]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/acpi/acpi_lpss.c
ACPI / LPSS: Save/restore LPSS private registers also on Lynxpoint
[mirror_ubuntu-focal-kernel.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/mutex.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/platform_data/x86/clk-lpss.h>
19 #include <linux/platform_data/x86/pmc_atom.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 #include <linux/suspend.h>
24 #include <linux/delay.h>
25
26 #include "internal.h"
27
28 ACPI_MODULE_NAME("acpi_lpss");
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
60
61 #define LPSS_PRV_REG_COUNT 9
62
63 /* LPSS Flags */
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
69 #define LPSS_NO_D3_DELAY BIT(5)
70
71 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
72 #define BYT_CRC_HRV 2
73 #define CHT_CRC_HRV 3
74
75 struct lpss_private_data;
76
77 struct lpss_device_desc {
78 unsigned int flags;
79 const char *clk_con_id;
80 unsigned int prv_offset;
81 size_t prv_size_override;
82 struct property_entry *properties;
83 void (*setup)(struct lpss_private_data *pdata);
84 bool resume_from_noirq;
85 };
86
87 static const struct lpss_device_desc lpss_dma_desc = {
88 .flags = LPSS_CLK,
89 };
90
91 struct lpss_private_data {
92 struct acpi_device *adev;
93 void __iomem *mmio_base;
94 resource_size_t mmio_size;
95 unsigned int fixed_clk_rate;
96 struct clk *clk;
97 const struct lpss_device_desc *dev_desc;
98 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
99 };
100
101 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
102 static u32 pmc_atom_d3_mask = 0xfe000ffe;
103
104 /* LPSS run time quirks */
105 static unsigned int lpss_quirks;
106
107 /*
108 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
109 *
110 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
111 * it can be powered off automatically whenever the last LPSS device goes down.
112 * In case of no power any access to the DMA controller will hang the system.
113 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
114 * well as on ASuS T100TA transformer.
115 *
116 * This quirk overrides power state of entire LPSS island to keep DMA powered
117 * on whenever we have at least one other device in use.
118 */
119 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
120
121 /* UART Component Parameter Register */
122 #define LPSS_UART_CPR 0xF4
123 #define LPSS_UART_CPR_AFCE BIT(4)
124
125 static void lpss_uart_setup(struct lpss_private_data *pdata)
126 {
127 unsigned int offset;
128 u32 val;
129
130 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
131 val = readl(pdata->mmio_base + offset);
132 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
133
134 val = readl(pdata->mmio_base + LPSS_UART_CPR);
135 if (!(val & LPSS_UART_CPR_AFCE)) {
136 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
137 val = readl(pdata->mmio_base + offset);
138 val |= LPSS_GENERAL_UART_RTS_OVRD;
139 writel(val, pdata->mmio_base + offset);
140 }
141 }
142
143 static void lpss_deassert_reset(struct lpss_private_data *pdata)
144 {
145 unsigned int offset;
146 u32 val;
147
148 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
149 val = readl(pdata->mmio_base + offset);
150 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
151 writel(val, pdata->mmio_base + offset);
152 }
153
154 /*
155 * BYT PWM used for backlight control by the i915 driver on systems without
156 * the Crystal Cove PMIC.
157 */
158 static struct pwm_lookup byt_pwm_lookup[] = {
159 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
160 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
161 "pwm-lpss-platform"),
162 };
163
164 static void byt_pwm_setup(struct lpss_private_data *pdata)
165 {
166 struct acpi_device *adev = pdata->adev;
167
168 /* Only call pwm_add_table for the first PWM controller */
169 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
170 return;
171
172 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
173 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
174 }
175
176 #define LPSS_I2C_ENABLE 0x6c
177
178 static void byt_i2c_setup(struct lpss_private_data *pdata)
179 {
180 const char *uid_str = acpi_device_uid(pdata->adev);
181 acpi_handle handle = pdata->adev->handle;
182 unsigned long long shared_host = 0;
183 acpi_status status;
184 long uid = 0;
185
186 /* Expected to always be true, but better safe then sorry */
187 if (uid_str)
188 uid = simple_strtol(uid_str, NULL, 10);
189
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host && uid)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194
195 lpss_deassert_reset(pdata);
196
197 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
198 pdata->fixed_clk_rate = 133000000;
199
200 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
201 }
202
203 /* BSW PWM used for backlight control by the i915 driver */
204 static struct pwm_lookup bsw_pwm_lookup[] = {
205 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
206 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
207 "pwm-lpss-platform"),
208 };
209
210 static void bsw_pwm_setup(struct lpss_private_data *pdata)
211 {
212 struct acpi_device *adev = pdata->adev;
213
214 /* Only call pwm_add_table for the first PWM controller */
215 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
216 return;
217
218 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
219 }
220
221 static const struct lpss_device_desc lpt_dev_desc = {
222 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
223 | LPSS_SAVE_CTX,
224 .prv_offset = 0x800,
225 };
226
227 static const struct lpss_device_desc lpt_i2c_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
229 .prv_offset = 0x800,
230 };
231
232 static struct property_entry uart_properties[] = {
233 PROPERTY_ENTRY_U32("reg-io-width", 4),
234 PROPERTY_ENTRY_U32("reg-shift", 2),
235 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
236 { },
237 };
238
239 static const struct lpss_device_desc lpt_uart_dev_desc = {
240 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
241 | LPSS_SAVE_CTX,
242 .clk_con_id = "baudclk",
243 .prv_offset = 0x800,
244 .setup = lpss_uart_setup,
245 .properties = uart_properties,
246 };
247
248 static const struct lpss_device_desc lpt_sdio_dev_desc = {
249 .flags = LPSS_LTR,
250 .prv_offset = 0x1000,
251 .prv_size_override = 0x1018,
252 };
253
254 static const struct lpss_device_desc byt_pwm_dev_desc = {
255 .flags = LPSS_SAVE_CTX,
256 .prv_offset = 0x800,
257 .setup = byt_pwm_setup,
258 };
259
260 static const struct lpss_device_desc bsw_pwm_dev_desc = {
261 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
262 .prv_offset = 0x800,
263 .setup = bsw_pwm_setup,
264 };
265
266 static const struct lpss_device_desc byt_uart_dev_desc = {
267 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
268 .clk_con_id = "baudclk",
269 .prv_offset = 0x800,
270 .setup = lpss_uart_setup,
271 .properties = uart_properties,
272 };
273
274 static const struct lpss_device_desc bsw_uart_dev_desc = {
275 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
276 | LPSS_NO_D3_DELAY,
277 .clk_con_id = "baudclk",
278 .prv_offset = 0x800,
279 .setup = lpss_uart_setup,
280 .properties = uart_properties,
281 };
282
283 static const struct lpss_device_desc byt_spi_dev_desc = {
284 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
285 .prv_offset = 0x400,
286 };
287
288 static const struct lpss_device_desc byt_sdio_dev_desc = {
289 .flags = LPSS_CLK,
290 };
291
292 static const struct lpss_device_desc byt_i2c_dev_desc = {
293 .flags = LPSS_CLK | LPSS_SAVE_CTX,
294 .prv_offset = 0x800,
295 .setup = byt_i2c_setup,
296 .resume_from_noirq = true,
297 };
298
299 static const struct lpss_device_desc bsw_i2c_dev_desc = {
300 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
301 .prv_offset = 0x800,
302 .setup = byt_i2c_setup,
303 .resume_from_noirq = true,
304 };
305
306 static const struct lpss_device_desc bsw_spi_dev_desc = {
307 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
308 | LPSS_NO_D3_DELAY,
309 .prv_offset = 0x400,
310 .setup = lpss_deassert_reset,
311 };
312
313 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
314
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
317 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
318 {}
319 };
320
321 #else
322
323 #define LPSS_ADDR(desc) (0UL)
324
325 #endif /* CONFIG_X86_INTEL_LPSS */
326
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 /* Generic LPSS devices */
329 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331 /* Lynxpoint LPSS devices */
332 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339 { "INT33C7", },
340
341 /* BayTrail LPSS devices */
342 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347 { "INT33B2", },
348 { "INT33FC", },
349
350 /* Braswell LPSS devices */
351 { "80862286", LPSS_ADDR(lpss_dma_desc) },
352 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358 /* Broadwell LPSS devices */
359 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366 { "INT3437", },
367
368 /* Wildcat Point LPSS devices */
369 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371 { }
372 };
373
374 #ifdef CONFIG_X86_INTEL_LPSS
375
376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378 struct resource r;
379 return !acpi_dev_resource_memory(res, &r);
380 }
381
382 /* LPSS main clock device. */
383 static struct platform_device *lpss_clk_dev;
384
385 static inline void lpt_register_clock_device(void)
386 {
387 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
388 }
389
390 static int register_device_clock(struct acpi_device *adev,
391 struct lpss_private_data *pdata)
392 {
393 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
394 const char *devname = dev_name(&adev->dev);
395 struct clk *clk;
396 struct lpss_clk_data *clk_data;
397 const char *parent, *clk_name;
398 void __iomem *prv_base;
399
400 if (!lpss_clk_dev)
401 lpt_register_clock_device();
402
403 clk_data = platform_get_drvdata(lpss_clk_dev);
404 if (!clk_data)
405 return -ENODEV;
406 clk = clk_data->clk;
407
408 if (!pdata->mmio_base
409 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
410 return -ENODATA;
411
412 parent = clk_data->name;
413 prv_base = pdata->mmio_base + dev_desc->prv_offset;
414
415 if (pdata->fixed_clk_rate) {
416 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
417 pdata->fixed_clk_rate);
418 goto out;
419 }
420
421 if (dev_desc->flags & LPSS_CLK_GATE) {
422 clk = clk_register_gate(NULL, devname, parent, 0,
423 prv_base, 0, 0, NULL);
424 parent = devname;
425 }
426
427 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
428 /* Prevent division by zero */
429 if (!readl(prv_base))
430 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
431
432 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
433 if (!clk_name)
434 return -ENOMEM;
435 clk = clk_register_fractional_divider(NULL, clk_name, parent,
436 0, prv_base,
437 1, 15, 16, 15, 0, NULL);
438 parent = clk_name;
439
440 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
441 if (!clk_name) {
442 kfree(parent);
443 return -ENOMEM;
444 }
445 clk = clk_register_gate(NULL, clk_name, parent,
446 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
447 prv_base, 31, 0, NULL);
448 kfree(parent);
449 kfree(clk_name);
450 }
451 out:
452 if (IS_ERR(clk))
453 return PTR_ERR(clk);
454
455 pdata->clk = clk;
456 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
457 return 0;
458 }
459
460 struct lpss_device_links {
461 const char *supplier_hid;
462 const char *supplier_uid;
463 const char *consumer_hid;
464 const char *consumer_uid;
465 u32 flags;
466 };
467
468 /*
469 * The _DEP method is used to identify dependencies but instead of creating
470 * device links for every handle in _DEP, only links in the following list are
471 * created. That is necessary because, in the general case, _DEP can refer to
472 * devices that might not have drivers, or that are on different buses, or where
473 * the supplier is not enumerated until after the consumer is probed.
474 */
475 static const struct lpss_device_links lpss_device_links[] = {
476 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
477 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
478 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
479 };
480
481 static bool hid_uid_match(struct acpi_device *adev,
482 const char *hid2, const char *uid2)
483 {
484 const char *hid1 = acpi_device_hid(adev);
485 const char *uid1 = acpi_device_uid(adev);
486
487 if (strcmp(hid1, hid2))
488 return false;
489
490 if (!uid2)
491 return true;
492
493 return uid1 && !strcmp(uid1, uid2);
494 }
495
496 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
497 const struct lpss_device_links *link)
498 {
499 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
500 }
501
502 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
503 const struct lpss_device_links *link)
504 {
505 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
506 }
507
508 struct hid_uid {
509 const char *hid;
510 const char *uid;
511 };
512
513 static int match_hid_uid(struct device *dev, const void *data)
514 {
515 struct acpi_device *adev = ACPI_COMPANION(dev);
516 const struct hid_uid *id = data;
517
518 if (!adev)
519 return 0;
520
521 return hid_uid_match(adev, id->hid, id->uid);
522 }
523
524 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
525 {
526 struct device *dev;
527
528 struct hid_uid data = {
529 .hid = hid,
530 .uid = uid,
531 };
532
533 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
534 if (dev)
535 return dev;
536
537 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
538 }
539
540 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
541 {
542 struct acpi_handle_list dep_devices;
543 acpi_status status;
544 int i;
545
546 if (!acpi_has_method(adev->handle, "_DEP"))
547 return false;
548
549 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
550 &dep_devices);
551 if (ACPI_FAILURE(status)) {
552 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
553 return false;
554 }
555
556 for (i = 0; i < dep_devices.count; i++) {
557 if (dep_devices.handles[i] == handle)
558 return true;
559 }
560
561 return false;
562 }
563
564 static void acpi_lpss_link_consumer(struct device *dev1,
565 const struct lpss_device_links *link)
566 {
567 struct device *dev2;
568
569 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
570 if (!dev2)
571 return;
572
573 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
574 device_link_add(dev2, dev1, link->flags);
575
576 put_device(dev2);
577 }
578
579 static void acpi_lpss_link_supplier(struct device *dev1,
580 const struct lpss_device_links *link)
581 {
582 struct device *dev2;
583
584 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
585 if (!dev2)
586 return;
587
588 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
589 device_link_add(dev1, dev2, link->flags);
590
591 put_device(dev2);
592 }
593
594 static void acpi_lpss_create_device_links(struct acpi_device *adev,
595 struct platform_device *pdev)
596 {
597 int i;
598
599 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
600 const struct lpss_device_links *link = &lpss_device_links[i];
601
602 if (acpi_lpss_is_supplier(adev, link))
603 acpi_lpss_link_consumer(&pdev->dev, link);
604
605 if (acpi_lpss_is_consumer(adev, link))
606 acpi_lpss_link_supplier(&pdev->dev, link);
607 }
608 }
609
610 static int acpi_lpss_create_device(struct acpi_device *adev,
611 const struct acpi_device_id *id)
612 {
613 const struct lpss_device_desc *dev_desc;
614 struct lpss_private_data *pdata;
615 struct resource_entry *rentry;
616 struct list_head resource_list;
617 struct platform_device *pdev;
618 int ret;
619
620 dev_desc = (const struct lpss_device_desc *)id->driver_data;
621 if (!dev_desc) {
622 pdev = acpi_create_platform_device(adev, NULL);
623 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
624 }
625 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
626 if (!pdata)
627 return -ENOMEM;
628
629 INIT_LIST_HEAD(&resource_list);
630 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
631 if (ret < 0)
632 goto err_out;
633
634 list_for_each_entry(rentry, &resource_list, node)
635 if (resource_type(rentry->res) == IORESOURCE_MEM) {
636 if (dev_desc->prv_size_override)
637 pdata->mmio_size = dev_desc->prv_size_override;
638 else
639 pdata->mmio_size = resource_size(rentry->res);
640 pdata->mmio_base = ioremap(rentry->res->start,
641 pdata->mmio_size);
642 break;
643 }
644
645 acpi_dev_free_resource_list(&resource_list);
646
647 if (!pdata->mmio_base) {
648 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
649 adev->pnp.type.platform_id = 0;
650 /* Skip the device, but continue the namespace scan. */
651 ret = 0;
652 goto err_out;
653 }
654
655 pdata->adev = adev;
656 pdata->dev_desc = dev_desc;
657
658 if (dev_desc->setup)
659 dev_desc->setup(pdata);
660
661 if (dev_desc->flags & LPSS_CLK) {
662 ret = register_device_clock(adev, pdata);
663 if (ret) {
664 /* Skip the device, but continue the namespace scan. */
665 ret = 0;
666 goto err_out;
667 }
668 }
669
670 /*
671 * This works around a known issue in ACPI tables where LPSS devices
672 * have _PS0 and _PS3 without _PSC (and no power resources), so
673 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
674 */
675 acpi_device_fix_up_power(adev);
676
677 adev->driver_data = pdata;
678 pdev = acpi_create_platform_device(adev, dev_desc->properties);
679 if (!IS_ERR_OR_NULL(pdev)) {
680 acpi_lpss_create_device_links(adev, pdev);
681 return 1;
682 }
683
684 ret = PTR_ERR(pdev);
685 adev->driver_data = NULL;
686
687 err_out:
688 kfree(pdata);
689 return ret;
690 }
691
692 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693 {
694 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695 }
696
697 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698 unsigned int reg)
699 {
700 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701 }
702
703 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704 {
705 struct acpi_device *adev;
706 struct lpss_private_data *pdata;
707 unsigned long flags;
708 int ret;
709
710 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
711 if (WARN_ON(ret))
712 return ret;
713
714 spin_lock_irqsave(&dev->power.lock, flags);
715 if (pm_runtime_suspended(dev)) {
716 ret = -EAGAIN;
717 goto out;
718 }
719 pdata = acpi_driver_data(adev);
720 if (WARN_ON(!pdata || !pdata->mmio_base)) {
721 ret = -ENODEV;
722 goto out;
723 }
724 *val = __lpss_reg_read(pdata, reg);
725
726 out:
727 spin_unlock_irqrestore(&dev->power.lock, flags);
728 return ret;
729 }
730
731 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732 char *buf)
733 {
734 u32 ltr_value = 0;
735 unsigned int reg;
736 int ret;
737
738 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739 ret = lpss_reg_read(dev, reg, &ltr_value);
740 if (ret)
741 return ret;
742
743 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
744 }
745
746 static ssize_t lpss_ltr_mode_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
748 {
749 u32 ltr_mode = 0;
750 char *outstr;
751 int ret;
752
753 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
754 if (ret)
755 return ret;
756
757 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758 return sprintf(buf, "%s\n", outstr);
759 }
760
761 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765 static struct attribute *lpss_attrs[] = {
766 &dev_attr_auto_ltr.attr,
767 &dev_attr_sw_ltr.attr,
768 &dev_attr_ltr_mode.attr,
769 NULL,
770 };
771
772 static const struct attribute_group lpss_attr_group = {
773 .attrs = lpss_attrs,
774 .name = "lpss_ltr",
775 };
776
777 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778 {
779 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780 u32 ltr_mode, ltr_val;
781
782 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783 if (val < 0) {
784 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787 }
788 return;
789 }
790 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793 val = LPSS_LTR_MAX_VAL;
794 } else if (val > LPSS_LTR_MAX_VAL) {
795 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797 } else {
798 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799 }
800 ltr_val |= val;
801 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805 }
806 }
807
808 #ifdef CONFIG_PM
809 /**
810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811 * @dev: LPSS device
812 * @pdata: pointer to the private data of the LPSS device
813 *
814 * Most LPSS devices have private registers which may loose their context when
815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816 * prv_reg_ctx array.
817 */
818 static void acpi_lpss_save_ctx(struct device *dev,
819 struct lpss_private_data *pdata)
820 {
821 unsigned int i;
822
823 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824 unsigned long offset = i * sizeof(u32);
825
826 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828 pdata->prv_reg_ctx[i], offset);
829 }
830 }
831
832 /**
833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
836 *
837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838 */
839 static void acpi_lpss_restore_ctx(struct device *dev,
840 struct lpss_private_data *pdata)
841 {
842 unsigned int i;
843
844 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 unsigned long offset = i * sizeof(u32);
846
847 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849 pdata->prv_reg_ctx[i], offset);
850 }
851 }
852
853 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854 {
855 /*
856 * The following delay is needed or the subsequent write operations may
857 * fail. The LPSS devices are actually PCI devices and the PCI spec
858 * expects 10ms delay before the device can be accessed after D3 to D0
859 * transition. However some platforms like BSW does not need this delay.
860 */
861 unsigned int delay = 10; /* default 10ms delay */
862
863 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864 delay = 0;
865
866 msleep(delay);
867 }
868
869 static int acpi_lpss_activate(struct device *dev)
870 {
871 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872 int ret;
873
874 ret = acpi_dev_resume(dev);
875 if (ret)
876 return ret;
877
878 acpi_lpss_d3_to_d0_delay(pdata);
879
880 /*
881 * This is called only on ->probe() stage where a device is either in
882 * known state defined by BIOS or most likely powered off. Due to this
883 * we have to deassert reset line to be sure that ->probe() will
884 * recognize the device.
885 */
886 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
887 lpss_deassert_reset(pdata);
888
889 return 0;
890 }
891
892 static void acpi_lpss_dismiss(struct device *dev)
893 {
894 acpi_dev_suspend(dev, false);
895 }
896
897 /* IOSF SB for LPSS island */
898 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
899 #define LPSS_IOSF_UNIT_LPIO1 0xAB
900 #define LPSS_IOSF_UNIT_LPIO2 0xAC
901
902 #define LPSS_IOSF_PMCSR 0x84
903 #define LPSS_PMCSR_D0 0
904 #define LPSS_PMCSR_D3hot 3
905 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
906
907 #define LPSS_IOSF_GPIODEF0 0x154
908 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
909 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
910 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
911 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
912
913 static DEFINE_MUTEX(lpss_iosf_mutex);
914 static bool lpss_iosf_d3_entered = true;
915
916 static void lpss_iosf_enter_d3_state(void)
917 {
918 u32 value1 = 0;
919 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
920 u32 value2 = LPSS_PMCSR_D3hot;
921 u32 mask2 = LPSS_PMCSR_Dx_MASK;
922 /*
923 * PMC provides an information about actual status of the LPSS devices.
924 * Here we read the values related to LPSS power island, i.e. LPSS
925 * devices, excluding both LPSS DMA controllers, along with SCC domain.
926 */
927 u32 func_dis, d3_sts_0, pmc_status;
928 int ret;
929
930 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
931 if (ret)
932 return;
933
934 mutex_lock(&lpss_iosf_mutex);
935
936 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
937 if (ret)
938 goto exit;
939
940 /*
941 * Get the status of entire LPSS power island per device basis.
942 * Shutdown both LPSS DMA controllers if and only if all other devices
943 * are already in D3hot.
944 */
945 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
946 if (pmc_status)
947 goto exit;
948
949 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
950 LPSS_IOSF_PMCSR, value2, mask2);
951
952 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
953 LPSS_IOSF_PMCSR, value2, mask2);
954
955 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
956 LPSS_IOSF_GPIODEF0, value1, mask1);
957
958 lpss_iosf_d3_entered = true;
959
960 exit:
961 mutex_unlock(&lpss_iosf_mutex);
962 }
963
964 static void lpss_iosf_exit_d3_state(void)
965 {
966 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
967 LPSS_GPIODEF0_DMA_LLP;
968 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
969 u32 value2 = LPSS_PMCSR_D0;
970 u32 mask2 = LPSS_PMCSR_Dx_MASK;
971
972 mutex_lock(&lpss_iosf_mutex);
973
974 if (!lpss_iosf_d3_entered)
975 goto exit;
976
977 lpss_iosf_d3_entered = false;
978
979 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
980 LPSS_IOSF_GPIODEF0, value1, mask1);
981
982 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
983 LPSS_IOSF_PMCSR, value2, mask2);
984
985 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
986 LPSS_IOSF_PMCSR, value2, mask2);
987
988 exit:
989 mutex_unlock(&lpss_iosf_mutex);
990 }
991
992 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
993 {
994 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
995 int ret;
996
997 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
998 acpi_lpss_save_ctx(dev, pdata);
999
1000 ret = acpi_dev_suspend(dev, wakeup);
1001
1002 /*
1003 * This call must be last in the sequence, otherwise PMC will return
1004 * wrong status for devices being about to be powered off. See
1005 * lpss_iosf_enter_d3_state() for further information.
1006 */
1007 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1008 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1009 lpss_iosf_enter_d3_state();
1010
1011 return ret;
1012 }
1013
1014 static int acpi_lpss_resume(struct device *dev)
1015 {
1016 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1017 int ret;
1018
1019 /*
1020 * This call is kept first to be in symmetry with
1021 * acpi_lpss_runtime_suspend() one.
1022 */
1023 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024 lpss_iosf_exit_d3_state();
1025
1026 ret = acpi_dev_resume(dev);
1027 if (ret)
1028 return ret;
1029
1030 acpi_lpss_d3_to_d0_delay(pdata);
1031
1032 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1033 acpi_lpss_restore_ctx(dev, pdata);
1034
1035 return 0;
1036 }
1037
1038 #ifdef CONFIG_PM_SLEEP
1039 static int acpi_lpss_do_suspend_late(struct device *dev)
1040 {
1041 int ret;
1042
1043 if (dev_pm_smart_suspend_and_suspended(dev))
1044 return 0;
1045
1046 ret = pm_generic_suspend_late(dev);
1047 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1048 }
1049
1050 static int acpi_lpss_suspend_late(struct device *dev)
1051 {
1052 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1053
1054 if (pdata->dev_desc->resume_from_noirq)
1055 return 0;
1056
1057 return acpi_lpss_do_suspend_late(dev);
1058 }
1059
1060 static int acpi_lpss_suspend_noirq(struct device *dev)
1061 {
1062 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1063 int ret;
1064
1065 if (pdata->dev_desc->resume_from_noirq) {
1066 /*
1067 * The driver's ->suspend_late callback will be invoked by
1068 * acpi_lpss_do_suspend_late(), with the assumption that the
1069 * driver really wanted to run that code in ->suspend_noirq, but
1070 * it could not run after acpi_dev_suspend() and the driver
1071 * expected the latter to be called in the "late" phase.
1072 */
1073 ret = acpi_lpss_do_suspend_late(dev);
1074 if (ret)
1075 return ret;
1076 }
1077
1078 return acpi_subsys_suspend_noirq(dev);
1079 }
1080
1081 static int acpi_lpss_do_resume_early(struct device *dev)
1082 {
1083 int ret = acpi_lpss_resume(dev);
1084
1085 return ret ? ret : pm_generic_resume_early(dev);
1086 }
1087
1088 static int acpi_lpss_resume_early(struct device *dev)
1089 {
1090 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1091
1092 if (pdata->dev_desc->resume_from_noirq)
1093 return 0;
1094
1095 return acpi_lpss_do_resume_early(dev);
1096 }
1097
1098 static int acpi_lpss_resume_noirq(struct device *dev)
1099 {
1100 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1101 int ret;
1102
1103 /* Follow acpi_subsys_resume_noirq(). */
1104 if (dev_pm_may_skip_resume(dev))
1105 return 0;
1106
1107 if (dev_pm_smart_suspend_and_suspended(dev))
1108 pm_runtime_set_active(dev);
1109
1110 ret = pm_generic_resume_noirq(dev);
1111 if (ret)
1112 return ret;
1113
1114 if (!pdata->dev_desc->resume_from_noirq)
1115 return 0;
1116
1117 /*
1118 * The driver's ->resume_early callback will be invoked by
1119 * acpi_lpss_do_resume_early(), with the assumption that the driver
1120 * really wanted to run that code in ->resume_noirq, but it could not
1121 * run before acpi_dev_resume() and the driver expected the latter to be
1122 * called in the "early" phase.
1123 */
1124 return acpi_lpss_do_resume_early(dev);
1125 }
1126
1127 static int acpi_lpss_do_restore_early(struct device *dev)
1128 {
1129 int ret = acpi_lpss_resume(dev);
1130
1131 return ret ? ret : pm_generic_restore_early(dev);
1132 }
1133
1134 static int acpi_lpss_restore_early(struct device *dev)
1135 {
1136 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1137
1138 if (pdata->dev_desc->resume_from_noirq)
1139 return 0;
1140
1141 return acpi_lpss_do_restore_early(dev);
1142 }
1143
1144 static int acpi_lpss_restore_noirq(struct device *dev)
1145 {
1146 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1147 int ret;
1148
1149 ret = pm_generic_restore_noirq(dev);
1150 if (ret)
1151 return ret;
1152
1153 if (!pdata->dev_desc->resume_from_noirq)
1154 return 0;
1155
1156 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1157 return acpi_lpss_do_restore_early(dev);
1158 }
1159
1160 static int acpi_lpss_do_poweroff_late(struct device *dev)
1161 {
1162 int ret = pm_generic_poweroff_late(dev);
1163
1164 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1165 }
1166
1167 static int acpi_lpss_poweroff_late(struct device *dev)
1168 {
1169 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170
1171 if (dev_pm_smart_suspend_and_suspended(dev))
1172 return 0;
1173
1174 if (pdata->dev_desc->resume_from_noirq)
1175 return 0;
1176
1177 return acpi_lpss_do_poweroff_late(dev);
1178 }
1179
1180 static int acpi_lpss_poweroff_noirq(struct device *dev)
1181 {
1182 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1183
1184 if (dev_pm_smart_suspend_and_suspended(dev))
1185 return 0;
1186
1187 if (pdata->dev_desc->resume_from_noirq) {
1188 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1189 int ret = acpi_lpss_do_poweroff_late(dev);
1190 if (ret)
1191 return ret;
1192 }
1193
1194 return pm_generic_poweroff_noirq(dev);
1195 }
1196 #endif /* CONFIG_PM_SLEEP */
1197
1198 static int acpi_lpss_runtime_suspend(struct device *dev)
1199 {
1200 int ret = pm_generic_runtime_suspend(dev);
1201
1202 return ret ? ret : acpi_lpss_suspend(dev, true);
1203 }
1204
1205 static int acpi_lpss_runtime_resume(struct device *dev)
1206 {
1207 int ret = acpi_lpss_resume(dev);
1208
1209 return ret ? ret : pm_generic_runtime_resume(dev);
1210 }
1211 #endif /* CONFIG_PM */
1212
1213 static struct dev_pm_domain acpi_lpss_pm_domain = {
1214 #ifdef CONFIG_PM
1215 .activate = acpi_lpss_activate,
1216 .dismiss = acpi_lpss_dismiss,
1217 #endif
1218 .ops = {
1219 #ifdef CONFIG_PM
1220 #ifdef CONFIG_PM_SLEEP
1221 .prepare = acpi_subsys_prepare,
1222 .complete = acpi_subsys_complete,
1223 .suspend = acpi_subsys_suspend,
1224 .suspend_late = acpi_lpss_suspend_late,
1225 .suspend_noirq = acpi_lpss_suspend_noirq,
1226 .resume_noirq = acpi_lpss_resume_noirq,
1227 .resume_early = acpi_lpss_resume_early,
1228 .freeze = acpi_subsys_freeze,
1229 .poweroff = acpi_subsys_poweroff,
1230 .poweroff_late = acpi_lpss_poweroff_late,
1231 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1232 .restore_noirq = acpi_lpss_restore_noirq,
1233 .restore_early = acpi_lpss_restore_early,
1234 #endif
1235 .runtime_suspend = acpi_lpss_runtime_suspend,
1236 .runtime_resume = acpi_lpss_runtime_resume,
1237 #endif
1238 },
1239 };
1240
1241 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1242 unsigned long action, void *data)
1243 {
1244 struct platform_device *pdev = to_platform_device(data);
1245 struct lpss_private_data *pdata;
1246 struct acpi_device *adev;
1247 const struct acpi_device_id *id;
1248
1249 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1250 if (!id || !id->driver_data)
1251 return 0;
1252
1253 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1254 return 0;
1255
1256 pdata = acpi_driver_data(adev);
1257 if (!pdata)
1258 return 0;
1259
1260 if (pdata->mmio_base &&
1261 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1262 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1263 return 0;
1264 }
1265
1266 switch (action) {
1267 case BUS_NOTIFY_BIND_DRIVER:
1268 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1269 break;
1270 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1271 case BUS_NOTIFY_UNBOUND_DRIVER:
1272 dev_pm_domain_set(&pdev->dev, NULL);
1273 break;
1274 case BUS_NOTIFY_ADD_DEVICE:
1275 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276 if (pdata->dev_desc->flags & LPSS_LTR)
1277 return sysfs_create_group(&pdev->dev.kobj,
1278 &lpss_attr_group);
1279 break;
1280 case BUS_NOTIFY_DEL_DEVICE:
1281 if (pdata->dev_desc->flags & LPSS_LTR)
1282 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1283 dev_pm_domain_set(&pdev->dev, NULL);
1284 break;
1285 default:
1286 break;
1287 }
1288
1289 return 0;
1290 }
1291
1292 static struct notifier_block acpi_lpss_nb = {
1293 .notifier_call = acpi_lpss_platform_notify,
1294 };
1295
1296 static void acpi_lpss_bind(struct device *dev)
1297 {
1298 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1299
1300 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1301 return;
1302
1303 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1304 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1305 else
1306 dev_err(dev, "MMIO size insufficient to access LTR\n");
1307 }
1308
1309 static void acpi_lpss_unbind(struct device *dev)
1310 {
1311 dev->power.set_latency_tolerance = NULL;
1312 }
1313
1314 static struct acpi_scan_handler lpss_handler = {
1315 .ids = acpi_lpss_device_ids,
1316 .attach = acpi_lpss_create_device,
1317 .bind = acpi_lpss_bind,
1318 .unbind = acpi_lpss_unbind,
1319 };
1320
1321 void __init acpi_lpss_init(void)
1322 {
1323 const struct x86_cpu_id *id;
1324 int ret;
1325
1326 ret = lpt_clk_init();
1327 if (ret)
1328 return;
1329
1330 id = x86_match_cpu(lpss_cpu_ids);
1331 if (id)
1332 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1333
1334 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1335 acpi_scan_add_handler(&lpss_handler);
1336 }
1337
1338 #else
1339
1340 static struct acpi_scan_handler lpss_handler = {
1341 .ids = acpi_lpss_device_ids,
1342 };
1343
1344 void __init acpi_lpss_init(void)
1345 {
1346 acpi_scan_add_handler(&lpss_handler);
1347 }
1348
1349 #endif /* CONFIG_X86_INTEL_LPSS */