]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/acpi/acpi_lpss.c
d696f165a50e6e815deef12dcc0b19d31fd22494
[mirror_ubuntu-focal-kernel.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/mutex.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/platform_data/x86/clk-lpss.h>
19 #include <linux/platform_data/x86/pmc_atom.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 #include <linux/suspend.h>
24 #include <linux/delay.h>
25
26 #include "internal.h"
27
28 ACPI_MODULE_NAME("acpi_lpss");
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
60
61 #define LPSS_PRV_REG_COUNT 9
62
63 /* LPSS Flags */
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
69 #define LPSS_NO_D3_DELAY BIT(5)
70
71 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
72 #define BYT_CRC_HRV 2
73 #define CHT_CRC_HRV 3
74
75 struct lpss_private_data;
76
77 struct lpss_device_desc {
78 unsigned int flags;
79 const char *clk_con_id;
80 unsigned int prv_offset;
81 size_t prv_size_override;
82 struct property_entry *properties;
83 void (*setup)(struct lpss_private_data *pdata);
84 bool resume_from_noirq;
85 };
86
87 static const struct lpss_device_desc lpss_dma_desc = {
88 .flags = LPSS_CLK,
89 };
90
91 struct lpss_private_data {
92 struct acpi_device *adev;
93 void __iomem *mmio_base;
94 resource_size_t mmio_size;
95 unsigned int fixed_clk_rate;
96 struct clk *clk;
97 const struct lpss_device_desc *dev_desc;
98 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
99 };
100
101 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
102 static u32 pmc_atom_d3_mask = 0xfe000ffe;
103
104 /* LPSS run time quirks */
105 static unsigned int lpss_quirks;
106
107 /*
108 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
109 *
110 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
111 * it can be powered off automatically whenever the last LPSS device goes down.
112 * In case of no power any access to the DMA controller will hang the system.
113 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
114 * well as on ASuS T100TA transformer.
115 *
116 * This quirk overrides power state of entire LPSS island to keep DMA powered
117 * on whenever we have at least one other device in use.
118 */
119 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
120
121 /* UART Component Parameter Register */
122 #define LPSS_UART_CPR 0xF4
123 #define LPSS_UART_CPR_AFCE BIT(4)
124
125 static void lpss_uart_setup(struct lpss_private_data *pdata)
126 {
127 unsigned int offset;
128 u32 val;
129
130 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
131 val = readl(pdata->mmio_base + offset);
132 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
133
134 val = readl(pdata->mmio_base + LPSS_UART_CPR);
135 if (!(val & LPSS_UART_CPR_AFCE)) {
136 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
137 val = readl(pdata->mmio_base + offset);
138 val |= LPSS_GENERAL_UART_RTS_OVRD;
139 writel(val, pdata->mmio_base + offset);
140 }
141 }
142
143 static void lpss_deassert_reset(struct lpss_private_data *pdata)
144 {
145 unsigned int offset;
146 u32 val;
147
148 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
149 val = readl(pdata->mmio_base + offset);
150 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
151 writel(val, pdata->mmio_base + offset);
152 }
153
154 /*
155 * BYT PWM used for backlight control by the i915 driver on systems without
156 * the Crystal Cove PMIC.
157 */
158 static struct pwm_lookup byt_pwm_lookup[] = {
159 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
160 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
161 "pwm-lpss-platform"),
162 };
163
164 static void byt_pwm_setup(struct lpss_private_data *pdata)
165 {
166 struct acpi_device *adev = pdata->adev;
167
168 /* Only call pwm_add_table for the first PWM controller */
169 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
170 return;
171
172 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
173 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
174 }
175
176 #define LPSS_I2C_ENABLE 0x6c
177
178 static void byt_i2c_setup(struct lpss_private_data *pdata)
179 {
180 const char *uid_str = acpi_device_uid(pdata->adev);
181 acpi_handle handle = pdata->adev->handle;
182 unsigned long long shared_host = 0;
183 acpi_status status;
184 long uid = 0;
185
186 /* Expected to always be true, but better safe then sorry */
187 if (uid_str)
188 uid = simple_strtol(uid_str, NULL, 10);
189
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host && uid)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194
195 lpss_deassert_reset(pdata);
196
197 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
198 pdata->fixed_clk_rate = 133000000;
199
200 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
201 }
202
203 /* BSW PWM used for backlight control by the i915 driver */
204 static struct pwm_lookup bsw_pwm_lookup[] = {
205 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
206 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
207 "pwm-lpss-platform"),
208 };
209
210 static void bsw_pwm_setup(struct lpss_private_data *pdata)
211 {
212 struct acpi_device *adev = pdata->adev;
213
214 /* Only call pwm_add_table for the first PWM controller */
215 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
216 return;
217
218 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
219 }
220
221 static const struct lpss_device_desc lpt_dev_desc = {
222 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
223 .prv_offset = 0x800,
224 };
225
226 static const struct lpss_device_desc lpt_i2c_dev_desc = {
227 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
228 .prv_offset = 0x800,
229 };
230
231 static struct property_entry uart_properties[] = {
232 PROPERTY_ENTRY_U32("reg-io-width", 4),
233 PROPERTY_ENTRY_U32("reg-shift", 2),
234 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
235 { },
236 };
237
238 static const struct lpss_device_desc lpt_uart_dev_desc = {
239 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
240 .clk_con_id = "baudclk",
241 .prv_offset = 0x800,
242 .setup = lpss_uart_setup,
243 .properties = uart_properties,
244 };
245
246 static const struct lpss_device_desc lpt_sdio_dev_desc = {
247 .flags = LPSS_LTR,
248 .prv_offset = 0x1000,
249 .prv_size_override = 0x1018,
250 };
251
252 static const struct lpss_device_desc byt_pwm_dev_desc = {
253 .flags = LPSS_SAVE_CTX,
254 .prv_offset = 0x800,
255 .setup = byt_pwm_setup,
256 };
257
258 static const struct lpss_device_desc bsw_pwm_dev_desc = {
259 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
260 .prv_offset = 0x800,
261 .setup = bsw_pwm_setup,
262 };
263
264 static const struct lpss_device_desc byt_uart_dev_desc = {
265 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
266 .clk_con_id = "baudclk",
267 .prv_offset = 0x800,
268 .setup = lpss_uart_setup,
269 .properties = uart_properties,
270 };
271
272 static const struct lpss_device_desc bsw_uart_dev_desc = {
273 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
274 | LPSS_NO_D3_DELAY,
275 .clk_con_id = "baudclk",
276 .prv_offset = 0x800,
277 .setup = lpss_uart_setup,
278 .properties = uart_properties,
279 };
280
281 static const struct lpss_device_desc byt_spi_dev_desc = {
282 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
283 .prv_offset = 0x400,
284 };
285
286 static const struct lpss_device_desc byt_sdio_dev_desc = {
287 .flags = LPSS_CLK,
288 };
289
290 static const struct lpss_device_desc byt_i2c_dev_desc = {
291 .flags = LPSS_CLK | LPSS_SAVE_CTX,
292 .prv_offset = 0x800,
293 .setup = byt_i2c_setup,
294 .resume_from_noirq = true,
295 };
296
297 static const struct lpss_device_desc bsw_i2c_dev_desc = {
298 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
299 .prv_offset = 0x800,
300 .setup = byt_i2c_setup,
301 .resume_from_noirq = true,
302 };
303
304 static const struct lpss_device_desc bsw_spi_dev_desc = {
305 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
306 | LPSS_NO_D3_DELAY,
307 .prv_offset = 0x400,
308 .setup = lpss_deassert_reset,
309 };
310
311 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
312
313 static const struct x86_cpu_id lpss_cpu_ids[] = {
314 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
315 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
316 {}
317 };
318
319 #else
320
321 #define LPSS_ADDR(desc) (0UL)
322
323 #endif /* CONFIG_X86_INTEL_LPSS */
324
325 static const struct acpi_device_id acpi_lpss_device_ids[] = {
326 /* Generic LPSS devices */
327 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
328
329 /* Lynxpoint LPSS devices */
330 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
331 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
332 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
333 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
334 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
335 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
336 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
337 { "INT33C7", },
338
339 /* BayTrail LPSS devices */
340 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
341 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
342 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
343 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
344 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
345 { "INT33B2", },
346 { "INT33FC", },
347
348 /* Braswell LPSS devices */
349 { "80862286", LPSS_ADDR(lpss_dma_desc) },
350 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
351 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
352 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
353 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
354 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
355
356 /* Broadwell LPSS devices */
357 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
358 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
359 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
360 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
361 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
362 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
363 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
364 { "INT3437", },
365
366 /* Wildcat Point LPSS devices */
367 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
368
369 { }
370 };
371
372 #ifdef CONFIG_X86_INTEL_LPSS
373
374 static int is_memory(struct acpi_resource *res, void *not_used)
375 {
376 struct resource r;
377 return !acpi_dev_resource_memory(res, &r);
378 }
379
380 /* LPSS main clock device. */
381 static struct platform_device *lpss_clk_dev;
382
383 static inline void lpt_register_clock_device(void)
384 {
385 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
386 }
387
388 static int register_device_clock(struct acpi_device *adev,
389 struct lpss_private_data *pdata)
390 {
391 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
392 const char *devname = dev_name(&adev->dev);
393 struct clk *clk;
394 struct lpss_clk_data *clk_data;
395 const char *parent, *clk_name;
396 void __iomem *prv_base;
397
398 if (!lpss_clk_dev)
399 lpt_register_clock_device();
400
401 clk_data = platform_get_drvdata(lpss_clk_dev);
402 if (!clk_data)
403 return -ENODEV;
404 clk = clk_data->clk;
405
406 if (!pdata->mmio_base
407 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
408 return -ENODATA;
409
410 parent = clk_data->name;
411 prv_base = pdata->mmio_base + dev_desc->prv_offset;
412
413 if (pdata->fixed_clk_rate) {
414 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
415 pdata->fixed_clk_rate);
416 goto out;
417 }
418
419 if (dev_desc->flags & LPSS_CLK_GATE) {
420 clk = clk_register_gate(NULL, devname, parent, 0,
421 prv_base, 0, 0, NULL);
422 parent = devname;
423 }
424
425 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
426 /* Prevent division by zero */
427 if (!readl(prv_base))
428 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
429
430 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
431 if (!clk_name)
432 return -ENOMEM;
433 clk = clk_register_fractional_divider(NULL, clk_name, parent,
434 0, prv_base,
435 1, 15, 16, 15, 0, NULL);
436 parent = clk_name;
437
438 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
439 if (!clk_name) {
440 kfree(parent);
441 return -ENOMEM;
442 }
443 clk = clk_register_gate(NULL, clk_name, parent,
444 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
445 prv_base, 31, 0, NULL);
446 kfree(parent);
447 kfree(clk_name);
448 }
449 out:
450 if (IS_ERR(clk))
451 return PTR_ERR(clk);
452
453 pdata->clk = clk;
454 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
455 return 0;
456 }
457
458 struct lpss_device_links {
459 const char *supplier_hid;
460 const char *supplier_uid;
461 const char *consumer_hid;
462 const char *consumer_uid;
463 u32 flags;
464 };
465
466 /*
467 * The _DEP method is used to identify dependencies but instead of creating
468 * device links for every handle in _DEP, only links in the following list are
469 * created. That is necessary because, in the general case, _DEP can refer to
470 * devices that might not have drivers, or that are on different buses, or where
471 * the supplier is not enumerated until after the consumer is probed.
472 */
473 static const struct lpss_device_links lpss_device_links[] = {
474 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
475 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
476 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
477 };
478
479 static bool hid_uid_match(struct acpi_device *adev,
480 const char *hid2, const char *uid2)
481 {
482 const char *hid1 = acpi_device_hid(adev);
483 const char *uid1 = acpi_device_uid(adev);
484
485 if (strcmp(hid1, hid2))
486 return false;
487
488 if (!uid2)
489 return true;
490
491 return uid1 && !strcmp(uid1, uid2);
492 }
493
494 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
495 const struct lpss_device_links *link)
496 {
497 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
498 }
499
500 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
501 const struct lpss_device_links *link)
502 {
503 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
504 }
505
506 struct hid_uid {
507 const char *hid;
508 const char *uid;
509 };
510
511 static int match_hid_uid(struct device *dev, const void *data)
512 {
513 struct acpi_device *adev = ACPI_COMPANION(dev);
514 const struct hid_uid *id = data;
515
516 if (!adev)
517 return 0;
518
519 return hid_uid_match(adev, id->hid, id->uid);
520 }
521
522 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
523 {
524 struct device *dev;
525
526 struct hid_uid data = {
527 .hid = hid,
528 .uid = uid,
529 };
530
531 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
532 if (dev)
533 return dev;
534
535 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
536 }
537
538 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
539 {
540 struct acpi_handle_list dep_devices;
541 acpi_status status;
542 int i;
543
544 if (!acpi_has_method(adev->handle, "_DEP"))
545 return false;
546
547 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
548 &dep_devices);
549 if (ACPI_FAILURE(status)) {
550 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
551 return false;
552 }
553
554 for (i = 0; i < dep_devices.count; i++) {
555 if (dep_devices.handles[i] == handle)
556 return true;
557 }
558
559 return false;
560 }
561
562 static void acpi_lpss_link_consumer(struct device *dev1,
563 const struct lpss_device_links *link)
564 {
565 struct device *dev2;
566
567 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
568 if (!dev2)
569 return;
570
571 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
572 device_link_add(dev2, dev1, link->flags);
573
574 put_device(dev2);
575 }
576
577 static void acpi_lpss_link_supplier(struct device *dev1,
578 const struct lpss_device_links *link)
579 {
580 struct device *dev2;
581
582 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
583 if (!dev2)
584 return;
585
586 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
587 device_link_add(dev1, dev2, link->flags);
588
589 put_device(dev2);
590 }
591
592 static void acpi_lpss_create_device_links(struct acpi_device *adev,
593 struct platform_device *pdev)
594 {
595 int i;
596
597 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
598 const struct lpss_device_links *link = &lpss_device_links[i];
599
600 if (acpi_lpss_is_supplier(adev, link))
601 acpi_lpss_link_consumer(&pdev->dev, link);
602
603 if (acpi_lpss_is_consumer(adev, link))
604 acpi_lpss_link_supplier(&pdev->dev, link);
605 }
606 }
607
608 static int acpi_lpss_create_device(struct acpi_device *adev,
609 const struct acpi_device_id *id)
610 {
611 const struct lpss_device_desc *dev_desc;
612 struct lpss_private_data *pdata;
613 struct resource_entry *rentry;
614 struct list_head resource_list;
615 struct platform_device *pdev;
616 int ret;
617
618 dev_desc = (const struct lpss_device_desc *)id->driver_data;
619 if (!dev_desc) {
620 pdev = acpi_create_platform_device(adev, NULL);
621 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
622 }
623 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
624 if (!pdata)
625 return -ENOMEM;
626
627 INIT_LIST_HEAD(&resource_list);
628 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
629 if (ret < 0)
630 goto err_out;
631
632 list_for_each_entry(rentry, &resource_list, node)
633 if (resource_type(rentry->res) == IORESOURCE_MEM) {
634 if (dev_desc->prv_size_override)
635 pdata->mmio_size = dev_desc->prv_size_override;
636 else
637 pdata->mmio_size = resource_size(rentry->res);
638 pdata->mmio_base = ioremap(rentry->res->start,
639 pdata->mmio_size);
640 break;
641 }
642
643 acpi_dev_free_resource_list(&resource_list);
644
645 if (!pdata->mmio_base) {
646 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
647 adev->pnp.type.platform_id = 0;
648 /* Skip the device, but continue the namespace scan. */
649 ret = 0;
650 goto err_out;
651 }
652
653 pdata->adev = adev;
654 pdata->dev_desc = dev_desc;
655
656 if (dev_desc->setup)
657 dev_desc->setup(pdata);
658
659 if (dev_desc->flags & LPSS_CLK) {
660 ret = register_device_clock(adev, pdata);
661 if (ret) {
662 /* Skip the device, but continue the namespace scan. */
663 ret = 0;
664 goto err_out;
665 }
666 }
667
668 /*
669 * This works around a known issue in ACPI tables where LPSS devices
670 * have _PS0 and _PS3 without _PSC (and no power resources), so
671 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
672 */
673 acpi_device_fix_up_power(adev);
674
675 adev->driver_data = pdata;
676 pdev = acpi_create_platform_device(adev, dev_desc->properties);
677 if (!IS_ERR_OR_NULL(pdev)) {
678 acpi_lpss_create_device_links(adev, pdev);
679 return 1;
680 }
681
682 ret = PTR_ERR(pdev);
683 adev->driver_data = NULL;
684
685 err_out:
686 kfree(pdata);
687 return ret;
688 }
689
690 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
691 {
692 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
693 }
694
695 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
696 unsigned int reg)
697 {
698 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
699 }
700
701 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
702 {
703 struct acpi_device *adev;
704 struct lpss_private_data *pdata;
705 unsigned long flags;
706 int ret;
707
708 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
709 if (WARN_ON(ret))
710 return ret;
711
712 spin_lock_irqsave(&dev->power.lock, flags);
713 if (pm_runtime_suspended(dev)) {
714 ret = -EAGAIN;
715 goto out;
716 }
717 pdata = acpi_driver_data(adev);
718 if (WARN_ON(!pdata || !pdata->mmio_base)) {
719 ret = -ENODEV;
720 goto out;
721 }
722 *val = __lpss_reg_read(pdata, reg);
723
724 out:
725 spin_unlock_irqrestore(&dev->power.lock, flags);
726 return ret;
727 }
728
729 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
730 char *buf)
731 {
732 u32 ltr_value = 0;
733 unsigned int reg;
734 int ret;
735
736 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
737 ret = lpss_reg_read(dev, reg, &ltr_value);
738 if (ret)
739 return ret;
740
741 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
742 }
743
744 static ssize_t lpss_ltr_mode_show(struct device *dev,
745 struct device_attribute *attr, char *buf)
746 {
747 u32 ltr_mode = 0;
748 char *outstr;
749 int ret;
750
751 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
752 if (ret)
753 return ret;
754
755 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
756 return sprintf(buf, "%s\n", outstr);
757 }
758
759 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
760 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
761 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
762
763 static struct attribute *lpss_attrs[] = {
764 &dev_attr_auto_ltr.attr,
765 &dev_attr_sw_ltr.attr,
766 &dev_attr_ltr_mode.attr,
767 NULL,
768 };
769
770 static const struct attribute_group lpss_attr_group = {
771 .attrs = lpss_attrs,
772 .name = "lpss_ltr",
773 };
774
775 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
776 {
777 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
778 u32 ltr_mode, ltr_val;
779
780 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
781 if (val < 0) {
782 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
783 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
784 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
785 }
786 return;
787 }
788 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
789 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
790 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
791 val = LPSS_LTR_MAX_VAL;
792 } else if (val > LPSS_LTR_MAX_VAL) {
793 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
794 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
795 } else {
796 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
797 }
798 ltr_val |= val;
799 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
800 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
801 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
802 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
803 }
804 }
805
806 #ifdef CONFIG_PM
807 /**
808 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
809 * @dev: LPSS device
810 * @pdata: pointer to the private data of the LPSS device
811 *
812 * Most LPSS devices have private registers which may loose their context when
813 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
814 * prv_reg_ctx array.
815 */
816 static void acpi_lpss_save_ctx(struct device *dev,
817 struct lpss_private_data *pdata)
818 {
819 unsigned int i;
820
821 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
822 unsigned long offset = i * sizeof(u32);
823
824 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
825 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
826 pdata->prv_reg_ctx[i], offset);
827 }
828 }
829
830 /**
831 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
832 * @dev: LPSS device
833 * @pdata: pointer to the private data of the LPSS device
834 *
835 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
836 */
837 static void acpi_lpss_restore_ctx(struct device *dev,
838 struct lpss_private_data *pdata)
839 {
840 unsigned int i;
841
842 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
843 unsigned long offset = i * sizeof(u32);
844
845 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
846 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
847 pdata->prv_reg_ctx[i], offset);
848 }
849 }
850
851 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
852 {
853 /*
854 * The following delay is needed or the subsequent write operations may
855 * fail. The LPSS devices are actually PCI devices and the PCI spec
856 * expects 10ms delay before the device can be accessed after D3 to D0
857 * transition. However some platforms like BSW does not need this delay.
858 */
859 unsigned int delay = 10; /* default 10ms delay */
860
861 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
862 delay = 0;
863
864 msleep(delay);
865 }
866
867 static int acpi_lpss_activate(struct device *dev)
868 {
869 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
870 int ret;
871
872 ret = acpi_dev_resume(dev);
873 if (ret)
874 return ret;
875
876 acpi_lpss_d3_to_d0_delay(pdata);
877
878 /*
879 * This is called only on ->probe() stage where a device is either in
880 * known state defined by BIOS or most likely powered off. Due to this
881 * we have to deassert reset line to be sure that ->probe() will
882 * recognize the device.
883 */
884 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
885 lpss_deassert_reset(pdata);
886
887 return 0;
888 }
889
890 static void acpi_lpss_dismiss(struct device *dev)
891 {
892 acpi_dev_suspend(dev, false);
893 }
894
895 /* IOSF SB for LPSS island */
896 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
897 #define LPSS_IOSF_UNIT_LPIO1 0xAB
898 #define LPSS_IOSF_UNIT_LPIO2 0xAC
899
900 #define LPSS_IOSF_PMCSR 0x84
901 #define LPSS_PMCSR_D0 0
902 #define LPSS_PMCSR_D3hot 3
903 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
904
905 #define LPSS_IOSF_GPIODEF0 0x154
906 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
907 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
908 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
909 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
910
911 static DEFINE_MUTEX(lpss_iosf_mutex);
912 static bool lpss_iosf_d3_entered = true;
913
914 static void lpss_iosf_enter_d3_state(void)
915 {
916 u32 value1 = 0;
917 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
918 u32 value2 = LPSS_PMCSR_D3hot;
919 u32 mask2 = LPSS_PMCSR_Dx_MASK;
920 /*
921 * PMC provides an information about actual status of the LPSS devices.
922 * Here we read the values related to LPSS power island, i.e. LPSS
923 * devices, excluding both LPSS DMA controllers, along with SCC domain.
924 */
925 u32 func_dis, d3_sts_0, pmc_status;
926 int ret;
927
928 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
929 if (ret)
930 return;
931
932 mutex_lock(&lpss_iosf_mutex);
933
934 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
935 if (ret)
936 goto exit;
937
938 /*
939 * Get the status of entire LPSS power island per device basis.
940 * Shutdown both LPSS DMA controllers if and only if all other devices
941 * are already in D3hot.
942 */
943 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
944 if (pmc_status)
945 goto exit;
946
947 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
948 LPSS_IOSF_PMCSR, value2, mask2);
949
950 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
951 LPSS_IOSF_PMCSR, value2, mask2);
952
953 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
954 LPSS_IOSF_GPIODEF0, value1, mask1);
955
956 lpss_iosf_d3_entered = true;
957
958 exit:
959 mutex_unlock(&lpss_iosf_mutex);
960 }
961
962 static void lpss_iosf_exit_d3_state(void)
963 {
964 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
965 LPSS_GPIODEF0_DMA_LLP;
966 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
967 u32 value2 = LPSS_PMCSR_D0;
968 u32 mask2 = LPSS_PMCSR_Dx_MASK;
969
970 mutex_lock(&lpss_iosf_mutex);
971
972 if (!lpss_iosf_d3_entered)
973 goto exit;
974
975 lpss_iosf_d3_entered = false;
976
977 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
978 LPSS_IOSF_GPIODEF0, value1, mask1);
979
980 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
981 LPSS_IOSF_PMCSR, value2, mask2);
982
983 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
984 LPSS_IOSF_PMCSR, value2, mask2);
985
986 exit:
987 mutex_unlock(&lpss_iosf_mutex);
988 }
989
990 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
991 {
992 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
993 int ret;
994
995 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
996 acpi_lpss_save_ctx(dev, pdata);
997
998 ret = acpi_dev_suspend(dev, wakeup);
999
1000 /*
1001 * This call must be last in the sequence, otherwise PMC will return
1002 * wrong status for devices being about to be powered off. See
1003 * lpss_iosf_enter_d3_state() for further information.
1004 */
1005 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1006 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1007 lpss_iosf_enter_d3_state();
1008
1009 return ret;
1010 }
1011
1012 static int acpi_lpss_resume(struct device *dev)
1013 {
1014 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1015 int ret;
1016
1017 /*
1018 * This call is kept first to be in symmetry with
1019 * acpi_lpss_runtime_suspend() one.
1020 */
1021 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1022 lpss_iosf_exit_d3_state();
1023
1024 ret = acpi_dev_resume(dev);
1025 if (ret)
1026 return ret;
1027
1028 acpi_lpss_d3_to_d0_delay(pdata);
1029
1030 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1031 acpi_lpss_restore_ctx(dev, pdata);
1032
1033 return 0;
1034 }
1035
1036 #ifdef CONFIG_PM_SLEEP
1037 static int acpi_lpss_do_suspend_late(struct device *dev)
1038 {
1039 int ret;
1040
1041 if (dev_pm_smart_suspend_and_suspended(dev))
1042 return 0;
1043
1044 ret = pm_generic_suspend_late(dev);
1045 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1046 }
1047
1048 static int acpi_lpss_suspend_late(struct device *dev)
1049 {
1050 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1051
1052 if (pdata->dev_desc->resume_from_noirq)
1053 return 0;
1054
1055 return acpi_lpss_do_suspend_late(dev);
1056 }
1057
1058 static int acpi_lpss_suspend_noirq(struct device *dev)
1059 {
1060 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1061 int ret;
1062
1063 if (pdata->dev_desc->resume_from_noirq) {
1064 /*
1065 * The driver's ->suspend_late callback will be invoked by
1066 * acpi_lpss_do_suspend_late(), with the assumption that the
1067 * driver really wanted to run that code in ->suspend_noirq, but
1068 * it could not run after acpi_dev_suspend() and the driver
1069 * expected the latter to be called in the "late" phase.
1070 */
1071 ret = acpi_lpss_do_suspend_late(dev);
1072 if (ret)
1073 return ret;
1074 }
1075
1076 return acpi_subsys_suspend_noirq(dev);
1077 }
1078
1079 static int acpi_lpss_do_resume_early(struct device *dev)
1080 {
1081 int ret = acpi_lpss_resume(dev);
1082
1083 return ret ? ret : pm_generic_resume_early(dev);
1084 }
1085
1086 static int acpi_lpss_resume_early(struct device *dev)
1087 {
1088 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1089
1090 if (pdata->dev_desc->resume_from_noirq)
1091 return 0;
1092
1093 return acpi_lpss_do_resume_early(dev);
1094 }
1095
1096 static int acpi_lpss_resume_noirq(struct device *dev)
1097 {
1098 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1099 int ret;
1100
1101 /* Follow acpi_subsys_resume_noirq(). */
1102 if (dev_pm_may_skip_resume(dev))
1103 return 0;
1104
1105 if (dev_pm_smart_suspend_and_suspended(dev))
1106 pm_runtime_set_active(dev);
1107
1108 ret = pm_generic_resume_noirq(dev);
1109 if (ret)
1110 return ret;
1111
1112 if (!pdata->dev_desc->resume_from_noirq)
1113 return 0;
1114
1115 /*
1116 * The driver's ->resume_early callback will be invoked by
1117 * acpi_lpss_do_resume_early(), with the assumption that the driver
1118 * really wanted to run that code in ->resume_noirq, but it could not
1119 * run before acpi_dev_resume() and the driver expected the latter to be
1120 * called in the "early" phase.
1121 */
1122 return acpi_lpss_do_resume_early(dev);
1123 }
1124
1125 static int acpi_lpss_do_restore_early(struct device *dev)
1126 {
1127 int ret = acpi_lpss_resume(dev);
1128
1129 return ret ? ret : pm_generic_restore_early(dev);
1130 }
1131
1132 static int acpi_lpss_restore_early(struct device *dev)
1133 {
1134 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1135
1136 if (pdata->dev_desc->resume_from_noirq)
1137 return 0;
1138
1139 return acpi_lpss_do_restore_early(dev);
1140 }
1141
1142 static int acpi_lpss_restore_noirq(struct device *dev)
1143 {
1144 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1145 int ret;
1146
1147 ret = pm_generic_restore_noirq(dev);
1148 if (ret)
1149 return ret;
1150
1151 if (!pdata->dev_desc->resume_from_noirq)
1152 return 0;
1153
1154 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1155 return acpi_lpss_do_restore_early(dev);
1156 }
1157
1158 static int acpi_lpss_do_poweroff_late(struct device *dev)
1159 {
1160 int ret = pm_generic_poweroff_late(dev);
1161
1162 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1163 }
1164
1165 static int acpi_lpss_poweroff_late(struct device *dev)
1166 {
1167 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1168
1169 if (dev_pm_smart_suspend_and_suspended(dev))
1170 return 0;
1171
1172 if (pdata->dev_desc->resume_from_noirq)
1173 return 0;
1174
1175 return acpi_lpss_do_poweroff_late(dev);
1176 }
1177
1178 static int acpi_lpss_poweroff_noirq(struct device *dev)
1179 {
1180 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1181
1182 if (dev_pm_smart_suspend_and_suspended(dev))
1183 return 0;
1184
1185 if (pdata->dev_desc->resume_from_noirq) {
1186 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1187 int ret = acpi_lpss_do_poweroff_late(dev);
1188 if (ret)
1189 return ret;
1190 }
1191
1192 return pm_generic_poweroff_noirq(dev);
1193 }
1194 #endif /* CONFIG_PM_SLEEP */
1195
1196 static int acpi_lpss_runtime_suspend(struct device *dev)
1197 {
1198 int ret = pm_generic_runtime_suspend(dev);
1199
1200 return ret ? ret : acpi_lpss_suspend(dev, true);
1201 }
1202
1203 static int acpi_lpss_runtime_resume(struct device *dev)
1204 {
1205 int ret = acpi_lpss_resume(dev);
1206
1207 return ret ? ret : pm_generic_runtime_resume(dev);
1208 }
1209 #endif /* CONFIG_PM */
1210
1211 static struct dev_pm_domain acpi_lpss_pm_domain = {
1212 #ifdef CONFIG_PM
1213 .activate = acpi_lpss_activate,
1214 .dismiss = acpi_lpss_dismiss,
1215 #endif
1216 .ops = {
1217 #ifdef CONFIG_PM
1218 #ifdef CONFIG_PM_SLEEP
1219 .prepare = acpi_subsys_prepare,
1220 .complete = acpi_subsys_complete,
1221 .suspend = acpi_subsys_suspend,
1222 .suspend_late = acpi_lpss_suspend_late,
1223 .suspend_noirq = acpi_lpss_suspend_noirq,
1224 .resume_noirq = acpi_lpss_resume_noirq,
1225 .resume_early = acpi_lpss_resume_early,
1226 .freeze = acpi_subsys_freeze,
1227 .poweroff = acpi_subsys_poweroff,
1228 .poweroff_late = acpi_lpss_poweroff_late,
1229 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1230 .restore_noirq = acpi_lpss_restore_noirq,
1231 .restore_early = acpi_lpss_restore_early,
1232 #endif
1233 .runtime_suspend = acpi_lpss_runtime_suspend,
1234 .runtime_resume = acpi_lpss_runtime_resume,
1235 #endif
1236 },
1237 };
1238
1239 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1240 unsigned long action, void *data)
1241 {
1242 struct platform_device *pdev = to_platform_device(data);
1243 struct lpss_private_data *pdata;
1244 struct acpi_device *adev;
1245 const struct acpi_device_id *id;
1246
1247 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1248 if (!id || !id->driver_data)
1249 return 0;
1250
1251 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1252 return 0;
1253
1254 pdata = acpi_driver_data(adev);
1255 if (!pdata)
1256 return 0;
1257
1258 if (pdata->mmio_base &&
1259 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1260 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1261 return 0;
1262 }
1263
1264 switch (action) {
1265 case BUS_NOTIFY_BIND_DRIVER:
1266 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1267 break;
1268 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1269 case BUS_NOTIFY_UNBOUND_DRIVER:
1270 dev_pm_domain_set(&pdev->dev, NULL);
1271 break;
1272 case BUS_NOTIFY_ADD_DEVICE:
1273 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1274 if (pdata->dev_desc->flags & LPSS_LTR)
1275 return sysfs_create_group(&pdev->dev.kobj,
1276 &lpss_attr_group);
1277 break;
1278 case BUS_NOTIFY_DEL_DEVICE:
1279 if (pdata->dev_desc->flags & LPSS_LTR)
1280 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1281 dev_pm_domain_set(&pdev->dev, NULL);
1282 break;
1283 default:
1284 break;
1285 }
1286
1287 return 0;
1288 }
1289
1290 static struct notifier_block acpi_lpss_nb = {
1291 .notifier_call = acpi_lpss_platform_notify,
1292 };
1293
1294 static void acpi_lpss_bind(struct device *dev)
1295 {
1296 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1297
1298 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1299 return;
1300
1301 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1302 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1303 else
1304 dev_err(dev, "MMIO size insufficient to access LTR\n");
1305 }
1306
1307 static void acpi_lpss_unbind(struct device *dev)
1308 {
1309 dev->power.set_latency_tolerance = NULL;
1310 }
1311
1312 static struct acpi_scan_handler lpss_handler = {
1313 .ids = acpi_lpss_device_ids,
1314 .attach = acpi_lpss_create_device,
1315 .bind = acpi_lpss_bind,
1316 .unbind = acpi_lpss_unbind,
1317 };
1318
1319 void __init acpi_lpss_init(void)
1320 {
1321 const struct x86_cpu_id *id;
1322 int ret;
1323
1324 ret = lpt_clk_init();
1325 if (ret)
1326 return;
1327
1328 id = x86_match_cpu(lpss_cpu_ids);
1329 if (id)
1330 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1331
1332 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1333 acpi_scan_add_handler(&lpss_handler);
1334 }
1335
1336 #else
1337
1338 static struct acpi_scan_handler lpss_handler = {
1339 .ids = acpi_lpss_device_ids,
1340 };
1341
1342 void __init acpi_lpss_init(void)
1343 {
1344 acpi_scan_add_handler(&lpss_handler);
1345 }
1346
1347 #endif /* CONFIG_X86_INTEL_LPSS */