]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/acpi_pad.c
ACPI: Clean up inclusions of ACPI header files
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / acpi_pad.c
1 /*
2 * acpi_pad.c ACPI Processor Aggregator Driver
3 *
4 * Copyright (c) 2009, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <asm/mwait.h>
33
34 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
35 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
36 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
37 static DEFINE_MUTEX(isolated_cpus_lock);
38 static DEFINE_MUTEX(round_robin_lock);
39
40 static unsigned long power_saving_mwait_eax;
41
42 static unsigned char tsc_detected_unstable;
43 static unsigned char tsc_marked_unstable;
44 static unsigned char lapic_detected_unstable;
45 static unsigned char lapic_marked_unstable;
46
47 static void power_saving_mwait_init(void)
48 {
49 unsigned int eax, ebx, ecx, edx;
50 unsigned int highest_cstate = 0;
51 unsigned int highest_subcstate = 0;
52 int i;
53
54 if (!boot_cpu_has(X86_FEATURE_MWAIT))
55 return;
56 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
57 return;
58
59 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
60
61 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
62 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
63 return;
64
65 edx >>= MWAIT_SUBSTATE_SIZE;
66 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
67 if (edx & MWAIT_SUBSTATE_MASK) {
68 highest_cstate = i;
69 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
70 }
71 }
72 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
73 (highest_subcstate - 1);
74
75 #if defined(CONFIG_X86)
76 switch (boot_cpu_data.x86_vendor) {
77 case X86_VENDOR_AMD:
78 case X86_VENDOR_INTEL:
79 /*
80 * AMD Fam10h TSC will tick in all
81 * C/P/S0/S1 states when this bit is set.
82 */
83 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
84 tsc_detected_unstable = 1;
85 if (!boot_cpu_has(X86_FEATURE_ARAT))
86 lapic_detected_unstable = 1;
87 break;
88 default:
89 /* TSC & LAPIC could halt in idle */
90 tsc_detected_unstable = 1;
91 lapic_detected_unstable = 1;
92 }
93 #endif
94 }
95
96 static unsigned long cpu_weight[NR_CPUS];
97 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
98 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
99 static void round_robin_cpu(unsigned int tsk_index)
100 {
101 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
102 cpumask_var_t tmp;
103 int cpu;
104 unsigned long min_weight = -1;
105 unsigned long uninitialized_var(preferred_cpu);
106
107 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
108 return;
109
110 mutex_lock(&round_robin_lock);
111 cpumask_clear(tmp);
112 for_each_cpu(cpu, pad_busy_cpus)
113 cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
114 cpumask_andnot(tmp, cpu_online_mask, tmp);
115 /* avoid HT sibilings if possible */
116 if (cpumask_empty(tmp))
117 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
118 if (cpumask_empty(tmp)) {
119 mutex_unlock(&round_robin_lock);
120 return;
121 }
122 for_each_cpu(cpu, tmp) {
123 if (cpu_weight[cpu] < min_weight) {
124 min_weight = cpu_weight[cpu];
125 preferred_cpu = cpu;
126 }
127 }
128
129 if (tsk_in_cpu[tsk_index] != -1)
130 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
131 tsk_in_cpu[tsk_index] = preferred_cpu;
132 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
133 cpu_weight[preferred_cpu]++;
134 mutex_unlock(&round_robin_lock);
135
136 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
137 }
138
139 static void exit_round_robin(unsigned int tsk_index)
140 {
141 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
142 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
143 tsk_in_cpu[tsk_index] = -1;
144 }
145
146 static unsigned int idle_pct = 5; /* percentage */
147 static unsigned int round_robin_time = 1; /* second */
148 static int power_saving_thread(void *data)
149 {
150 struct sched_param param = {.sched_priority = 1};
151 int do_sleep;
152 unsigned int tsk_index = (unsigned long)data;
153 u64 last_jiffies = 0;
154
155 sched_setscheduler(current, SCHED_RR, &param);
156
157 while (!kthread_should_stop()) {
158 int cpu;
159 u64 expire_time;
160
161 try_to_freeze();
162
163 /* round robin to cpus */
164 if (last_jiffies + round_robin_time * HZ < jiffies) {
165 last_jiffies = jiffies;
166 round_robin_cpu(tsk_index);
167 }
168
169 do_sleep = 0;
170
171 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
172
173 while (!need_resched()) {
174 if (tsc_detected_unstable && !tsc_marked_unstable) {
175 /* TSC could halt in idle, so notify users */
176 mark_tsc_unstable("TSC halts in idle");
177 tsc_marked_unstable = 1;
178 }
179 if (lapic_detected_unstable && !lapic_marked_unstable) {
180 int i;
181 /* LAPIC could halt in idle, so notify users */
182 for_each_online_cpu(i)
183 clockevents_notify(
184 CLOCK_EVT_NOTIFY_BROADCAST_ON,
185 &i);
186 lapic_marked_unstable = 1;
187 }
188 local_irq_disable();
189 cpu = smp_processor_id();
190 if (lapic_marked_unstable)
191 clockevents_notify(
192 CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
193 stop_critical_timings();
194
195 __monitor((void *)&current_thread_info()->flags, 0, 0);
196 smp_mb();
197 if (!need_resched())
198 __mwait(power_saving_mwait_eax, 1);
199
200 start_critical_timings();
201 if (lapic_marked_unstable)
202 clockevents_notify(
203 CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
204 local_irq_enable();
205
206 if (jiffies > expire_time) {
207 do_sleep = 1;
208 break;
209 }
210 }
211
212 /*
213 * current sched_rt has threshold for rt task running time.
214 * When a rt task uses 95% CPU time, the rt thread will be
215 * scheduled out for 5% CPU time to not starve other tasks. But
216 * the mechanism only works when all CPUs have RT task running,
217 * as if one CPU hasn't RT task, RT task from other CPUs will
218 * borrow CPU time from this CPU and cause RT task use > 95%
219 * CPU time. To make 'avoid starvation' work, takes a nap here.
220 */
221 if (do_sleep)
222 schedule_timeout_killable(HZ * idle_pct / 100);
223 }
224
225 exit_round_robin(tsk_index);
226 return 0;
227 }
228
229 static struct task_struct *ps_tsks[NR_CPUS];
230 static unsigned int ps_tsk_num;
231 static int create_power_saving_task(void)
232 {
233 int rc;
234
235 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
236 (void *)(unsigned long)ps_tsk_num,
237 "acpi_pad/%d", ps_tsk_num);
238
239 if (IS_ERR(ps_tsks[ps_tsk_num])) {
240 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
241 ps_tsks[ps_tsk_num] = NULL;
242 } else {
243 rc = 0;
244 ps_tsk_num++;
245 }
246
247 return rc;
248 }
249
250 static void destroy_power_saving_task(void)
251 {
252 if (ps_tsk_num > 0) {
253 ps_tsk_num--;
254 kthread_stop(ps_tsks[ps_tsk_num]);
255 ps_tsks[ps_tsk_num] = NULL;
256 }
257 }
258
259 static void set_power_saving_task_num(unsigned int num)
260 {
261 if (num > ps_tsk_num) {
262 while (ps_tsk_num < num) {
263 if (create_power_saving_task())
264 return;
265 }
266 } else if (num < ps_tsk_num) {
267 while (ps_tsk_num > num)
268 destroy_power_saving_task();
269 }
270 }
271
272 static void acpi_pad_idle_cpus(unsigned int num_cpus)
273 {
274 get_online_cpus();
275
276 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
277 set_power_saving_task_num(num_cpus);
278
279 put_online_cpus();
280 }
281
282 static uint32_t acpi_pad_idle_cpus_num(void)
283 {
284 return ps_tsk_num;
285 }
286
287 static ssize_t acpi_pad_rrtime_store(struct device *dev,
288 struct device_attribute *attr, const char *buf, size_t count)
289 {
290 unsigned long num;
291 if (kstrtoul(buf, 0, &num))
292 return -EINVAL;
293 if (num < 1 || num >= 100)
294 return -EINVAL;
295 mutex_lock(&isolated_cpus_lock);
296 round_robin_time = num;
297 mutex_unlock(&isolated_cpus_lock);
298 return count;
299 }
300
301 static ssize_t acpi_pad_rrtime_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
305 }
306 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
307 acpi_pad_rrtime_show,
308 acpi_pad_rrtime_store);
309
310 static ssize_t acpi_pad_idlepct_store(struct device *dev,
311 struct device_attribute *attr, const char *buf, size_t count)
312 {
313 unsigned long num;
314 if (kstrtoul(buf, 0, &num))
315 return -EINVAL;
316 if (num < 1 || num >= 100)
317 return -EINVAL;
318 mutex_lock(&isolated_cpus_lock);
319 idle_pct = num;
320 mutex_unlock(&isolated_cpus_lock);
321 return count;
322 }
323
324 static ssize_t acpi_pad_idlepct_show(struct device *dev,
325 struct device_attribute *attr, char *buf)
326 {
327 return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
328 }
329 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
330 acpi_pad_idlepct_show,
331 acpi_pad_idlepct_store);
332
333 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
334 struct device_attribute *attr, const char *buf, size_t count)
335 {
336 unsigned long num;
337 if (kstrtoul(buf, 0, &num))
338 return -EINVAL;
339 mutex_lock(&isolated_cpus_lock);
340 acpi_pad_idle_cpus(num);
341 mutex_unlock(&isolated_cpus_lock);
342 return count;
343 }
344
345 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 int n = 0;
349 n = cpumask_scnprintf(buf, PAGE_SIZE-2, to_cpumask(pad_busy_cpus_bits));
350 buf[n++] = '\n';
351 buf[n] = '\0';
352 return n;
353 }
354 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
355 acpi_pad_idlecpus_show,
356 acpi_pad_idlecpus_store);
357
358 static int acpi_pad_add_sysfs(struct acpi_device *device)
359 {
360 int result;
361
362 result = device_create_file(&device->dev, &dev_attr_idlecpus);
363 if (result)
364 return -ENODEV;
365 result = device_create_file(&device->dev, &dev_attr_idlepct);
366 if (result) {
367 device_remove_file(&device->dev, &dev_attr_idlecpus);
368 return -ENODEV;
369 }
370 result = device_create_file(&device->dev, &dev_attr_rrtime);
371 if (result) {
372 device_remove_file(&device->dev, &dev_attr_idlecpus);
373 device_remove_file(&device->dev, &dev_attr_idlepct);
374 return -ENODEV;
375 }
376 return 0;
377 }
378
379 static void acpi_pad_remove_sysfs(struct acpi_device *device)
380 {
381 device_remove_file(&device->dev, &dev_attr_idlecpus);
382 device_remove_file(&device->dev, &dev_attr_idlepct);
383 device_remove_file(&device->dev, &dev_attr_rrtime);
384 }
385
386 /*
387 * Query firmware how many CPUs should be idle
388 * return -1 on failure
389 */
390 static int acpi_pad_pur(acpi_handle handle)
391 {
392 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
393 union acpi_object *package;
394 int num = -1;
395
396 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
397 return num;
398
399 if (!buffer.length || !buffer.pointer)
400 return num;
401
402 package = buffer.pointer;
403
404 if (package->type == ACPI_TYPE_PACKAGE &&
405 package->package.count == 2 &&
406 package->package.elements[0].integer.value == 1) /* rev 1 */
407
408 num = package->package.elements[1].integer.value;
409
410 kfree(buffer.pointer);
411 return num;
412 }
413
414 /* Notify firmware how many CPUs are idle */
415 static void acpi_pad_ost(acpi_handle handle, int stat,
416 uint32_t idle_cpus)
417 {
418 union acpi_object params[3] = {
419 {.type = ACPI_TYPE_INTEGER,},
420 {.type = ACPI_TYPE_INTEGER,},
421 {.type = ACPI_TYPE_BUFFER,},
422 };
423 struct acpi_object_list arg_list = {3, params};
424
425 params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
426 params[1].integer.value = stat;
427 params[2].buffer.length = 4;
428 params[2].buffer.pointer = (void *)&idle_cpus;
429 acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
430 }
431
432 static void acpi_pad_handle_notify(acpi_handle handle)
433 {
434 int num_cpus;
435 uint32_t idle_cpus;
436
437 mutex_lock(&isolated_cpus_lock);
438 num_cpus = acpi_pad_pur(handle);
439 if (num_cpus < 0) {
440 mutex_unlock(&isolated_cpus_lock);
441 return;
442 }
443 acpi_pad_idle_cpus(num_cpus);
444 idle_cpus = acpi_pad_idle_cpus_num();
445 acpi_pad_ost(handle, 0, idle_cpus);
446 mutex_unlock(&isolated_cpus_lock);
447 }
448
449 static void acpi_pad_notify(acpi_handle handle, u32 event,
450 void *data)
451 {
452 struct acpi_device *device = data;
453
454 switch (event) {
455 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
456 acpi_pad_handle_notify(handle);
457 acpi_bus_generate_netlink_event(device->pnp.device_class,
458 dev_name(&device->dev), event, 0);
459 break;
460 default:
461 pr_warn("Unsupported event [0x%x]\n", event);
462 break;
463 }
464 }
465
466 static int acpi_pad_add(struct acpi_device *device)
467 {
468 acpi_status status;
469
470 strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
471 strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
472
473 if (acpi_pad_add_sysfs(device))
474 return -ENODEV;
475
476 status = acpi_install_notify_handler(device->handle,
477 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
478 if (ACPI_FAILURE(status)) {
479 acpi_pad_remove_sysfs(device);
480 return -ENODEV;
481 }
482
483 return 0;
484 }
485
486 static int acpi_pad_remove(struct acpi_device *device)
487 {
488 mutex_lock(&isolated_cpus_lock);
489 acpi_pad_idle_cpus(0);
490 mutex_unlock(&isolated_cpus_lock);
491
492 acpi_remove_notify_handler(device->handle,
493 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
494 acpi_pad_remove_sysfs(device);
495 return 0;
496 }
497
498 static const struct acpi_device_id pad_device_ids[] = {
499 {"ACPI000C", 0},
500 {"", 0},
501 };
502 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
503
504 static struct acpi_driver acpi_pad_driver = {
505 .name = "processor_aggregator",
506 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
507 .ids = pad_device_ids,
508 .ops = {
509 .add = acpi_pad_add,
510 .remove = acpi_pad_remove,
511 },
512 };
513
514 static int __init acpi_pad_init(void)
515 {
516 power_saving_mwait_init();
517 if (power_saving_mwait_eax == 0)
518 return -EINVAL;
519
520 return acpi_bus_register_driver(&acpi_pad_driver);
521 }
522
523 static void __exit acpi_pad_exit(void)
524 {
525 acpi_bus_unregister_driver(&acpi_pad_driver);
526 }
527
528 module_init(acpi_pad_init);
529 module_exit(acpi_pad_exit);
530 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
531 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
532 MODULE_LICENSE("GPL");