]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/acpi_pad.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / acpi_pad.c
1 /*
2 * acpi_pad.c ACPI Processor Aggregator Driver
3 *
4 * Copyright (c) 2009, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/kthread.h>
23 #include <uapi/linux/sched/types.h>
24 #include <linux/freezer.h>
25 #include <linux/cpu.h>
26 #include <linux/tick.h>
27 #include <linux/slab.h>
28 #include <linux/acpi.h>
29 #include <asm/mwait.h>
30 #include <xen/xen.h>
31
32 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
33 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
34 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
35 static DEFINE_MUTEX(isolated_cpus_lock);
36 static DEFINE_MUTEX(round_robin_lock);
37
38 static unsigned long power_saving_mwait_eax;
39
40 static unsigned char tsc_detected_unstable;
41 static unsigned char tsc_marked_unstable;
42
43 static void power_saving_mwait_init(void)
44 {
45 unsigned int eax, ebx, ecx, edx;
46 unsigned int highest_cstate = 0;
47 unsigned int highest_subcstate = 0;
48 int i;
49
50 if (!boot_cpu_has(X86_FEATURE_MWAIT))
51 return;
52 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
53 return;
54
55 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
56
57 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
58 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
59 return;
60
61 edx >>= MWAIT_SUBSTATE_SIZE;
62 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
63 if (edx & MWAIT_SUBSTATE_MASK) {
64 highest_cstate = i;
65 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
66 }
67 }
68 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
69 (highest_subcstate - 1);
70
71 #if defined(CONFIG_X86)
72 switch (boot_cpu_data.x86_vendor) {
73 case X86_VENDOR_AMD:
74 case X86_VENDOR_INTEL:
75 /*
76 * AMD Fam10h TSC will tick in all
77 * C/P/S0/S1 states when this bit is set.
78 */
79 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
80 tsc_detected_unstable = 1;
81 break;
82 default:
83 /* TSC could halt in idle */
84 tsc_detected_unstable = 1;
85 }
86 #endif
87 }
88
89 static unsigned long cpu_weight[NR_CPUS];
90 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
92 static void round_robin_cpu(unsigned int tsk_index)
93 {
94 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
95 cpumask_var_t tmp;
96 int cpu;
97 unsigned long min_weight = -1;
98 unsigned long uninitialized_var(preferred_cpu);
99
100 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
101 return;
102
103 mutex_lock(&round_robin_lock);
104 cpumask_clear(tmp);
105 for_each_cpu(cpu, pad_busy_cpus)
106 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
107 cpumask_andnot(tmp, cpu_online_mask, tmp);
108 /* avoid HT sibilings if possible */
109 if (cpumask_empty(tmp))
110 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
111 if (cpumask_empty(tmp)) {
112 mutex_unlock(&round_robin_lock);
113 return;
114 }
115 for_each_cpu(cpu, tmp) {
116 if (cpu_weight[cpu] < min_weight) {
117 min_weight = cpu_weight[cpu];
118 preferred_cpu = cpu;
119 }
120 }
121
122 if (tsk_in_cpu[tsk_index] != -1)
123 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124 tsk_in_cpu[tsk_index] = preferred_cpu;
125 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126 cpu_weight[preferred_cpu]++;
127 mutex_unlock(&round_robin_lock);
128
129 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130 }
131
132 static void exit_round_robin(unsigned int tsk_index)
133 {
134 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
135 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136 tsk_in_cpu[tsk_index] = -1;
137 }
138
139 static unsigned int idle_pct = 5; /* percentage */
140 static unsigned int round_robin_time = 1; /* second */
141 static int power_saving_thread(void *data)
142 {
143 struct sched_param param = {.sched_priority = 1};
144 int do_sleep;
145 unsigned int tsk_index = (unsigned long)data;
146 u64 last_jiffies = 0;
147
148 sched_setscheduler(current, SCHED_RR, &param);
149
150 while (!kthread_should_stop()) {
151 unsigned long expire_time;
152
153 /* round robin to cpus */
154 expire_time = last_jiffies + round_robin_time * HZ;
155 if (time_before(expire_time, jiffies)) {
156 last_jiffies = jiffies;
157 round_robin_cpu(tsk_index);
158 }
159
160 do_sleep = 0;
161
162 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
163
164 while (!need_resched()) {
165 if (tsc_detected_unstable && !tsc_marked_unstable) {
166 /* TSC could halt in idle, so notify users */
167 mark_tsc_unstable("TSC halts in idle");
168 tsc_marked_unstable = 1;
169 }
170 local_irq_disable();
171 tick_broadcast_enable();
172 tick_broadcast_enter();
173 stop_critical_timings();
174
175 mwait_idle_with_hints(power_saving_mwait_eax, 1);
176
177 start_critical_timings();
178 tick_broadcast_exit();
179 local_irq_enable();
180
181 if (time_before(expire_time, jiffies)) {
182 do_sleep = 1;
183 break;
184 }
185 }
186
187 /*
188 * current sched_rt has threshold for rt task running time.
189 * When a rt task uses 95% CPU time, the rt thread will be
190 * scheduled out for 5% CPU time to not starve other tasks. But
191 * the mechanism only works when all CPUs have RT task running,
192 * as if one CPU hasn't RT task, RT task from other CPUs will
193 * borrow CPU time from this CPU and cause RT task use > 95%
194 * CPU time. To make 'avoid starvation' work, takes a nap here.
195 */
196 if (unlikely(do_sleep))
197 schedule_timeout_killable(HZ * idle_pct / 100);
198
199 /* If an external event has set the need_resched flag, then
200 * we need to deal with it, or this loop will continue to
201 * spin without calling __mwait().
202 */
203 if (unlikely(need_resched()))
204 schedule();
205 }
206
207 exit_round_robin(tsk_index);
208 return 0;
209 }
210
211 static struct task_struct *ps_tsks[NR_CPUS];
212 static unsigned int ps_tsk_num;
213 static int create_power_saving_task(void)
214 {
215 int rc;
216
217 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
218 (void *)(unsigned long)ps_tsk_num,
219 "acpi_pad/%d", ps_tsk_num);
220
221 if (IS_ERR(ps_tsks[ps_tsk_num])) {
222 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
223 ps_tsks[ps_tsk_num] = NULL;
224 } else {
225 rc = 0;
226 ps_tsk_num++;
227 }
228
229 return rc;
230 }
231
232 static void destroy_power_saving_task(void)
233 {
234 if (ps_tsk_num > 0) {
235 ps_tsk_num--;
236 kthread_stop(ps_tsks[ps_tsk_num]);
237 ps_tsks[ps_tsk_num] = NULL;
238 }
239 }
240
241 static void set_power_saving_task_num(unsigned int num)
242 {
243 if (num > ps_tsk_num) {
244 while (ps_tsk_num < num) {
245 if (create_power_saving_task())
246 return;
247 }
248 } else if (num < ps_tsk_num) {
249 while (ps_tsk_num > num)
250 destroy_power_saving_task();
251 }
252 }
253
254 static void acpi_pad_idle_cpus(unsigned int num_cpus)
255 {
256 get_online_cpus();
257
258 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
259 set_power_saving_task_num(num_cpus);
260
261 put_online_cpus();
262 }
263
264 static uint32_t acpi_pad_idle_cpus_num(void)
265 {
266 return ps_tsk_num;
267 }
268
269 static ssize_t acpi_pad_rrtime_store(struct device *dev,
270 struct device_attribute *attr, const char *buf, size_t count)
271 {
272 unsigned long num;
273 if (kstrtoul(buf, 0, &num))
274 return -EINVAL;
275 if (num < 1 || num >= 100)
276 return -EINVAL;
277 mutex_lock(&isolated_cpus_lock);
278 round_robin_time = num;
279 mutex_unlock(&isolated_cpus_lock);
280 return count;
281 }
282
283 static ssize_t acpi_pad_rrtime_show(struct device *dev,
284 struct device_attribute *attr, char *buf)
285 {
286 return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
287 }
288 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
289 acpi_pad_rrtime_show,
290 acpi_pad_rrtime_store);
291
292 static ssize_t acpi_pad_idlepct_store(struct device *dev,
293 struct device_attribute *attr, const char *buf, size_t count)
294 {
295 unsigned long num;
296 if (kstrtoul(buf, 0, &num))
297 return -EINVAL;
298 if (num < 1 || num >= 100)
299 return -EINVAL;
300 mutex_lock(&isolated_cpus_lock);
301 idle_pct = num;
302 mutex_unlock(&isolated_cpus_lock);
303 return count;
304 }
305
306 static ssize_t acpi_pad_idlepct_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
310 }
311 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
312 acpi_pad_idlepct_show,
313 acpi_pad_idlepct_store);
314
315 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
316 struct device_attribute *attr, const char *buf, size_t count)
317 {
318 unsigned long num;
319 if (kstrtoul(buf, 0, &num))
320 return -EINVAL;
321 mutex_lock(&isolated_cpus_lock);
322 acpi_pad_idle_cpus(num);
323 mutex_unlock(&isolated_cpus_lock);
324 return count;
325 }
326
327 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 return cpumap_print_to_pagebuf(false, buf,
331 to_cpumask(pad_busy_cpus_bits));
332 }
333
334 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
335 acpi_pad_idlecpus_show,
336 acpi_pad_idlecpus_store);
337
338 static int acpi_pad_add_sysfs(struct acpi_device *device)
339 {
340 int result;
341
342 result = device_create_file(&device->dev, &dev_attr_idlecpus);
343 if (result)
344 return -ENODEV;
345 result = device_create_file(&device->dev, &dev_attr_idlepct);
346 if (result) {
347 device_remove_file(&device->dev, &dev_attr_idlecpus);
348 return -ENODEV;
349 }
350 result = device_create_file(&device->dev, &dev_attr_rrtime);
351 if (result) {
352 device_remove_file(&device->dev, &dev_attr_idlecpus);
353 device_remove_file(&device->dev, &dev_attr_idlepct);
354 return -ENODEV;
355 }
356 return 0;
357 }
358
359 static void acpi_pad_remove_sysfs(struct acpi_device *device)
360 {
361 device_remove_file(&device->dev, &dev_attr_idlecpus);
362 device_remove_file(&device->dev, &dev_attr_idlepct);
363 device_remove_file(&device->dev, &dev_attr_rrtime);
364 }
365
366 /*
367 * Query firmware how many CPUs should be idle
368 * return -1 on failure
369 */
370 static int acpi_pad_pur(acpi_handle handle)
371 {
372 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373 union acpi_object *package;
374 int num = -1;
375
376 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377 return num;
378
379 if (!buffer.length || !buffer.pointer)
380 return num;
381
382 package = buffer.pointer;
383
384 if (package->type == ACPI_TYPE_PACKAGE &&
385 package->package.count == 2 &&
386 package->package.elements[0].integer.value == 1) /* rev 1 */
387
388 num = package->package.elements[1].integer.value;
389
390 kfree(buffer.pointer);
391 return num;
392 }
393
394 static void acpi_pad_handle_notify(acpi_handle handle)
395 {
396 int num_cpus;
397 uint32_t idle_cpus;
398 struct acpi_buffer param = {
399 .length = 4,
400 .pointer = (void *)&idle_cpus,
401 };
402
403 mutex_lock(&isolated_cpus_lock);
404 num_cpus = acpi_pad_pur(handle);
405 if (num_cpus < 0) {
406 mutex_unlock(&isolated_cpus_lock);
407 return;
408 }
409 acpi_pad_idle_cpus(num_cpus);
410 idle_cpus = acpi_pad_idle_cpus_num();
411 acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
412 mutex_unlock(&isolated_cpus_lock);
413 }
414
415 static void acpi_pad_notify(acpi_handle handle, u32 event,
416 void *data)
417 {
418 struct acpi_device *device = data;
419
420 switch (event) {
421 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422 acpi_pad_handle_notify(handle);
423 acpi_bus_generate_netlink_event(device->pnp.device_class,
424 dev_name(&device->dev), event, 0);
425 break;
426 default:
427 pr_warn("Unsupported event [0x%x]\n", event);
428 break;
429 }
430 }
431
432 static int acpi_pad_add(struct acpi_device *device)
433 {
434 acpi_status status;
435
436 strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437 strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438
439 if (acpi_pad_add_sysfs(device))
440 return -ENODEV;
441
442 status = acpi_install_notify_handler(device->handle,
443 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444 if (ACPI_FAILURE(status)) {
445 acpi_pad_remove_sysfs(device);
446 return -ENODEV;
447 }
448
449 return 0;
450 }
451
452 static int acpi_pad_remove(struct acpi_device *device)
453 {
454 mutex_lock(&isolated_cpus_lock);
455 acpi_pad_idle_cpus(0);
456 mutex_unlock(&isolated_cpus_lock);
457
458 acpi_remove_notify_handler(device->handle,
459 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460 acpi_pad_remove_sysfs(device);
461 return 0;
462 }
463
464 static const struct acpi_device_id pad_device_ids[] = {
465 {"ACPI000C", 0},
466 {"", 0},
467 };
468 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469
470 static struct acpi_driver acpi_pad_driver = {
471 .name = "processor_aggregator",
472 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473 .ids = pad_device_ids,
474 .ops = {
475 .add = acpi_pad_add,
476 .remove = acpi_pad_remove,
477 },
478 };
479
480 static int __init acpi_pad_init(void)
481 {
482 /* Xen ACPI PAD is used when running as Xen Dom0. */
483 if (xen_initial_domain())
484 return -ENODEV;
485
486 power_saving_mwait_init();
487 if (power_saving_mwait_eax == 0)
488 return -EINVAL;
489
490 return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492
493 static void __exit acpi_pad_exit(void)
494 {
495 acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");