]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/acpi_lpss.c
Merge tag 'media/v5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE 0x04
38 #define LPSS_LTR_SIZE 0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
42 #define LPSS_RESETS 0x04
43 #define LPSS_RESETS_RESET_FUNC BIT(0)
44 #define LPSS_RESETS_RESET_APB BIT(1)
45 #define LPSS_GENERAL 0x08
46 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
48 #define LPSS_SW_LTR 0x10
49 #define LPSS_AUTO_LTR 0x14
50 #define LPSS_LTR_SNOOP_REQ BIT(15)
51 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US 0x800
53 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
56 #define LPSS_LTR_MAX_VAL 0x3FF
57 #define LPSS_TX_INT 0x20
58 #define LPSS_TX_INT_MASK BIT(1)
59
60 #define LPSS_PRV_REG_COUNT 9
61
62 /* LPSS Flags */
63 #define LPSS_CLK BIT(0)
64 #define LPSS_CLK_GATE BIT(1)
65 #define LPSS_CLK_DIVIDER BIT(2)
66 #define LPSS_LTR BIT(3)
67 #define LPSS_SAVE_CTX BIT(4)
68 /*
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
74 */
75 #define LPSS_SAVE_CTX_ONCE BIT(5)
76 #define LPSS_NO_D3_DELAY BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR 0xF4
126 #define LPSS_UART_CPR_AFCE BIT(4)
127
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130 unsigned int offset;
131 u32 val;
132
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
143 }
144 }
145
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148 unsigned int offset;
149 u32 val;
150
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
165 };
166
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169 struct acpi_device *adev = pdata->adev;
170
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
174
175 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE 0x6c
179
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182 const char *uid_str = acpi_device_uid(pdata->adev);
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
185 acpi_status status;
186 long uid = 0;
187
188 /* Expected to always be true, but better safe then sorry */
189 if (uid_str)
190 uid = simple_strtol(uid_str, NULL, 10);
191
192 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
193 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194 if (ACPI_SUCCESS(status) && shared_host && uid)
195 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196
197 lpss_deassert_reset(pdata);
198
199 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200 pdata->fixed_clk_rate = 133000000;
201
202 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 "pwm-lpss-platform"),
210 };
211
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214 struct acpi_device *adev = pdata->adev;
215
216 /* Only call pwm_add_table for the first PWM controller */
217 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218 return;
219
220 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222
223 static const struct lpss_device_desc lpt_dev_desc = {
224 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225 | LPSS_SAVE_CTX,
226 .prv_offset = 0x800,
227 };
228
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231 .prv_offset = 0x800,
232 };
233
234 static struct property_entry uart_properties[] = {
235 PROPERTY_ENTRY_U32("reg-io-width", 4),
236 PROPERTY_ENTRY_U32("reg-shift", 2),
237 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238 { },
239 };
240
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243 | LPSS_SAVE_CTX,
244 .clk_con_id = "baudclk",
245 .prv_offset = 0x800,
246 .setup = lpss_uart_setup,
247 .properties = uart_properties,
248 };
249
250 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251 .flags = LPSS_LTR,
252 .prv_offset = 0x1000,
253 .prv_size_override = 0x1018,
254 };
255
256 static const struct lpss_device_desc byt_pwm_dev_desc = {
257 .flags = LPSS_SAVE_CTX,
258 .prv_offset = 0x800,
259 .setup = byt_pwm_setup,
260 };
261
262 static const struct lpss_device_desc bsw_pwm_dev_desc = {
263 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264 .prv_offset = 0x800,
265 .setup = bsw_pwm_setup,
266 .resume_from_noirq = true,
267 };
268
269 static const struct lpss_device_desc byt_uart_dev_desc = {
270 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271 .clk_con_id = "baudclk",
272 .prv_offset = 0x800,
273 .setup = lpss_uart_setup,
274 .properties = uart_properties,
275 };
276
277 static const struct lpss_device_desc bsw_uart_dev_desc = {
278 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279 | LPSS_NO_D3_DELAY,
280 .clk_con_id = "baudclk",
281 .prv_offset = 0x800,
282 .setup = lpss_uart_setup,
283 .properties = uart_properties,
284 };
285
286 static const struct lpss_device_desc byt_spi_dev_desc = {
287 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288 .prv_offset = 0x400,
289 };
290
291 static const struct lpss_device_desc byt_sdio_dev_desc = {
292 .flags = LPSS_CLK,
293 };
294
295 static const struct lpss_device_desc byt_i2c_dev_desc = {
296 .flags = LPSS_CLK | LPSS_SAVE_CTX,
297 .prv_offset = 0x800,
298 .setup = byt_i2c_setup,
299 .resume_from_noirq = true,
300 };
301
302 static const struct lpss_device_desc bsw_i2c_dev_desc = {
303 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304 .prv_offset = 0x800,
305 .setup = byt_i2c_setup,
306 .resume_from_noirq = true,
307 };
308
309 static const struct lpss_device_desc bsw_spi_dev_desc = {
310 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311 | LPSS_NO_D3_DELAY,
312 .prv_offset = 0x400,
313 .setup = lpss_deassert_reset,
314 };
315
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
318 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
319 {}
320 };
321
322 #else
323
324 #define LPSS_ADDR(desc) (0UL)
325
326 #endif /* CONFIG_X86_INTEL_LPSS */
327
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
341
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
350
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
368
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372 { }
373 };
374
375 #ifdef CONFIG_X86_INTEL_LPSS
376
377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379 struct resource r;
380
381 return !acpi_dev_resource_memory(res, &r);
382 }
383
384 /* LPSS main clock device. */
385 static struct platform_device *lpss_clk_dev;
386
387 static inline void lpt_register_clock_device(void)
388 {
389 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
390 }
391
392 static int register_device_clock(struct acpi_device *adev,
393 struct lpss_private_data *pdata)
394 {
395 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
396 const char *devname = dev_name(&adev->dev);
397 struct clk *clk;
398 struct lpss_clk_data *clk_data;
399 const char *parent, *clk_name;
400 void __iomem *prv_base;
401
402 if (!lpss_clk_dev)
403 lpt_register_clock_device();
404
405 clk_data = platform_get_drvdata(lpss_clk_dev);
406 if (!clk_data)
407 return -ENODEV;
408 clk = clk_data->clk;
409
410 if (!pdata->mmio_base
411 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
412 return -ENODATA;
413
414 parent = clk_data->name;
415 prv_base = pdata->mmio_base + dev_desc->prv_offset;
416
417 if (pdata->fixed_clk_rate) {
418 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
419 pdata->fixed_clk_rate);
420 goto out;
421 }
422
423 if (dev_desc->flags & LPSS_CLK_GATE) {
424 clk = clk_register_gate(NULL, devname, parent, 0,
425 prv_base, 0, 0, NULL);
426 parent = devname;
427 }
428
429 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
430 /* Prevent division by zero */
431 if (!readl(prv_base))
432 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
433
434 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
435 if (!clk_name)
436 return -ENOMEM;
437 clk = clk_register_fractional_divider(NULL, clk_name, parent,
438 0, prv_base,
439 1, 15, 16, 15, 0, NULL);
440 parent = clk_name;
441
442 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
443 if (!clk_name) {
444 kfree(parent);
445 return -ENOMEM;
446 }
447 clk = clk_register_gate(NULL, clk_name, parent,
448 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
449 prv_base, 31, 0, NULL);
450 kfree(parent);
451 kfree(clk_name);
452 }
453 out:
454 if (IS_ERR(clk))
455 return PTR_ERR(clk);
456
457 pdata->clk = clk;
458 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
459 return 0;
460 }
461
462 struct lpss_device_links {
463 const char *supplier_hid;
464 const char *supplier_uid;
465 const char *consumer_hid;
466 const char *consumer_uid;
467 u32 flags;
468 const struct dmi_system_id *dep_missing_ids;
469 };
470
471 /* Please keep this list sorted alphabetically by vendor and model */
472 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
473 {
474 .matches = {
475 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
476 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
477 },
478 },
479 {}
480 };
481
482 /*
483 * The _DEP method is used to identify dependencies but instead of creating
484 * device links for every handle in _DEP, only links in the following list are
485 * created. That is necessary because, in the general case, _DEP can refer to
486 * devices that might not have drivers, or that are on different buses, or where
487 * the supplier is not enumerated until after the consumer is probed.
488 */
489 static const struct lpss_device_links lpss_device_links[] = {
490 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
491 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
492 /* CHT iGPU depends on PMIC I2C controller */
493 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
494 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
495 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
496 i2c1_dep_missing_dmi_ids},
497 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
498 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
499 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
500 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501 };
502
503 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
504 const struct lpss_device_links *link)
505 {
506 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
507 }
508
509 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
510 const struct lpss_device_links *link)
511 {
512 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
513 }
514
515 struct hid_uid {
516 const char *hid;
517 const char *uid;
518 };
519
520 static int match_hid_uid(struct device *dev, const void *data)
521 {
522 struct acpi_device *adev = ACPI_COMPANION(dev);
523 const struct hid_uid *id = data;
524
525 if (!adev)
526 return 0;
527
528 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
529 }
530
531 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
532 {
533 struct device *dev;
534
535 struct hid_uid data = {
536 .hid = hid,
537 .uid = uid,
538 };
539
540 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
541 if (dev)
542 return dev;
543
544 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
545 }
546
547 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
548 {
549 struct acpi_handle_list dep_devices;
550 acpi_status status;
551 int i;
552
553 if (!acpi_has_method(adev->handle, "_DEP"))
554 return false;
555
556 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
557 &dep_devices);
558 if (ACPI_FAILURE(status)) {
559 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
560 return false;
561 }
562
563 for (i = 0; i < dep_devices.count; i++) {
564 if (dep_devices.handles[i] == handle)
565 return true;
566 }
567
568 return false;
569 }
570
571 static void acpi_lpss_link_consumer(struct device *dev1,
572 const struct lpss_device_links *link)
573 {
574 struct device *dev2;
575
576 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
577 if (!dev2)
578 return;
579
580 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
581 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
582 device_link_add(dev2, dev1, link->flags);
583
584 put_device(dev2);
585 }
586
587 static void acpi_lpss_link_supplier(struct device *dev1,
588 const struct lpss_device_links *link)
589 {
590 struct device *dev2;
591
592 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
593 if (!dev2)
594 return;
595
596 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
597 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
598 device_link_add(dev1, dev2, link->flags);
599
600 put_device(dev2);
601 }
602
603 static void acpi_lpss_create_device_links(struct acpi_device *adev,
604 struct platform_device *pdev)
605 {
606 int i;
607
608 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
609 const struct lpss_device_links *link = &lpss_device_links[i];
610
611 if (acpi_lpss_is_supplier(adev, link))
612 acpi_lpss_link_consumer(&pdev->dev, link);
613
614 if (acpi_lpss_is_consumer(adev, link))
615 acpi_lpss_link_supplier(&pdev->dev, link);
616 }
617 }
618
619 static int acpi_lpss_create_device(struct acpi_device *adev,
620 const struct acpi_device_id *id)
621 {
622 const struct lpss_device_desc *dev_desc;
623 struct lpss_private_data *pdata;
624 struct resource_entry *rentry;
625 struct list_head resource_list;
626 struct platform_device *pdev;
627 int ret;
628
629 dev_desc = (const struct lpss_device_desc *)id->driver_data;
630 if (!dev_desc) {
631 pdev = acpi_create_platform_device(adev, NULL);
632 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
633 }
634 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
635 if (!pdata)
636 return -ENOMEM;
637
638 INIT_LIST_HEAD(&resource_list);
639 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
640 if (ret < 0)
641 goto err_out;
642
643 list_for_each_entry(rentry, &resource_list, node)
644 if (resource_type(rentry->res) == IORESOURCE_MEM) {
645 if (dev_desc->prv_size_override)
646 pdata->mmio_size = dev_desc->prv_size_override;
647 else
648 pdata->mmio_size = resource_size(rentry->res);
649 pdata->mmio_base = ioremap(rentry->res->start,
650 pdata->mmio_size);
651 break;
652 }
653
654 acpi_dev_free_resource_list(&resource_list);
655
656 if (!pdata->mmio_base) {
657 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
658 adev->pnp.type.platform_id = 0;
659 /* Skip the device, but continue the namespace scan. */
660 ret = 0;
661 goto err_out;
662 }
663
664 pdata->adev = adev;
665 pdata->dev_desc = dev_desc;
666
667 if (dev_desc->setup)
668 dev_desc->setup(pdata);
669
670 if (dev_desc->flags & LPSS_CLK) {
671 ret = register_device_clock(adev, pdata);
672 if (ret) {
673 /* Skip the device, but continue the namespace scan. */
674 ret = 0;
675 goto err_out;
676 }
677 }
678
679 /*
680 * This works around a known issue in ACPI tables where LPSS devices
681 * have _PS0 and _PS3 without _PSC (and no power resources), so
682 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
683 */
684 acpi_device_fix_up_power(adev);
685
686 adev->driver_data = pdata;
687 pdev = acpi_create_platform_device(adev, dev_desc->properties);
688 if (!IS_ERR_OR_NULL(pdev)) {
689 acpi_lpss_create_device_links(adev, pdev);
690 return 1;
691 }
692
693 ret = PTR_ERR(pdev);
694 adev->driver_data = NULL;
695
696 err_out:
697 kfree(pdata);
698 return ret;
699 }
700
701 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
702 {
703 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
704 }
705
706 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
707 unsigned int reg)
708 {
709 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
710 }
711
712 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
713 {
714 struct acpi_device *adev;
715 struct lpss_private_data *pdata;
716 unsigned long flags;
717 int ret;
718
719 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
720 if (WARN_ON(ret))
721 return ret;
722
723 spin_lock_irqsave(&dev->power.lock, flags);
724 if (pm_runtime_suspended(dev)) {
725 ret = -EAGAIN;
726 goto out;
727 }
728 pdata = acpi_driver_data(adev);
729 if (WARN_ON(!pdata || !pdata->mmio_base)) {
730 ret = -ENODEV;
731 goto out;
732 }
733 *val = __lpss_reg_read(pdata, reg);
734
735 out:
736 spin_unlock_irqrestore(&dev->power.lock, flags);
737 return ret;
738 }
739
740 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
741 char *buf)
742 {
743 u32 ltr_value = 0;
744 unsigned int reg;
745 int ret;
746
747 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
748 ret = lpss_reg_read(dev, reg, &ltr_value);
749 if (ret)
750 return ret;
751
752 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
753 }
754
755 static ssize_t lpss_ltr_mode_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757 {
758 u32 ltr_mode = 0;
759 char *outstr;
760 int ret;
761
762 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
763 if (ret)
764 return ret;
765
766 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
767 return sprintf(buf, "%s\n", outstr);
768 }
769
770 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
771 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
772 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
773
774 static struct attribute *lpss_attrs[] = {
775 &dev_attr_auto_ltr.attr,
776 &dev_attr_sw_ltr.attr,
777 &dev_attr_ltr_mode.attr,
778 NULL,
779 };
780
781 static const struct attribute_group lpss_attr_group = {
782 .attrs = lpss_attrs,
783 .name = "lpss_ltr",
784 };
785
786 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
787 {
788 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
789 u32 ltr_mode, ltr_val;
790
791 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
792 if (val < 0) {
793 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
794 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
795 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
796 }
797 return;
798 }
799 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
800 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
801 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
802 val = LPSS_LTR_MAX_VAL;
803 } else if (val > LPSS_LTR_MAX_VAL) {
804 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
805 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
806 } else {
807 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
808 }
809 ltr_val |= val;
810 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
811 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
812 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
813 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
814 }
815 }
816
817 #ifdef CONFIG_PM
818 /**
819 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
820 * @dev: LPSS device
821 * @pdata: pointer to the private data of the LPSS device
822 *
823 * Most LPSS devices have private registers which may loose their context when
824 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
825 * prv_reg_ctx array.
826 */
827 static void acpi_lpss_save_ctx(struct device *dev,
828 struct lpss_private_data *pdata)
829 {
830 unsigned int i;
831
832 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
833 unsigned long offset = i * sizeof(u32);
834
835 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
836 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
837 pdata->prv_reg_ctx[i], offset);
838 }
839 }
840
841 /**
842 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
843 * @dev: LPSS device
844 * @pdata: pointer to the private data of the LPSS device
845 *
846 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
847 */
848 static void acpi_lpss_restore_ctx(struct device *dev,
849 struct lpss_private_data *pdata)
850 {
851 unsigned int i;
852
853 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
854 unsigned long offset = i * sizeof(u32);
855
856 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
857 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
858 pdata->prv_reg_ctx[i], offset);
859 }
860 }
861
862 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
863 {
864 /*
865 * The following delay is needed or the subsequent write operations may
866 * fail. The LPSS devices are actually PCI devices and the PCI spec
867 * expects 10ms delay before the device can be accessed after D3 to D0
868 * transition. However some platforms like BSW does not need this delay.
869 */
870 unsigned int delay = 10; /* default 10ms delay */
871
872 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
873 delay = 0;
874
875 msleep(delay);
876 }
877
878 static int acpi_lpss_activate(struct device *dev)
879 {
880 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
881 int ret;
882
883 ret = acpi_dev_resume(dev);
884 if (ret)
885 return ret;
886
887 acpi_lpss_d3_to_d0_delay(pdata);
888
889 /*
890 * This is called only on ->probe() stage where a device is either in
891 * known state defined by BIOS or most likely powered off. Due to this
892 * we have to deassert reset line to be sure that ->probe() will
893 * recognize the device.
894 */
895 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
896 lpss_deassert_reset(pdata);
897
898 #ifdef CONFIG_PM
899 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
900 acpi_lpss_save_ctx(dev, pdata);
901 #endif
902
903 return 0;
904 }
905
906 static void acpi_lpss_dismiss(struct device *dev)
907 {
908 acpi_dev_suspend(dev, false);
909 }
910
911 /* IOSF SB for LPSS island */
912 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
913 #define LPSS_IOSF_UNIT_LPIO1 0xAB
914 #define LPSS_IOSF_UNIT_LPIO2 0xAC
915
916 #define LPSS_IOSF_PMCSR 0x84
917 #define LPSS_PMCSR_D0 0
918 #define LPSS_PMCSR_D3hot 3
919 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
920
921 #define LPSS_IOSF_GPIODEF0 0x154
922 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
923 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
924 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
925 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
926
927 static DEFINE_MUTEX(lpss_iosf_mutex);
928 static bool lpss_iosf_d3_entered = true;
929
930 static void lpss_iosf_enter_d3_state(void)
931 {
932 u32 value1 = 0;
933 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
934 u32 value2 = LPSS_PMCSR_D3hot;
935 u32 mask2 = LPSS_PMCSR_Dx_MASK;
936 /*
937 * PMC provides an information about actual status of the LPSS devices.
938 * Here we read the values related to LPSS power island, i.e. LPSS
939 * devices, excluding both LPSS DMA controllers, along with SCC domain.
940 */
941 u32 func_dis, d3_sts_0, pmc_status;
942 int ret;
943
944 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
945 if (ret)
946 return;
947
948 mutex_lock(&lpss_iosf_mutex);
949
950 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
951 if (ret)
952 goto exit;
953
954 /*
955 * Get the status of entire LPSS power island per device basis.
956 * Shutdown both LPSS DMA controllers if and only if all other devices
957 * are already in D3hot.
958 */
959 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
960 if (pmc_status)
961 goto exit;
962
963 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
964 LPSS_IOSF_PMCSR, value2, mask2);
965
966 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
967 LPSS_IOSF_PMCSR, value2, mask2);
968
969 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
970 LPSS_IOSF_GPIODEF0, value1, mask1);
971
972 lpss_iosf_d3_entered = true;
973
974 exit:
975 mutex_unlock(&lpss_iosf_mutex);
976 }
977
978 static void lpss_iosf_exit_d3_state(void)
979 {
980 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
981 LPSS_GPIODEF0_DMA_LLP;
982 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
983 u32 value2 = LPSS_PMCSR_D0;
984 u32 mask2 = LPSS_PMCSR_Dx_MASK;
985
986 mutex_lock(&lpss_iosf_mutex);
987
988 if (!lpss_iosf_d3_entered)
989 goto exit;
990
991 lpss_iosf_d3_entered = false;
992
993 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
994 LPSS_IOSF_GPIODEF0, value1, mask1);
995
996 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
997 LPSS_IOSF_PMCSR, value2, mask2);
998
999 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1000 LPSS_IOSF_PMCSR, value2, mask2);
1001
1002 exit:
1003 mutex_unlock(&lpss_iosf_mutex);
1004 }
1005
1006 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1007 {
1008 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1009 int ret;
1010
1011 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1012 acpi_lpss_save_ctx(dev, pdata);
1013
1014 ret = acpi_dev_suspend(dev, wakeup);
1015
1016 /*
1017 * This call must be last in the sequence, otherwise PMC will return
1018 * wrong status for devices being about to be powered off. See
1019 * lpss_iosf_enter_d3_state() for further information.
1020 */
1021 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1022 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1023 lpss_iosf_enter_d3_state();
1024
1025 return ret;
1026 }
1027
1028 static int acpi_lpss_resume(struct device *dev)
1029 {
1030 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1031 int ret;
1032
1033 /*
1034 * This call is kept first to be in symmetry with
1035 * acpi_lpss_runtime_suspend() one.
1036 */
1037 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1038 lpss_iosf_exit_d3_state();
1039
1040 ret = acpi_dev_resume(dev);
1041 if (ret)
1042 return ret;
1043
1044 acpi_lpss_d3_to_d0_delay(pdata);
1045
1046 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1047 acpi_lpss_restore_ctx(dev, pdata);
1048
1049 return 0;
1050 }
1051
1052 #ifdef CONFIG_PM_SLEEP
1053 static int acpi_lpss_do_suspend_late(struct device *dev)
1054 {
1055 int ret;
1056
1057 if (dev_pm_skip_suspend(dev))
1058 return 0;
1059
1060 ret = pm_generic_suspend_late(dev);
1061 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1062 }
1063
1064 static int acpi_lpss_suspend_late(struct device *dev)
1065 {
1066 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1067
1068 if (pdata->dev_desc->resume_from_noirq)
1069 return 0;
1070
1071 return acpi_lpss_do_suspend_late(dev);
1072 }
1073
1074 static int acpi_lpss_suspend_noirq(struct device *dev)
1075 {
1076 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1077 int ret;
1078
1079 if (pdata->dev_desc->resume_from_noirq) {
1080 /*
1081 * The driver's ->suspend_late callback will be invoked by
1082 * acpi_lpss_do_suspend_late(), with the assumption that the
1083 * driver really wanted to run that code in ->suspend_noirq, but
1084 * it could not run after acpi_dev_suspend() and the driver
1085 * expected the latter to be called in the "late" phase.
1086 */
1087 ret = acpi_lpss_do_suspend_late(dev);
1088 if (ret)
1089 return ret;
1090 }
1091
1092 return acpi_subsys_suspend_noirq(dev);
1093 }
1094
1095 static int acpi_lpss_do_resume_early(struct device *dev)
1096 {
1097 int ret = acpi_lpss_resume(dev);
1098
1099 return ret ? ret : pm_generic_resume_early(dev);
1100 }
1101
1102 static int acpi_lpss_resume_early(struct device *dev)
1103 {
1104 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105
1106 if (pdata->dev_desc->resume_from_noirq)
1107 return 0;
1108
1109 if (dev_pm_skip_resume(dev))
1110 return 0;
1111
1112 return acpi_lpss_do_resume_early(dev);
1113 }
1114
1115 static int acpi_lpss_resume_noirq(struct device *dev)
1116 {
1117 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1118 int ret;
1119
1120 /* Follow acpi_subsys_resume_noirq(). */
1121 if (dev_pm_skip_resume(dev))
1122 return 0;
1123
1124 ret = pm_generic_resume_noirq(dev);
1125 if (ret)
1126 return ret;
1127
1128 if (!pdata->dev_desc->resume_from_noirq)
1129 return 0;
1130
1131 /*
1132 * The driver's ->resume_early callback will be invoked by
1133 * acpi_lpss_do_resume_early(), with the assumption that the driver
1134 * really wanted to run that code in ->resume_noirq, but it could not
1135 * run before acpi_dev_resume() and the driver expected the latter to be
1136 * called in the "early" phase.
1137 */
1138 return acpi_lpss_do_resume_early(dev);
1139 }
1140
1141 static int acpi_lpss_do_restore_early(struct device *dev)
1142 {
1143 int ret = acpi_lpss_resume(dev);
1144
1145 return ret ? ret : pm_generic_restore_early(dev);
1146 }
1147
1148 static int acpi_lpss_restore_early(struct device *dev)
1149 {
1150 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1151
1152 if (pdata->dev_desc->resume_from_noirq)
1153 return 0;
1154
1155 return acpi_lpss_do_restore_early(dev);
1156 }
1157
1158 static int acpi_lpss_restore_noirq(struct device *dev)
1159 {
1160 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1161 int ret;
1162
1163 ret = pm_generic_restore_noirq(dev);
1164 if (ret)
1165 return ret;
1166
1167 if (!pdata->dev_desc->resume_from_noirq)
1168 return 0;
1169
1170 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1171 return acpi_lpss_do_restore_early(dev);
1172 }
1173
1174 static int acpi_lpss_do_poweroff_late(struct device *dev)
1175 {
1176 int ret = pm_generic_poweroff_late(dev);
1177
1178 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1179 }
1180
1181 static int acpi_lpss_poweroff_late(struct device *dev)
1182 {
1183 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184
1185 if (dev_pm_skip_suspend(dev))
1186 return 0;
1187
1188 if (pdata->dev_desc->resume_from_noirq)
1189 return 0;
1190
1191 return acpi_lpss_do_poweroff_late(dev);
1192 }
1193
1194 static int acpi_lpss_poweroff_noirq(struct device *dev)
1195 {
1196 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1197
1198 if (dev_pm_skip_suspend(dev))
1199 return 0;
1200
1201 if (pdata->dev_desc->resume_from_noirq) {
1202 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1203 int ret = acpi_lpss_do_poweroff_late(dev);
1204
1205 if (ret)
1206 return ret;
1207 }
1208
1209 return pm_generic_poweroff_noirq(dev);
1210 }
1211 #endif /* CONFIG_PM_SLEEP */
1212
1213 static int acpi_lpss_runtime_suspend(struct device *dev)
1214 {
1215 int ret = pm_generic_runtime_suspend(dev);
1216
1217 return ret ? ret : acpi_lpss_suspend(dev, true);
1218 }
1219
1220 static int acpi_lpss_runtime_resume(struct device *dev)
1221 {
1222 int ret = acpi_lpss_resume(dev);
1223
1224 return ret ? ret : pm_generic_runtime_resume(dev);
1225 }
1226 #endif /* CONFIG_PM */
1227
1228 static struct dev_pm_domain acpi_lpss_pm_domain = {
1229 #ifdef CONFIG_PM
1230 .activate = acpi_lpss_activate,
1231 .dismiss = acpi_lpss_dismiss,
1232 #endif
1233 .ops = {
1234 #ifdef CONFIG_PM
1235 #ifdef CONFIG_PM_SLEEP
1236 .prepare = acpi_subsys_prepare,
1237 .complete = acpi_subsys_complete,
1238 .suspend = acpi_subsys_suspend,
1239 .suspend_late = acpi_lpss_suspend_late,
1240 .suspend_noirq = acpi_lpss_suspend_noirq,
1241 .resume_noirq = acpi_lpss_resume_noirq,
1242 .resume_early = acpi_lpss_resume_early,
1243 .freeze = acpi_subsys_freeze,
1244 .poweroff = acpi_subsys_poweroff,
1245 .poweroff_late = acpi_lpss_poweroff_late,
1246 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1247 .restore_noirq = acpi_lpss_restore_noirq,
1248 .restore_early = acpi_lpss_restore_early,
1249 #endif
1250 .runtime_suspend = acpi_lpss_runtime_suspend,
1251 .runtime_resume = acpi_lpss_runtime_resume,
1252 #endif
1253 },
1254 };
1255
1256 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1257 unsigned long action, void *data)
1258 {
1259 struct platform_device *pdev = to_platform_device(data);
1260 struct lpss_private_data *pdata;
1261 struct acpi_device *adev;
1262 const struct acpi_device_id *id;
1263
1264 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1265 if (!id || !id->driver_data)
1266 return 0;
1267
1268 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1269 return 0;
1270
1271 pdata = acpi_driver_data(adev);
1272 if (!pdata)
1273 return 0;
1274
1275 if (pdata->mmio_base &&
1276 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1277 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1278 return 0;
1279 }
1280
1281 switch (action) {
1282 case BUS_NOTIFY_BIND_DRIVER:
1283 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1284 break;
1285 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1286 case BUS_NOTIFY_UNBOUND_DRIVER:
1287 dev_pm_domain_set(&pdev->dev, NULL);
1288 break;
1289 case BUS_NOTIFY_ADD_DEVICE:
1290 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1291 if (pdata->dev_desc->flags & LPSS_LTR)
1292 return sysfs_create_group(&pdev->dev.kobj,
1293 &lpss_attr_group);
1294 break;
1295 case BUS_NOTIFY_DEL_DEVICE:
1296 if (pdata->dev_desc->flags & LPSS_LTR)
1297 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1298 dev_pm_domain_set(&pdev->dev, NULL);
1299 break;
1300 default:
1301 break;
1302 }
1303
1304 return 0;
1305 }
1306
1307 static struct notifier_block acpi_lpss_nb = {
1308 .notifier_call = acpi_lpss_platform_notify,
1309 };
1310
1311 static void acpi_lpss_bind(struct device *dev)
1312 {
1313 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1314
1315 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1316 return;
1317
1318 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1319 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1320 else
1321 dev_err(dev, "MMIO size insufficient to access LTR\n");
1322 }
1323
1324 static void acpi_lpss_unbind(struct device *dev)
1325 {
1326 dev->power.set_latency_tolerance = NULL;
1327 }
1328
1329 static struct acpi_scan_handler lpss_handler = {
1330 .ids = acpi_lpss_device_ids,
1331 .attach = acpi_lpss_create_device,
1332 .bind = acpi_lpss_bind,
1333 .unbind = acpi_lpss_unbind,
1334 };
1335
1336 void __init acpi_lpss_init(void)
1337 {
1338 const struct x86_cpu_id *id;
1339 int ret;
1340
1341 ret = lpt_clk_init();
1342 if (ret)
1343 return;
1344
1345 id = x86_match_cpu(lpss_cpu_ids);
1346 if (id)
1347 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1348
1349 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1350 acpi_scan_add_handler(&lpss_handler);
1351 }
1352
1353 #else
1354
1355 static struct acpi_scan_handler lpss_handler = {
1356 .ids = acpi_lpss_device_ids,
1357 };
1358
1359 void __init acpi_lpss_init(void)
1360 {
1361 acpi_scan_add_handler(&lpss_handler);
1362 }
1363
1364 #endif /* CONFIG_X86_INTEL_LPSS */