element array containing a type name. An example of a
184 struct is:
185
186 { 'struct': 'MyType',
187 'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }
188
189 The use of '*' as a prefix to the name means the member is optional in
190 the corresponding JSON protocol usage.
191
192 The default initialization value of an optional argument should not be changed
193 between versions of QEMU unless the new default maintains backward
194 compatibility to the user-visible behavior of the old default.
195
196 With proper documentation, this policy still allows some flexibility; for
197 example, documenting that a default of 0 picks an optimal buffer size allows
198 one release to declare the optimal size at 512 while another release declares
199 the optimal size at 4096 - the user-visible behavior is not the bytes used by
200 the buffer, but the fact that the buffer was optimal size.
201
202 On input structures (only mentioned in the 'data' side of a command), changing
203 from mandatory to optional is safe (older clients will supply the option, and
204 newer clients can benefit from the default); changing from optional to
205 mandatory is backwards incompatible (older clients may be omitting the option,
206 and must continue to work).
207
208 On output structures (only mentioned in the 'returns' side of a command),
209 changing from mandatory to optional is in general unsafe (older clients may be
210 expecting the field, and could crash if it is missing), although it can be done
211 if the only way that the optional argument will be omitted is when it is
212 triggered by the presence of a new input flag to the command that older clients
213 don't know to send. Changing from optional to mandatory is safe.
214
215 A structure that is used in both input and output of various commands
216 must consider the backwards compatibility constraints of both directions
217 of use.
218
219 A struct definition can specify another struct as its base.
220 In this case, the fields of the base type are included as top-level fields
221 of the new struct's dictionary in the Client JSON Protocol wire
222 format. An example definition is:
223
224 { 'struct': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
225 { 'struct': 'BlockdevOptionsGenericCOWFormat',
226 'base': 'BlockdevOptionsGenericFormat',
227 'data': { '*backing': 'str' } }
228
229 An example BlockdevOptionsGenericCOWFormat object on the wire could use
230 both fields like this:
231
232 { "file": "/some/place/my-image",
233 "backing": "/some/place/my-backing-file" }
234
235
236 === Enumeration types ===
237
238 Usage: { 'enum': STRING, 'data': ARRAY-OF-STRING }
239
240 An enumeration type is a dictionary containing a single 'data' key
241 whose value is a list of strings. An example enumeration is:
242
243 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }
244
245 Nothing prevents an empty enumeration, although it is probably not
246 useful. The list of strings should be lower case; if an enum name
247 represents multiple words, use '-' between words. The string 'max' is
248 not allowed as an enum value, and values should not be repeated.
249
250 The enumeration values are passed as strings over the Client JSON
251 Protocol, but are encoded as C enum integral values in generated code.
252 While the C code starts numbering at 0, it is better to use explicit
253 comparisons to enum values than implicit comparisons to 0; the C code
254 will also include a generated enum member ending in _MAX for tracking
255 the size of the enum, useful when using common functions for
256 converting between strings and enum values. Since the wire format
257 always passes by name, it is acceptable to reorder or add new
258 enumeration members in any location without breaking clients of Client
259 JSON Protocol; however, removing enum values would break
260 compatibility. For any struct that has a field that will only contain
261 a finite set of string values, using an enum type for that field is
262 better than open-coding the field to be type 'str'.
263
264
265 === Union types ===
266
267 Usage: { 'union': STRING, 'data': DICT }
268 or: { 'union': STRING, 'data': DICT, 'base': STRUCT-NAME,
269 'discriminator': ENUM-MEMBER-OF-BASE }
270
271 Union types are used to let the user choose between several different
272 variants for an object. There are two flavors: simple (no
273 discriminator or base), flat (both discriminator and base). A union
274 type is defined using a data dictionary as explained in the following
275 paragraphs.
276
277 A simple union type defines a mapping from automatic discriminator
278 values to data types like in this example:
279
280 { 'struct': 'FileOptions', 'data': { 'filename': 'str' } }
281 { 'struct': 'Qcow2Options',
282 'data': { 'backing-file': 'str', 'lazy-refcounts': 'bool' } }
283
284 { 'union': 'BlockdevOptions',
285 'data': { 'file': 'FileOptions',
286 'qcow2': 'Qcow2Options' } }
287
288 In the Client JSON Protocol, a simple union is represented by a
289 dictionary that contains the 'type' field as a discriminator, and a
290 'data' field that is of the specified data type corresponding to the
291 discriminator value, as in these examples:
292
293 { "type": "file", "data" : { "filename": "/some/place/my-image" } }
294 { "type": "qcow2", "data" : { "backing-file": "/some/place/my-image",
295 "lazy-refcounts": true } }
296
297 The generated C code uses a struct containing a union. Additionally,
298 an implicit C enum 'NameKind' is created, corresponding to the union
299 'Name', for accessing the various branches of the union. No branch of
300 the union can be named 'max', as this would collide with the implicit
301 enum. The value for each branch can be of any type.
302
303 A flat union definition specifies a struct as its base, and
304 avoids nesting on the wire. All branches of the union must be
305 complex types, and the top-level fields of the union dictionary on
306 the wire will be combination of fields from both the base type and the
307 appropriate branch type (when merging two dictionaries, there must be
308 no keys in common). The 'discriminator' field must be the name of an
309 enum-typed member of the base struct.
310
311 The following example enhances the above simple union example by
312 adding a common field 'readonly', renaming the discriminator to
313 something more applicable, and reducing the number of {} required on
314 the wire:
315
316 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
317 { 'struct': 'BlockdevCommonOptions',
318 'data': { 'driver': 'BlockdevDriver', 'readonly': 'bool' } }
319 { 'union': 'BlockdevOptions',
320 'base': 'BlockdevCommonOptions',
321 'discriminator': 'driver',
322 'data': { 'file': 'FileOptions',
323 'qcow2': 'Qcow2Options' } }
324
325 Resulting in these JSON objects:
326
327 { "driver": "file", "readonly": true,
328 "filename": "/some/place/my-image" }
329 { "driver": "qcow2", "readonly": false,
330 "backing-file": "/some/place/my-image", "lazy-refcounts": true }
331
332 Notice that in a flat union, the discriminator name is controlled by
333 the user, but because it must map to a base member with enum type, the
334 code generator can ensure that branches exist for all values of the
335 enum (although the order of the keys need not match the declaration of
336 the enum). In the resulting generated C data types, a flat union is
337 represented as a struct with the base member fields included directly,
338 and then a union of structures for each branch of the struct.
339
340 A simple union can always be re-written as a flat union where the base
341 class has a single member named 'type', and where each branch of the
342 union has a struct with a single member named 'data'. That is,
343
344 { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }
345
346 is identical on the wire to:
347
348 { 'enum': 'Enum', 'data': ['one', 'two'] }
349 { 'struct': 'Base', 'data': { 'type': 'Enum' } }
350 { 'struct': 'Branch1', 'data': { 'data': 'str' } }
351 { 'struct': 'Branch2', 'data': { 'data': 'int' } }
352 { 'union': 'Flat', 'base': 'Base', 'discriminator': 'type',
353 'data': { 'one': 'Branch1', 'two': 'Branch2' } }
354
355
356 === Alternate types ===
357
358 Usage: { 'alternate': STRING, 'data': DICT }
359
360 An alternate type is one that allows a choice between two or more JSON
361 data types (string, integer, number, or object, but currently not
362 array) on the wire. The definition is similar to a simple union type,
363 where each branch of the union names a QAPI type. For example:
364
365 { 'alternate': 'BlockRef',
366 'data': { 'definition': 'BlockdevOptions',
367 'reference': 'str' } }
368
369 Just like for a simple union, an implicit C enum 'NameKind' is created
370 to enumerate the branches for the alternate 'Name'.
371
372 Unlike a union, the discriminator string is never passed on the wire
373 for the Client JSON Protocol. Instead, the value's JSON type serves
374 as an implicit discriminator, which in turn means that an alternate
375 can only express a choice between types represented differently in
376 JSON. If a branch is typed as the 'bool' built-in, the alternate
377 accepts true and false; if it is typed as any of the various numeric
378 built-ins, it accepts a JSON number; if it is typed as a 'str'
379 built-in or named enum type, it accepts a JSON string; and if it is
380 typed as a complex type (struct or union), it accepts a JSON object.
381 Two different complex types, for instance, aren't permitted, because
382 both are represented as a JSON object.
383
384 The example alternate declaration above allows using both of the
385 following example objects:
386
387 { "file": "my_existing_block_device_id" }
388 { "file": { "driver": "file",
389 "readonly": false,
390 "filename": "/tmp/mydisk.qcow2" } }
391
392
393 === Commands ===
394
395 Usage: { 'command': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
396 '*returns': TYPE-NAME,
397 '*gen': false, '*success-response': false }
398
399 Commands are defined by using a dictionary containing several members,
400 where three members are most common. The 'command' member is a
401 mandatory string, and determines the "execute" value passed in a
402 Client JSON Protocol command exchange.
403
404 The 'data' argument maps to the "arguments" dictionary passed in as
405 part of a Client JSON Protocol command. The 'data' member is optional
406 and defaults to {} (an empty dictionary). If present, it must be the
407 string name of a complex type, or a dictionary that declares an
408 anonymous type with the same semantics as a 'struct' expression, with
409 one exception noted below when 'gen' is used.
410
411 The 'returns' member describes what will appear in the "return" field
412 of a Client JSON Protocol reply on successful completion of a command.
413 The member is optional from the command declaration; if absent, the
414 "return" field will be an empty dictionary. If 'returns' is present,
415 it must be the string name of a complex or built-in type, a
416 one-element array containing the name of a complex or built-in type,
417 with one exception noted below when 'gen' is used. Although it is
418 permitted to have the 'returns' member name a built-in type or an
419 array of built-in types, any command that does this cannot be extended
420 to return additional information in the future; thus, new commands
421 should strongly consider returning a dictionary-based type or an array
422 of dictionaries, even if the dictionary only contains one field at the
423 present.
424
425 All commands in Client JSON Protocol use a dictionary to report
426 failure, with no way to specify that in QAPI. Where the error return
427 is different than the usual GenericError class in order to help the
428 client react differently to certain error conditions, it is worth
429 documenting this in the comments before the command declaration.
430
431 Some example commands:
432
433 { 'command': 'my-first-command',
434 'data': { 'arg1': 'str', '*arg2': 'str' } }
435 { 'struct': 'MyType', 'data': { '*value': 'str' } }
436 { 'command': 'my-second-command',
437 'returns': [ 'MyType' ] }
438
439 which would validate this Client JSON Protocol transaction:
440
441 => { "execute": "my-first-command",
442 "arguments": { "arg1": "hello" } }
443 <= { "return": { } }
444 => { "execute": "my-second-command" }
445 <= { "return": [ { "value": "one" }, { } ] }
446
447 In rare cases, QAPI cannot express a type-safe representation of a
448 corresponding Client JSON Protocol command. In these cases, if the
449 command expression includes the key 'gen' with boolean value false,
450 then the 'data' or 'returns' member that intends to bypass generated
451 type-safety and do its own manual validation should use an inline
452 dictionary definition, with a value of '**' rather than a valid type
453 name for the keys that the generated code will not validate. Please
454 try to avoid adding new commands that rely on this, and instead use
455 type-safe unions. For an example of bypass usage:
456
457 { 'command': 'netdev_add',
458 'data': {'type': 'str', 'id': 'str', '*props': '**'},
459 'gen': false }
460
461 Normally, the QAPI schema is used to describe synchronous exchanges,
462 where a response is expected. But in some cases, the action of a
463 command is expected to change state in a way that a successful
464 response is not possible (although the command will still return a
465 normal dictionary error on failure). When a successful reply is not
466 possible, the command expression should include the optional key
467 'success-response' with boolean value false. So far, only QGA makes
468 use of this field.
469
470
471 === Events ===
472
473 Usage: { 'event': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT }
474
475 Events are defined with the keyword 'event'. It is not allowed to
476 name an event 'MAX', since the generator also produces a C enumeration
477 of all event names with a generated _MAX value at the end. When
478 'data' is also specified, additional info will be included in the
479 event, with similar semantics to a 'struct' expression. Finally there
480 will be C API generated in qapi-event.h; when called by QEMU code, a
481 message with timestamp will be emitted on the wire.
482
483 An example event is:
484
485 { 'event': 'EVENT_C',
486 'data': { '*a': 'int', 'b': 'str' } }
487
488 Resulting in this JSON object:
489
490 { "event": "EVENT_C",
491 "data": { "b": "test string" },
492 "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
493
494
495 == Code generation ==
496
497 Schemas are fed into 3 scripts to generate all the code/files that, paired
498 with the core QAPI libraries, comprise everything required to take JSON
499 commands read in by a Client JSON Protocol server, unmarshal the arguments into
500 the underlying C types, call into the corresponding C function, and map the
501 response back to a Client JSON Protocol response to be returned to the user.
502
503 As an example, we'll use the following schema, which describes a single
504 complex user-defined type (which will produce a C struct, along with a list
505 node structure that can be used to chain together a list of such types in
506 case we want to accept/return a list of this type with a command), and a
507 command which takes that type as a parameter and returns the same type:
508
509 $ cat example-schema.json
510 { 'struct': 'UserDefOne',
511 'data': { 'integer': 'int', 'string': 'str' } }
512
513 { 'command': 'my-command',
514 'data': {'arg1': 'UserDefOne'},
515 'returns': 'UserDefOne' }
516
517 { 'event': 'MY_EVENT' }
518
519 === scripts/qapi-types.py ===
520
521 Used to generate the C types defined by a schema. The following files are
522 created:
523
524 $(prefix)qapi-types.h - C types corresponding to types defined in
525 the schema you pass in
526 $(prefix)qapi-types.c - Cleanup functions for the above C types
527
528 The $(prefix) is an optional parameter used as a namespace to keep the
529 generated code from one schema/code-generation separated from others so code
530 can be generated/used from multiple schemas without clobbering previously
531 created code.
532
533 Example:
534
535 $ python scripts/qapi-types.py --output-dir="qapi-generated" \
536 --prefix="example-" example-schema.json
537 $ cat qapi-generated/example-qapi-types.c
538 [Uninteresting stuff omitted...]
539
540 void qapi_free_UserDefOneList(UserDefOneList *obj)
541 {
542 QapiDeallocVisitor *md;
543 Visitor *v;
544
545 if (!obj) {
546 return;
547 }
548
549 md = qapi_dealloc_visitor_new();
550 v = qapi_dealloc_get_visitor(md);
551 visit_type_UserDefOneList(v, &obj, NULL, NULL);
552 qapi_dealloc_visitor_cleanup(md);
553 }
554
555
556 void qapi_free_UserDefOne(UserDefOne *obj)
557 {
558 QapiDeallocVisitor *md;
559 Visitor *v;
560
561 if (!obj) {
562 return;
563 }
564
565 md = qapi_dealloc_visitor_new();
566 v = qapi_dealloc_get_visitor(md);
567 visit_type_UserDefOne(v, &obj, NULL, NULL);
568 qapi_dealloc_visitor_cleanup(md);
569 }
570 $ cat qapi-generated/example-qapi-types.h
571 [Uninteresting stuff omitted...]
572
573 #ifndef EXAMPLE_QAPI_TYPES_H
574 #define EXAMPLE_QAPI_TYPES_H
575
576 [Built-in types omitted...]
577
578 typedef struct UserDefOne UserDefOne;
579
580 typedef struct UserDefOneList {
581 union {
582 UserDefOne *value;
583 uint64_t padding;
584 };
585 struct UserDefOneList *next;
586 } UserDefOneList;
587
588
589 [Functions on built-in types omitted...]
590
591 struct UserDefOne {
592 int64_t integer;
593 char *string;
594 };
595
596 void qapi_free_UserDefOneList(UserDefOneList *obj);
597 void qapi_free_UserDefOne(UserDefOne *obj);
598
599 #endif
600
601 === scripts/qapi-visit.py ===
602
603 Used to generate the visitor functions used to walk through and convert
604 a QObject (as provided by QMP) to a native C data structure and
605 vice-versa, as well as the visitor function used to dealloc a complex
606 schema-defined C type.
607
608 The following files are generated:
609
610 $(prefix)qapi-visit.c: visitor function for a particular C type, used
611 to automagically convert QObjects into the
612 corresponding C type and vice-versa, as well
613 as for deallocating memory for an existing C
614 type
615
616 $(prefix)qapi-visit.h: declarations for previously mentioned visitor
617 functions
618
619 Example:
620
621 $ python scripts/qapi-visit.py --output-dir="qapi-generated"
622 --prefix="example-" example-schema.json
623 $ cat qapi-generated/example-qapi-visit.c
624 [Uninteresting stuff omitted...]
625
626 static void visit_type_UserDefOne_fields(Visitor *m, UserDefOne **obj, Error **errp)
627 {
628 Error *err = NULL;
629
630 visit_type_int(m, &(*obj)->integer, "integer", &err);
631 if (err) {
632 goto out;
633 }
634 visit_type_str(m, &(*obj)->string, "string", &err);
635 if (err) {
636 goto out;
637 }
638
639 out:
640 error_propagate(errp, err);
641 }
642
643 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp)
644 {
645 Error *err = NULL;
646
647 visit_start_struct(m, (void **)obj, "UserDefOne", name, sizeof(UserDefOne), &err);
648 if (!err) {
649 if (*obj) {
650 visit_type_UserDefOne_fields(m, obj, errp);
651 }
652 visit_end_struct(m, &err);
653 }
654 error_propagate(errp, err);
655 }
656
657 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp)
658 {
659 Error *err = NULL;
660 GenericList *i, **prev;
661
662 visit_start_list(m, name, &err);
663 if (err) {
664 goto out;
665 }
666
667 for (prev = (GenericList **)obj;
668 !err && (i = visit_next_list(m, prev, &err)) != NULL;
669 prev = &i) {
670 UserDefOneList *native_i = (UserDefOneList *)i;
671 visit_type_UserDefOne(m, &native_i->value, NULL, &err);
672 }
673
674 error_propagate(errp, err);
675 err = NULL;
676 visit_end_list(m, &err);
677 out:
678 error_propagate(errp, err);
679 }
680 $ cat qapi-generated/example-qapi-visit.h
681 [Uninteresting stuff omitted...]
682
683 #ifndef EXAMPLE_QAPI_VISIT_H
684 #define EXAMPLE_QAPI_VISIT_H
685
686 [Visitors for built-in types omitted...]
687
688 void visit_type_UserDefOne(Visitor *m, UserDefOne **obj, const char *name, Error **errp);
689 void visit_type_UserDefOneList(Visitor *m, UserDefOneList **obj, const char *name, Error **errp);
690
691 #endif
692
693 === scripts/qapi-commands.py ===
694
695 Used to generate the marshaling/dispatch functions for the commands defined
696 in the schema. The following files are generated:
697
698 $(prefix)qmp-marshal.c: command marshal/dispatch functions for each
699 QMP command defined in the schema. Functions
700 generated by qapi-visit.py are used to
701 convert QObjects received from the wire into
702 function parameters, and uses the same
703 visitor functions to convert native C return
704 values to QObjects from transmission back
705 over the wire.
706
707 $(prefix)qmp-commands.h: Function prototypes for the QMP commands
708 specified in the schema.
709
710 Example:
711
712 $ python scripts/qapi-commands.py --output-dir="qapi-generated"
713 --prefix="example-" example-schema.json
714 $ cat qapi-generated/example-qmp-marshal.c
715 [Uninteresting stuff omitted...]
716
717 static void qmp_marshal_output_my_command(UserDefOne *ret_in, QObject **ret_out, Error **errp)
718 {
719 Error *local_err = NULL;
720 QmpOutputVisitor *mo = qmp_output_visitor_new();
721 QapiDeallocVisitor *md;
722 Visitor *v;
723
724 v = qmp_output_get_visitor(mo);
725 visit_type_UserDefOne(v, &ret_in, "unused", &local_err);
726 if (local_err) {
727 goto out;
728 }
729 *ret_out = qmp_output_get_qobject(mo);
730
731 out:
732 error_propagate(errp, local_err);
733 qmp_output_visitor_cleanup(mo);
734 md = qapi_dealloc_visitor_new();
735 v = qapi_dealloc_get_visitor(md);
736 visit_type_UserDefOne(v, &ret_in, "unused", NULL);
737 qapi_dealloc_visitor_cleanup(md);
738 }
739
740 static void qmp_marshal_input_my_command(QDict *args, QObject **ret, Error **errp)
741 {
742 Error *local_err = NULL;
743 UserDefOne *retval;
744 QmpInputVisitor *mi = qmp_input_visitor_new_strict(QOBJECT(args));
745 QapiDeallocVisitor *md;
746 Visitor *v;
747 UserDefOne *arg1 = NULL;
748
749 v = qmp_input_get_visitor(mi);
750 visit_type_UserDefOne(v, &arg1, "arg1", &local_err);
751 if (local_err) {
752 goto out;
753 }
754
755 retval = qmp_my_command(arg1, &local_err);
756 if (local_err) {
757 goto out;
758 }
759
760 qmp_marshal_output_my_command(retval, ret, &local_err);
761
762 out:
763 error_propagate(errp, local_err);
764 qmp_input_visitor_cleanup(mi);
765 md = qapi_dealloc_visitor_new();
766 v = qapi_dealloc_get_visitor(md);
767 visit_type_UserDefOne(v, &arg1, "arg1", NULL);
768 qapi_dealloc_visitor_cleanup(md);
769 }
770
771 static void qmp_init_marshal(void)
772 {
773 qmp_register_command("my-command", qmp_marshal_input_my_command, QCO_NO_OPTIONS);
774 }
775
776 qapi_init(qmp_init_marshal);
777 $ cat qapi-generated/example-qmp-commands.h
778 [Uninteresting stuff omitted...]
779
780 #ifndef EXAMPLE_QMP_COMMANDS_H
781 #define EXAMPLE_QMP_COMMANDS_H
782
783 #include "example-qapi-types.h"
784 #include "qapi/qmp/qdict.h"
785 #include "qapi/error.h"
786
787 UserDefOne *qmp_my_command(UserDefOne *arg1, Error **errp);
788
789 #endif
790
791 === scripts/qapi-event.py ===
792
793 Used to generate the event-related C code defined by a schema. The
794 following files are created:
795
796 $(prefix)qapi-event.h - Function prototypes for each event type, plus an
797 enumeration of all event names
798 $(prefix)qapi-event.c - Implementation of functions to send an event
799
800 Example:
801
802 $ python scripts/qapi-event.py --output-dir="qapi-generated"
803 --prefix="example-" example-schema.json
804 $ cat qapi-generated/example-qapi-event.c
805 [Uninteresting stuff omitted...]
806
807 void qapi_event_send_my_event(Error **errp)
808 {
809 QDict *qmp;
810 Error *local_err = NULL;
811 QMPEventFuncEmit emit;
812 emit = qmp_event_get_func_emit();
813 if (!emit) {
814 return;
815 }
816
817 qmp = qmp_event_build_dict("MY_EVENT");
818
819 emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp, &local_err);
820
821 error_propagate(errp, local_err);
822 QDECREF(qmp);
823 }
824
825 const char *example_QAPIEvent_lookup[] = {
826 "MY_EVENT",
827 NULL,
828 };
829 $ cat qapi-generated/example-qapi-event.h
830 [Uninteresting stuff omitted...]
831
832 #ifndef EXAMPLE_QAPI_EVENT_H
833 #define EXAMPLE_QAPI_EVENT_H
834
835 #include "qapi/error.h"
836 #include "qapi/qmp/qdict.h"
837 #include "example-qapi-types.h"
838
839
840 void qapi_event_send_my_event(Error **errp);
841
842 extern const char *example_QAPIEvent_lookup[];
843 typedef enum example_QAPIEvent {
844 EXAMPLE_QAPI_EVENT_MY_EVENT = 0,
845 EXAMPLE_QAPI_EVENT_MAX = 1,
846 } example_QAPIEvent;
847
848 #endif