]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/cppc_acpi.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / cppc_acpi.c
1 /*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
46
47 #include <acpi/cppc_acpi.h>
48
49 struct cppc_pcc_data {
50 struct mbox_chan *pcc_channel;
51 void __iomem *pcc_comm_addr;
52 bool pcc_channel_acquired;
53 unsigned int deadline_us;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78 ktime_t last_cmd_cmpl_time;
79 ktime_t last_mpar_reset;
80 int mpar_count;
81 int refcount;
82 };
83
84 /* Array to represent the PCC channel per subspace ID */
85 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88
89 /*
90 * The cpc_desc structure contains the ACPI register details
91 * as described in the per CPU _CPC tables. The details
92 * include the type of register (e.g. PCC, System IO, FFH etc.)
93 * and destination addresses which lets us READ/WRITE CPU performance
94 * information using the appropriate I/O methods.
95 */
96 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100 0x8 + (offs))
101
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
104 (cpc)->cpc_entry.reg.space_id == \
105 ACPI_ADR_SPACE_PLATFORM_COMM)
106
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 (reg)->address == 0 && \
110 (reg)->bit_width == 0 && \
111 (reg)->bit_offset == 0 && \
112 (reg)->access_width == 0)
113
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
116 !!(cpc)->cpc_entry.int_value : \
117 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 /*
119 * Arbitrary Retries in case the remote processor is slow to respond
120 * to PCC commands. Keeping it high enough to cover emulators where
121 * the processors run painfully slow.
122 */
123 #define NUM_RETRIES 500ULL
124
125 struct cppc_attr {
126 struct attribute attr;
127 ssize_t (*show)(struct kobject *kobj,
128 struct attribute *attr, char *buf);
129 ssize_t (*store)(struct kobject *kobj,
130 struct attribute *attr, const char *c, ssize_t count);
131 };
132
133 #define define_one_cppc_ro(_name) \
134 static struct cppc_attr _name = \
135 __ATTR(_name, 0444, show_##_name, NULL)
136
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139 #define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct attribute *attr, char *buf)
168 {
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 int ret;
172
173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 if (ret)
175 return ret;
176
177 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181
182 static struct attribute *cppc_attrs[] = {
183 &feedback_ctrs.attr,
184 &reference_perf.attr,
185 &wraparound_time.attr,
186 &highest_perf.attr,
187 &lowest_perf.attr,
188 &lowest_nonlinear_perf.attr,
189 &nominal_perf.attr,
190 &nominal_freq.attr,
191 &lowest_freq.attr,
192 NULL
193 };
194
195 static struct kobj_type cppc_ktype = {
196 .sysfs_ops = &kobj_sysfs_ops,
197 .default_attrs = cppc_attrs,
198 };
199
200 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
201 {
202 int ret, status;
203 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
204 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
205 pcc_ss_data->pcc_comm_addr;
206
207 if (!pcc_ss_data->platform_owns_pcc)
208 return 0;
209
210 /*
211 * Poll PCC status register every 3us(delay_us) for maximum of
212 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
213 */
214 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
215 status & PCC_CMD_COMPLETE_MASK, 3,
216 pcc_ss_data->deadline_us);
217
218 if (likely(!ret)) {
219 pcc_ss_data->platform_owns_pcc = false;
220 if (chk_err_bit && (status & PCC_ERROR_MASK))
221 ret = -EIO;
222 }
223
224 if (unlikely(ret))
225 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
226 pcc_ss_id, ret);
227
228 return ret;
229 }
230
231 /*
232 * This function transfers the ownership of the PCC to the platform
233 * So it must be called while holding write_lock(pcc_lock)
234 */
235 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
236 {
237 int ret = -EIO, i;
238 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
239 struct acpi_pcct_shared_memory *generic_comm_base =
240 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
241 unsigned int time_delta;
242
243 /*
244 * For CMD_WRITE we know for a fact the caller should have checked
245 * the channel before writing to PCC space
246 */
247 if (cmd == CMD_READ) {
248 /*
249 * If there are pending cpc_writes, then we stole the channel
250 * before write completion, so first send a WRITE command to
251 * platform
252 */
253 if (pcc_ss_data->pending_pcc_write_cmd)
254 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
255
256 ret = check_pcc_chan(pcc_ss_id, false);
257 if (ret)
258 goto end;
259 } else /* CMD_WRITE */
260 pcc_ss_data->pending_pcc_write_cmd = FALSE;
261
262 /*
263 * Handle the Minimum Request Turnaround Time(MRTT)
264 * "The minimum amount of time that OSPM must wait after the completion
265 * of a command before issuing the next command, in microseconds"
266 */
267 if (pcc_ss_data->pcc_mrtt) {
268 time_delta = ktime_us_delta(ktime_get(),
269 pcc_ss_data->last_cmd_cmpl_time);
270 if (pcc_ss_data->pcc_mrtt > time_delta)
271 udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 }
273
274 /*
275 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
276 * "The maximum number of periodic requests that the subspace channel can
277 * support, reported in commands per minute. 0 indicates no limitation."
278 *
279 * This parameter should be ideally zero or large enough so that it can
280 * handle maximum number of requests that all the cores in the system can
281 * collectively generate. If it is not, we will follow the spec and just
282 * not send the request to the platform after hitting the MPAR limit in
283 * any 60s window
284 */
285 if (pcc_ss_data->pcc_mpar) {
286 if (pcc_ss_data->mpar_count == 0) {
287 time_delta = ktime_ms_delta(ktime_get(),
288 pcc_ss_data->last_mpar_reset);
289 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
290 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 pcc_ss_id);
292 ret = -EIO;
293 goto end;
294 }
295 pcc_ss_data->last_mpar_reset = ktime_get();
296 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
297 }
298 pcc_ss_data->mpar_count--;
299 }
300
301 /* Write to the shared comm region. */
302 writew_relaxed(cmd, &generic_comm_base->command);
303
304 /* Flip CMD COMPLETE bit */
305 writew_relaxed(0, &generic_comm_base->status);
306
307 pcc_ss_data->platform_owns_pcc = true;
308
309 /* Ring doorbell */
310 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
311 if (ret < 0) {
312 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
313 pcc_ss_id, cmd, ret);
314 goto end;
315 }
316
317 /* wait for completion and check for PCC errro bit */
318 ret = check_pcc_chan(pcc_ss_id, true);
319
320 if (pcc_ss_data->pcc_mrtt)
321 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
322
323 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
324 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
325 else
326 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
327
328 end:
329 if (cmd == CMD_WRITE) {
330 if (unlikely(ret)) {
331 for_each_possible_cpu(i) {
332 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
333 if (!desc)
334 continue;
335
336 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
337 desc->write_cmd_status = ret;
338 }
339 }
340 pcc_ss_data->pcc_write_cnt++;
341 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
342 }
343
344 return ret;
345 }
346
347 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
348 {
349 if (ret < 0)
350 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
351 *(u16 *)msg, ret);
352 else
353 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
354 *(u16 *)msg, ret);
355 }
356
357 struct mbox_client cppc_mbox_cl = {
358 .tx_done = cppc_chan_tx_done,
359 .knows_txdone = true,
360 };
361
362 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
363 {
364 int result = -EFAULT;
365 acpi_status status = AE_OK;
366 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
367 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
368 struct acpi_buffer state = {0, NULL};
369 union acpi_object *psd = NULL;
370 struct acpi_psd_package *pdomain;
371
372 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
373 ACPI_TYPE_PACKAGE);
374 if (ACPI_FAILURE(status))
375 return -ENODEV;
376
377 psd = buffer.pointer;
378 if (!psd || psd->package.count != 1) {
379 pr_debug("Invalid _PSD data\n");
380 goto end;
381 }
382
383 pdomain = &(cpc_ptr->domain_info);
384
385 state.length = sizeof(struct acpi_psd_package);
386 state.pointer = pdomain;
387
388 status = acpi_extract_package(&(psd->package.elements[0]),
389 &format, &state);
390 if (ACPI_FAILURE(status)) {
391 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
392 goto end;
393 }
394
395 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
396 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
397 goto end;
398 }
399
400 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
401 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
402 goto end;
403 }
404
405 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
406 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
407 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
408 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
409 goto end;
410 }
411
412 result = 0;
413 end:
414 kfree(buffer.pointer);
415 return result;
416 }
417
418 /**
419 * acpi_get_psd_map - Map the CPUs in a common freq domain.
420 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
421 *
422 * Return: 0 for success or negative value for err.
423 */
424 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
425 {
426 int count_target;
427 int retval = 0;
428 unsigned int i, j;
429 cpumask_var_t covered_cpus;
430 struct cppc_cpudata *pr, *match_pr;
431 struct acpi_psd_package *pdomain;
432 struct acpi_psd_package *match_pdomain;
433 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434
435 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
436 return -ENOMEM;
437
438 /*
439 * Now that we have _PSD data from all CPUs, let's setup P-state
440 * domain info.
441 */
442 for_each_possible_cpu(i) {
443 pr = all_cpu_data[i];
444 if (!pr)
445 continue;
446
447 if (cpumask_test_cpu(i, covered_cpus))
448 continue;
449
450 cpc_ptr = per_cpu(cpc_desc_ptr, i);
451 if (!cpc_ptr) {
452 retval = -EFAULT;
453 goto err_ret;
454 }
455
456 pdomain = &(cpc_ptr->domain_info);
457 cpumask_set_cpu(i, pr->shared_cpu_map);
458 cpumask_set_cpu(i, covered_cpus);
459 if (pdomain->num_processors <= 1)
460 continue;
461
462 /* Validate the Domain info */
463 count_target = pdomain->num_processors;
464 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
465 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
466 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
467 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
468 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
469 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
470
471 for_each_possible_cpu(j) {
472 if (i == j)
473 continue;
474
475 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
476 if (!match_cpc_ptr) {
477 retval = -EFAULT;
478 goto err_ret;
479 }
480
481 match_pdomain = &(match_cpc_ptr->domain_info);
482 if (match_pdomain->domain != pdomain->domain)
483 continue;
484
485 /* Here i and j are in the same domain */
486 if (match_pdomain->num_processors != count_target) {
487 retval = -EFAULT;
488 goto err_ret;
489 }
490
491 if (pdomain->coord_type != match_pdomain->coord_type) {
492 retval = -EFAULT;
493 goto err_ret;
494 }
495
496 cpumask_set_cpu(j, covered_cpus);
497 cpumask_set_cpu(j, pr->shared_cpu_map);
498 }
499
500 for_each_possible_cpu(j) {
501 if (i == j)
502 continue;
503
504 match_pr = all_cpu_data[j];
505 if (!match_pr)
506 continue;
507
508 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
509 if (!match_cpc_ptr) {
510 retval = -EFAULT;
511 goto err_ret;
512 }
513
514 match_pdomain = &(match_cpc_ptr->domain_info);
515 if (match_pdomain->domain != pdomain->domain)
516 continue;
517
518 match_pr->shared_type = pr->shared_type;
519 cpumask_copy(match_pr->shared_cpu_map,
520 pr->shared_cpu_map);
521 }
522 }
523
524 err_ret:
525 for_each_possible_cpu(i) {
526 pr = all_cpu_data[i];
527 if (!pr)
528 continue;
529
530 /* Assume no coordination on any error parsing domain info */
531 if (retval) {
532 cpumask_clear(pr->shared_cpu_map);
533 cpumask_set_cpu(i, pr->shared_cpu_map);
534 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
535 }
536 }
537
538 free_cpumask_var(covered_cpus);
539 return retval;
540 }
541 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
542
543 static int register_pcc_channel(int pcc_ss_idx)
544 {
545 struct acpi_pcct_hw_reduced *cppc_ss;
546 u64 usecs_lat;
547
548 if (pcc_ss_idx >= 0) {
549 pcc_data[pcc_ss_idx]->pcc_channel =
550 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
551
552 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
553 pr_err("Failed to find PCC channel for subspace %d\n",
554 pcc_ss_idx);
555 return -ENODEV;
556 }
557
558 /*
559 * The PCC mailbox controller driver should
560 * have parsed the PCCT (global table of all
561 * PCC channels) and stored pointers to the
562 * subspace communication region in con_priv.
563 */
564 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
565
566 if (!cppc_ss) {
567 pr_err("No PCC subspace found for %d CPPC\n",
568 pcc_ss_idx);
569 return -ENODEV;
570 }
571
572 /*
573 * cppc_ss->latency is just a Nominal value. In reality
574 * the remote processor could be much slower to reply.
575 * So add an arbitrary amount of wait on top of Nominal.
576 */
577 usecs_lat = NUM_RETRIES * cppc_ss->latency;
578 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
579 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
580 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
581 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
582
583 pcc_data[pcc_ss_idx]->pcc_comm_addr =
584 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
585 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
586 pr_err("Failed to ioremap PCC comm region mem for %d\n",
587 pcc_ss_idx);
588 return -ENOMEM;
589 }
590
591 /* Set flag so that we don't come here for each CPU. */
592 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
593 }
594
595 return 0;
596 }
597
598 /**
599 * cpc_ffh_supported() - check if FFH reading supported
600 *
601 * Check if the architecture has support for functional fixed hardware
602 * read/write capability.
603 *
604 * Return: true for supported, false for not supported
605 */
606 bool __weak cpc_ffh_supported(void)
607 {
608 return false;
609 }
610
611 /**
612 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
613 *
614 * Check and allocate the cppc_pcc_data memory.
615 * In some processor configurations it is possible that same subspace
616 * is shared between multiple CPUs. This is seen especially in CPUs
617 * with hardware multi-threading support.
618 *
619 * Return: 0 for success, errno for failure
620 */
621 int pcc_data_alloc(int pcc_ss_id)
622 {
623 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
624 return -EINVAL;
625
626 if (pcc_data[pcc_ss_id]) {
627 pcc_data[pcc_ss_id]->refcount++;
628 } else {
629 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
630 GFP_KERNEL);
631 if (!pcc_data[pcc_ss_id])
632 return -ENOMEM;
633 pcc_data[pcc_ss_id]->refcount++;
634 }
635
636 return 0;
637 }
638
639 /* Check if CPPC revision + num_ent combination is supported */
640 static bool is_cppc_supported(int revision, int num_ent)
641 {
642 int expected_num_ent;
643
644 switch (revision) {
645 case CPPC_V2_REV:
646 expected_num_ent = CPPC_V2_NUM_ENT;
647 break;
648 case CPPC_V3_REV:
649 expected_num_ent = CPPC_V3_NUM_ENT;
650 break;
651 default:
652 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
653 revision);
654 return false;
655 }
656
657 if (expected_num_ent != num_ent) {
658 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
659 num_ent, expected_num_ent, revision);
660 return false;
661 }
662
663 return true;
664 }
665
666 /*
667 * An example CPC table looks like the following.
668 *
669 * Name(_CPC, Package()
670 * {
671 * 17,
672 * NumEntries
673 * 1,
674 * // Revision
675 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
676 * // Highest Performance
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
678 * // Nominal Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
680 * // Lowest Nonlinear Performance
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
682 * // Lowest Performance
683 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
684 * // Guaranteed Performance Register
685 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
686 * // Desired Performance Register
687 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
688 * ..
689 * ..
690 * ..
691 *
692 * }
693 * Each Register() encodes how to access that specific register.
694 * e.g. a sample PCC entry has the following encoding:
695 *
696 * Register (
697 * PCC,
698 * AddressSpaceKeyword
699 * 8,
700 * //RegisterBitWidth
701 * 8,
702 * //RegisterBitOffset
703 * 0x30,
704 * //RegisterAddress
705 * 9
706 * //AccessSize (subspace ID)
707 * 0
708 * )
709 * }
710 */
711
712 /**
713 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
714 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
715 *
716 * Return: 0 for success or negative value for err.
717 */
718 int acpi_cppc_processor_probe(struct acpi_processor *pr)
719 {
720 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
721 union acpi_object *out_obj, *cpc_obj;
722 struct cpc_desc *cpc_ptr;
723 struct cpc_reg *gas_t;
724 struct device *cpu_dev;
725 acpi_handle handle = pr->handle;
726 unsigned int num_ent, i, cpc_rev;
727 int pcc_subspace_id = -1;
728 acpi_status status;
729 int ret = -EFAULT;
730
731 /* Parse the ACPI _CPC table for this CPU. */
732 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
733 ACPI_TYPE_PACKAGE);
734 if (ACPI_FAILURE(status)) {
735 ret = -ENODEV;
736 goto out_buf_free;
737 }
738
739 out_obj = (union acpi_object *) output.pointer;
740
741 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
742 if (!cpc_ptr) {
743 ret = -ENOMEM;
744 goto out_buf_free;
745 }
746
747 /* First entry is NumEntries. */
748 cpc_obj = &out_obj->package.elements[0];
749 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
750 num_ent = cpc_obj->integer.value;
751 } else {
752 pr_debug("Unexpected entry type(%d) for NumEntries\n",
753 cpc_obj->type);
754 goto out_free;
755 }
756 cpc_ptr->num_entries = num_ent;
757
758 /* Second entry should be revision. */
759 cpc_obj = &out_obj->package.elements[1];
760 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
761 cpc_rev = cpc_obj->integer.value;
762 } else {
763 pr_debug("Unexpected entry type(%d) for Revision\n",
764 cpc_obj->type);
765 goto out_free;
766 }
767 cpc_ptr->version = cpc_rev;
768
769 if (!is_cppc_supported(cpc_rev, num_ent))
770 goto out_free;
771
772 /* Iterate through remaining entries in _CPC */
773 for (i = 2; i < num_ent; i++) {
774 cpc_obj = &out_obj->package.elements[i];
775
776 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
777 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
778 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
779 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
780 gas_t = (struct cpc_reg *)
781 cpc_obj->buffer.pointer;
782
783 /*
784 * The PCC Subspace index is encoded inside
785 * the CPC table entries. The same PCC index
786 * will be used for all the PCC entries,
787 * so extract it only once.
788 */
789 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
790 if (pcc_subspace_id < 0) {
791 pcc_subspace_id = gas_t->access_width;
792 if (pcc_data_alloc(pcc_subspace_id))
793 goto out_free;
794 } else if (pcc_subspace_id != gas_t->access_width) {
795 pr_debug("Mismatched PCC ids.\n");
796 goto out_free;
797 }
798 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
799 if (gas_t->address) {
800 void __iomem *addr;
801
802 addr = ioremap(gas_t->address, gas_t->bit_width/8);
803 if (!addr)
804 goto out_free;
805 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
806 }
807 } else {
808 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
809 /* Support only PCC ,SYS MEM and FFH type regs */
810 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
811 goto out_free;
812 }
813 }
814
815 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
816 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
817 } else {
818 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
819 goto out_free;
820 }
821 }
822 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
823
824 /*
825 * Initialize the remaining cpc_regs as unsupported.
826 * Example: In case FW exposes CPPC v2, the below loop will initialize
827 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
828 */
829 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
830 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
831 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
832 }
833
834
835 /* Store CPU Logical ID */
836 cpc_ptr->cpu_id = pr->id;
837
838 /* Parse PSD data for this CPU */
839 ret = acpi_get_psd(cpc_ptr, handle);
840 if (ret)
841 goto out_free;
842
843 /* Register PCC channel once for all PCC subspace ID. */
844 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
845 ret = register_pcc_channel(pcc_subspace_id);
846 if (ret)
847 goto out_free;
848
849 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
850 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
851 }
852
853 /* Everything looks okay */
854 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
855
856 /* Add per logical CPU nodes for reading its feedback counters. */
857 cpu_dev = get_cpu_device(pr->id);
858 if (!cpu_dev) {
859 ret = -EINVAL;
860 goto out_free;
861 }
862
863 /* Plug PSD data into this CPU's CPC descriptor. */
864 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
865
866 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
867 "acpi_cppc");
868 if (ret) {
869 per_cpu(cpc_desc_ptr, pr->id) = NULL;
870 goto out_free;
871 }
872
873 kfree(output.pointer);
874 return 0;
875
876 out_free:
877 /* Free all the mapped sys mem areas for this CPU */
878 for (i = 2; i < cpc_ptr->num_entries; i++) {
879 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
880
881 if (addr)
882 iounmap(addr);
883 }
884 kfree(cpc_ptr);
885
886 out_buf_free:
887 kfree(output.pointer);
888 return ret;
889 }
890 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
891
892 /**
893 * acpi_cppc_processor_exit - Cleanup CPC structs.
894 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
895 *
896 * Return: Void
897 */
898 void acpi_cppc_processor_exit(struct acpi_processor *pr)
899 {
900 struct cpc_desc *cpc_ptr;
901 unsigned int i;
902 void __iomem *addr;
903 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
904
905 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
906 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
907 pcc_data[pcc_ss_id]->refcount--;
908 if (!pcc_data[pcc_ss_id]->refcount) {
909 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
910 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
911 kfree(pcc_data[pcc_ss_id]);
912 }
913 }
914 }
915
916 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
917 if (!cpc_ptr)
918 return;
919
920 /* Free all the mapped sys mem areas for this CPU */
921 for (i = 2; i < cpc_ptr->num_entries; i++) {
922 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
923 if (addr)
924 iounmap(addr);
925 }
926
927 kobject_put(&cpc_ptr->kobj);
928 kfree(cpc_ptr);
929 }
930 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
931
932 /**
933 * cpc_read_ffh() - Read FFH register
934 * @cpunum: CPU number to read
935 * @reg: cppc register information
936 * @val: place holder for return value
937 *
938 * Read bit_width bits from a specified address and bit_offset
939 *
940 * Return: 0 for success and error code
941 */
942 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
943 {
944 return -ENOTSUPP;
945 }
946
947 /**
948 * cpc_write_ffh() - Write FFH register
949 * @cpunum: CPU number to write
950 * @reg: cppc register information
951 * @val: value to write
952 *
953 * Write value of bit_width bits to a specified address and bit_offset
954 *
955 * Return: 0 for success and error code
956 */
957 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
958 {
959 return -ENOTSUPP;
960 }
961
962 /*
963 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
964 * as fast as possible. We have already mapped the PCC subspace during init, so
965 * we can directly write to it.
966 */
967
968 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
969 {
970 int ret_val = 0;
971 void __iomem *vaddr = 0;
972 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
973 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
974
975 if (reg_res->type == ACPI_TYPE_INTEGER) {
976 *val = reg_res->cpc_entry.int_value;
977 return ret_val;
978 }
979
980 *val = 0;
981 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
982 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
983 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
984 vaddr = reg_res->sys_mem_vaddr;
985 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
986 return cpc_read_ffh(cpu, reg, val);
987 else
988 return acpi_os_read_memory((acpi_physical_address)reg->address,
989 val, reg->bit_width);
990
991 switch (reg->bit_width) {
992 case 8:
993 *val = readb_relaxed(vaddr);
994 break;
995 case 16:
996 *val = readw_relaxed(vaddr);
997 break;
998 case 32:
999 *val = readl_relaxed(vaddr);
1000 break;
1001 case 64:
1002 *val = readq_relaxed(vaddr);
1003 break;
1004 default:
1005 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1006 reg->bit_width, pcc_ss_id);
1007 ret_val = -EFAULT;
1008 }
1009
1010 return ret_val;
1011 }
1012
1013 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1014 {
1015 int ret_val = 0;
1016 void __iomem *vaddr = 0;
1017 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1018 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1019
1020 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1021 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1022 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1023 vaddr = reg_res->sys_mem_vaddr;
1024 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1025 return cpc_write_ffh(cpu, reg, val);
1026 else
1027 return acpi_os_write_memory((acpi_physical_address)reg->address,
1028 val, reg->bit_width);
1029
1030 switch (reg->bit_width) {
1031 case 8:
1032 writeb_relaxed(val, vaddr);
1033 break;
1034 case 16:
1035 writew_relaxed(val, vaddr);
1036 break;
1037 case 32:
1038 writel_relaxed(val, vaddr);
1039 break;
1040 case 64:
1041 writeq_relaxed(val, vaddr);
1042 break;
1043 default:
1044 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1045 reg->bit_width, pcc_ss_id);
1046 ret_val = -EFAULT;
1047 break;
1048 }
1049
1050 return ret_val;
1051 }
1052
1053 /**
1054 * cppc_get_desired_perf - Get the value of desired performance register.
1055 * @cpunum: CPU from which to get desired performance.
1056 * @desired_perf: address of a variable to store the returned desired performance
1057 *
1058 * Return: 0 for success, -EIO otherwise.
1059 */
1060 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1061 {
1062 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1063 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1064 struct cpc_register_resource *desired_reg;
1065 struct cppc_pcc_data *pcc_ss_data = NULL;
1066
1067 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1068
1069 if (CPC_IN_PCC(desired_reg)) {
1070 int ret = 0;
1071
1072 if (pcc_ss_id < 0)
1073 return -EIO;
1074
1075 pcc_ss_data = pcc_data[pcc_ss_id];
1076
1077 down_write(&pcc_ss_data->pcc_lock);
1078
1079 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1080 cpc_read(cpunum, desired_reg, desired_perf);
1081 else
1082 ret = -EIO;
1083
1084 up_write(&pcc_ss_data->pcc_lock);
1085
1086 return ret;
1087 }
1088
1089 cpc_read(cpunum, desired_reg, desired_perf);
1090
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1094
1095 /**
1096 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1097 * @cpunum: CPU from which to get capabilities info.
1098 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1099 *
1100 * Return: 0 for success with perf_caps populated else -ERRNO.
1101 */
1102 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1103 {
1104 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1105 struct cpc_register_resource *highest_reg, *lowest_reg,
1106 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1107 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1108 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1109 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110 struct cppc_pcc_data *pcc_ss_data = NULL;
1111 int ret = 0, regs_in_pcc = 0;
1112
1113 if (!cpc_desc) {
1114 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1115 return -ENODEV;
1116 }
1117
1118 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1119 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1120 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1121 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1122 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1123 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1124 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1125
1126 /* Are any of the regs PCC ?*/
1127 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1128 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1129 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1130 if (pcc_ss_id < 0) {
1131 pr_debug("Invalid pcc_ss_id\n");
1132 return -ENODEV;
1133 }
1134 pcc_ss_data = pcc_data[pcc_ss_id];
1135 regs_in_pcc = 1;
1136 down_write(&pcc_ss_data->pcc_lock);
1137 /* Ring doorbell once to update PCC subspace */
1138 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1139 ret = -EIO;
1140 goto out_err;
1141 }
1142 }
1143
1144 cpc_read(cpunum, highest_reg, &high);
1145 perf_caps->highest_perf = high;
1146
1147 cpc_read(cpunum, lowest_reg, &low);
1148 perf_caps->lowest_perf = low;
1149
1150 cpc_read(cpunum, nominal_reg, &nom);
1151 perf_caps->nominal_perf = nom;
1152
1153 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1154 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1155 perf_caps->guaranteed_perf = 0;
1156 } else {
1157 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1158 perf_caps->guaranteed_perf = guaranteed;
1159 }
1160
1161 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1162 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1163
1164 if (!high || !low || !nom || !min_nonlinear)
1165 ret = -EFAULT;
1166
1167 /* Read optional lowest and nominal frequencies if present */
1168 if (CPC_SUPPORTED(low_freq_reg))
1169 cpc_read(cpunum, low_freq_reg, &low_f);
1170
1171 if (CPC_SUPPORTED(nom_freq_reg))
1172 cpc_read(cpunum, nom_freq_reg, &nom_f);
1173
1174 perf_caps->lowest_freq = low_f;
1175 perf_caps->nominal_freq = nom_f;
1176
1177
1178 out_err:
1179 if (regs_in_pcc)
1180 up_write(&pcc_ss_data->pcc_lock);
1181 return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1184
1185 /**
1186 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1187 * @cpunum: CPU from which to read counters.
1188 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1189 *
1190 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1191 */
1192 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1193 {
1194 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1195 struct cpc_register_resource *delivered_reg, *reference_reg,
1196 *ref_perf_reg, *ctr_wrap_reg;
1197 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1198 struct cppc_pcc_data *pcc_ss_data = NULL;
1199 u64 delivered, reference, ref_perf, ctr_wrap_time;
1200 int ret = 0, regs_in_pcc = 0;
1201
1202 if (!cpc_desc) {
1203 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1204 return -ENODEV;
1205 }
1206
1207 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1208 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1209 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1210 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1211
1212 /*
1213 * If reference perf register is not supported then we should
1214 * use the nominal perf value
1215 */
1216 if (!CPC_SUPPORTED(ref_perf_reg))
1217 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1218
1219 /* Are any of the regs PCC ?*/
1220 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1221 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1222 if (pcc_ss_id < 0) {
1223 pr_debug("Invalid pcc_ss_id\n");
1224 return -ENODEV;
1225 }
1226 pcc_ss_data = pcc_data[pcc_ss_id];
1227 down_write(&pcc_ss_data->pcc_lock);
1228 regs_in_pcc = 1;
1229 /* Ring doorbell once to update PCC subspace */
1230 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1231 ret = -EIO;
1232 goto out_err;
1233 }
1234 }
1235
1236 cpc_read(cpunum, delivered_reg, &delivered);
1237 cpc_read(cpunum, reference_reg, &reference);
1238 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1239
1240 /*
1241 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1242 * performance counters are assumed to never wrap during the lifetime of
1243 * platform
1244 */
1245 ctr_wrap_time = (u64)(~((u64)0));
1246 if (CPC_SUPPORTED(ctr_wrap_reg))
1247 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1248
1249 if (!delivered || !reference || !ref_perf) {
1250 ret = -EFAULT;
1251 goto out_err;
1252 }
1253
1254 perf_fb_ctrs->delivered = delivered;
1255 perf_fb_ctrs->reference = reference;
1256 perf_fb_ctrs->reference_perf = ref_perf;
1257 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1258 out_err:
1259 if (regs_in_pcc)
1260 up_write(&pcc_ss_data->pcc_lock);
1261 return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1264
1265 /**
1266 * cppc_set_perf - Set a CPU's performance controls.
1267 * @cpu: CPU for which to set performance controls.
1268 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1269 *
1270 * Return: 0 for success, -ERRNO otherwise.
1271 */
1272 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1273 {
1274 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1275 struct cpc_register_resource *desired_reg;
1276 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1277 struct cppc_pcc_data *pcc_ss_data = NULL;
1278 int ret = 0;
1279
1280 if (!cpc_desc) {
1281 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1282 return -ENODEV;
1283 }
1284
1285 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1286
1287 /*
1288 * This is Phase-I where we want to write to CPC registers
1289 * -> We want all CPUs to be able to execute this phase in parallel
1290 *
1291 * Since read_lock can be acquired by multiple CPUs simultaneously we
1292 * achieve that goal here
1293 */
1294 if (CPC_IN_PCC(desired_reg)) {
1295 if (pcc_ss_id < 0) {
1296 pr_debug("Invalid pcc_ss_id\n");
1297 return -ENODEV;
1298 }
1299 pcc_ss_data = pcc_data[pcc_ss_id];
1300 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1301 if (pcc_ss_data->platform_owns_pcc) {
1302 ret = check_pcc_chan(pcc_ss_id, false);
1303 if (ret) {
1304 up_read(&pcc_ss_data->pcc_lock);
1305 return ret;
1306 }
1307 }
1308 /*
1309 * Update the pending_write to make sure a PCC CMD_READ will not
1310 * arrive and steal the channel during the switch to write lock
1311 */
1312 pcc_ss_data->pending_pcc_write_cmd = true;
1313 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1314 cpc_desc->write_cmd_status = 0;
1315 }
1316
1317 /*
1318 * Skip writing MIN/MAX until Linux knows how to come up with
1319 * useful values.
1320 */
1321 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1322
1323 if (CPC_IN_PCC(desired_reg))
1324 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1325 /*
1326 * This is Phase-II where we transfer the ownership of PCC to Platform
1327 *
1328 * Short Summary: Basically if we think of a group of cppc_set_perf
1329 * requests that happened in short overlapping interval. The last CPU to
1330 * come out of Phase-I will enter Phase-II and ring the doorbell.
1331 *
1332 * We have the following requirements for Phase-II:
1333 * 1. We want to execute Phase-II only when there are no CPUs
1334 * currently executing in Phase-I
1335 * 2. Once we start Phase-II we want to avoid all other CPUs from
1336 * entering Phase-I.
1337 * 3. We want only one CPU among all those who went through Phase-I
1338 * to run phase-II
1339 *
1340 * If write_trylock fails to get the lock and doesn't transfer the
1341 * PCC ownership to the platform, then one of the following will be TRUE
1342 * 1. There is at-least one CPU in Phase-I which will later execute
1343 * write_trylock, so the CPUs in Phase-I will be responsible for
1344 * executing the Phase-II.
1345 * 2. Some other CPU has beaten this CPU to successfully execute the
1346 * write_trylock and has already acquired the write_lock. We know for a
1347 * fact it (other CPU acquiring the write_lock) couldn't have happened
1348 * before this CPU's Phase-I as we held the read_lock.
1349 * 3. Some other CPU executing pcc CMD_READ has stolen the
1350 * down_write, in which case, send_pcc_cmd will check for pending
1351 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1352 * So this CPU can be certain that its request will be delivered
1353 * So in all cases, this CPU knows that its request will be delivered
1354 * by another CPU and can return
1355 *
1356 * After getting the down_write we still need to check for
1357 * pending_pcc_write_cmd to take care of the following scenario
1358 * The thread running this code could be scheduled out between
1359 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1360 * could have delivered the request to Platform by triggering the
1361 * doorbell and transferred the ownership of PCC to platform. So this
1362 * avoids triggering an unnecessary doorbell and more importantly before
1363 * triggering the doorbell it makes sure that the PCC channel ownership
1364 * is still with OSPM.
1365 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1366 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1367 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1368 * case during a CMD_READ and if there are pending writes it delivers
1369 * the write command before servicing the read command
1370 */
1371 if (CPC_IN_PCC(desired_reg)) {
1372 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1373 /* Update only if there are pending write commands */
1374 if (pcc_ss_data->pending_pcc_write_cmd)
1375 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1376 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1377 } else
1378 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1379 wait_event(pcc_ss_data->pcc_write_wait_q,
1380 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1381
1382 /* send_pcc_cmd updates the status in case of failure */
1383 ret = cpc_desc->write_cmd_status;
1384 }
1385 return ret;
1386 }
1387 EXPORT_SYMBOL_GPL(cppc_set_perf);
1388
1389 /**
1390 * cppc_get_transition_latency - returns frequency transition latency in ns
1391 *
1392 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1393 * transition latency for perfromance change requests. The closest we have
1394 * is the timing information from the PCCT tables which provides the info
1395 * on the number and frequency of PCC commands the platform can handle.
1396 */
1397 unsigned int cppc_get_transition_latency(int cpu_num)
1398 {
1399 /*
1400 * Expected transition latency is based on the PCCT timing values
1401 * Below are definition from ACPI spec:
1402 * pcc_nominal- Expected latency to process a command, in microseconds
1403 * pcc_mpar - The maximum number of periodic requests that the subspace
1404 * channel can support, reported in commands per minute. 0
1405 * indicates no limitation.
1406 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1407 * completion of a command before issuing the next command,
1408 * in microseconds.
1409 */
1410 unsigned int latency_ns = 0;
1411 struct cpc_desc *cpc_desc;
1412 struct cpc_register_resource *desired_reg;
1413 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1414 struct cppc_pcc_data *pcc_ss_data;
1415
1416 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1417 if (!cpc_desc)
1418 return CPUFREQ_ETERNAL;
1419
1420 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1421 if (!CPC_IN_PCC(desired_reg))
1422 return CPUFREQ_ETERNAL;
1423
1424 if (pcc_ss_id < 0)
1425 return CPUFREQ_ETERNAL;
1426
1427 pcc_ss_data = pcc_data[pcc_ss_id];
1428 if (pcc_ss_data->pcc_mpar)
1429 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1430
1431 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1432 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1433
1434 return latency_ns;
1435 }
1436 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);