]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/cppc_acpi.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119 #define NUM_RETRIES 500ULL
120
121 #define OVER_16BTS_MASK ~0xFFFFULL
122
123 #define define_one_cppc_ro(_name) \
124 static struct kobj_attribute _name = \
125 __ATTR(_name, 0444, show_##_name, NULL)
126
127 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
128
129 #define show_cppc_data(access_fn, struct_name, member_name) \
130 static ssize_t show_##member_name(struct kobject *kobj, \
131 struct kobj_attribute *attr, char *buf) \
132 { \
133 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
134 struct struct_name st_name = {0}; \
135 int ret; \
136 \
137 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
138 if (ret) \
139 return ret; \
140 \
141 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
142 (u64)st_name.member_name); \
143 } \
144 define_one_cppc_ro(member_name)
145
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
150 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
151 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
152
153 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
154 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
155
156 static ssize_t show_feedback_ctrs(struct kobject *kobj,
157 struct kobj_attribute *attr, char *buf)
158 {
159 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
160 struct cppc_perf_fb_ctrs fb_ctrs = {0};
161 int ret;
162
163 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
164 if (ret)
165 return ret;
166
167 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
168 fb_ctrs.reference, fb_ctrs.delivered);
169 }
170 define_one_cppc_ro(feedback_ctrs);
171
172 static struct attribute *cppc_attrs[] = {
173 &feedback_ctrs.attr,
174 &reference_perf.attr,
175 &wraparound_time.attr,
176 &highest_perf.attr,
177 &lowest_perf.attr,
178 &lowest_nonlinear_perf.attr,
179 &nominal_perf.attr,
180 &nominal_freq.attr,
181 &lowest_freq.attr,
182 NULL
183 };
184
185 static struct kobj_type cppc_ktype = {
186 .sysfs_ops = &kobj_sysfs_ops,
187 .default_attrs = cppc_attrs,
188 };
189
190 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
191 {
192 int ret, status;
193 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
194 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
195 pcc_ss_data->pcc_comm_addr;
196
197 if (!pcc_ss_data->platform_owns_pcc)
198 return 0;
199
200 /*
201 * Poll PCC status register every 3us(delay_us) for maximum of
202 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
203 */
204 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
205 status & PCC_CMD_COMPLETE_MASK, 3,
206 pcc_ss_data->deadline_us);
207
208 if (likely(!ret)) {
209 pcc_ss_data->platform_owns_pcc = false;
210 if (chk_err_bit && (status & PCC_ERROR_MASK))
211 ret = -EIO;
212 }
213
214 if (unlikely(ret))
215 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
216 pcc_ss_id, ret);
217
218 return ret;
219 }
220
221 /*
222 * This function transfers the ownership of the PCC to the platform
223 * So it must be called while holding write_lock(pcc_lock)
224 */
225 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
226 {
227 int ret = -EIO, i;
228 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
229 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
230 pcc_ss_data->pcc_comm_addr;
231 unsigned int time_delta;
232
233 /*
234 * For CMD_WRITE we know for a fact the caller should have checked
235 * the channel before writing to PCC space
236 */
237 if (cmd == CMD_READ) {
238 /*
239 * If there are pending cpc_writes, then we stole the channel
240 * before write completion, so first send a WRITE command to
241 * platform
242 */
243 if (pcc_ss_data->pending_pcc_write_cmd)
244 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
245
246 ret = check_pcc_chan(pcc_ss_id, false);
247 if (ret)
248 goto end;
249 } else /* CMD_WRITE */
250 pcc_ss_data->pending_pcc_write_cmd = FALSE;
251
252 /*
253 * Handle the Minimum Request Turnaround Time(MRTT)
254 * "The minimum amount of time that OSPM must wait after the completion
255 * of a command before issuing the next command, in microseconds"
256 */
257 if (pcc_ss_data->pcc_mrtt) {
258 time_delta = ktime_us_delta(ktime_get(),
259 pcc_ss_data->last_cmd_cmpl_time);
260 if (pcc_ss_data->pcc_mrtt > time_delta)
261 udelay(pcc_ss_data->pcc_mrtt - time_delta);
262 }
263
264 /*
265 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
266 * "The maximum number of periodic requests that the subspace channel can
267 * support, reported in commands per minute. 0 indicates no limitation."
268 *
269 * This parameter should be ideally zero or large enough so that it can
270 * handle maximum number of requests that all the cores in the system can
271 * collectively generate. If it is not, we will follow the spec and just
272 * not send the request to the platform after hitting the MPAR limit in
273 * any 60s window
274 */
275 if (pcc_ss_data->pcc_mpar) {
276 if (pcc_ss_data->mpar_count == 0) {
277 time_delta = ktime_ms_delta(ktime_get(),
278 pcc_ss_data->last_mpar_reset);
279 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
280 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
281 pcc_ss_id);
282 ret = -EIO;
283 goto end;
284 }
285 pcc_ss_data->last_mpar_reset = ktime_get();
286 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
287 }
288 pcc_ss_data->mpar_count--;
289 }
290
291 /* Write to the shared comm region. */
292 writew_relaxed(cmd, &generic_comm_base->command);
293
294 /* Flip CMD COMPLETE bit */
295 writew_relaxed(0, &generic_comm_base->status);
296
297 pcc_ss_data->platform_owns_pcc = true;
298
299 /* Ring doorbell */
300 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
301 if (ret < 0) {
302 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
303 pcc_ss_id, cmd, ret);
304 goto end;
305 }
306
307 /* wait for completion and check for PCC errro bit */
308 ret = check_pcc_chan(pcc_ss_id, true);
309
310 if (pcc_ss_data->pcc_mrtt)
311 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
312
313 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
314 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
315 else
316 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
317
318 end:
319 if (cmd == CMD_WRITE) {
320 if (unlikely(ret)) {
321 for_each_possible_cpu(i) {
322 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
323
324 if (!desc)
325 continue;
326
327 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
328 desc->write_cmd_status = ret;
329 }
330 }
331 pcc_ss_data->pcc_write_cnt++;
332 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
333 }
334
335 return ret;
336 }
337
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339 {
340 if (ret < 0)
341 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342 *(u16 *)msg, ret);
343 else
344 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345 *(u16 *)msg, ret);
346 }
347
348 static struct mbox_client cppc_mbox_cl = {
349 .tx_done = cppc_chan_tx_done,
350 .knows_txdone = true,
351 };
352
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354 {
355 int result = -EFAULT;
356 acpi_status status = AE_OK;
357 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359 struct acpi_buffer state = {0, NULL};
360 union acpi_object *psd = NULL;
361 struct acpi_psd_package *pdomain;
362
363 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
364 &buffer, ACPI_TYPE_PACKAGE);
365 if (status == AE_NOT_FOUND) /* _PSD is optional */
366 return 0;
367 if (ACPI_FAILURE(status))
368 return -ENODEV;
369
370 psd = buffer.pointer;
371 if (!psd || psd->package.count != 1) {
372 pr_debug("Invalid _PSD data\n");
373 goto end;
374 }
375
376 pdomain = &(cpc_ptr->domain_info);
377
378 state.length = sizeof(struct acpi_psd_package);
379 state.pointer = pdomain;
380
381 status = acpi_extract_package(&(psd->package.elements[0]),
382 &format, &state);
383 if (ACPI_FAILURE(status)) {
384 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
385 goto end;
386 }
387
388 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
389 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
390 goto end;
391 }
392
393 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
394 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
395 goto end;
396 }
397
398 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
399 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
400 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
401 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
402 goto end;
403 }
404
405 result = 0;
406 end:
407 kfree(buffer.pointer);
408 return result;
409 }
410
411 bool acpi_cpc_valid(void)
412 {
413 struct cpc_desc *cpc_ptr;
414 int cpu;
415
416 for_each_present_cpu(cpu) {
417 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
418 if (!cpc_ptr)
419 return false;
420 }
421
422 return true;
423 }
424 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
425
426 /**
427 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
428 * @cpu: Find all CPUs that share a domain with cpu.
429 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
430 *
431 * Return: 0 for success or negative value for err.
432 */
433 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
434 {
435 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
436 struct acpi_psd_package *match_pdomain;
437 struct acpi_psd_package *pdomain;
438 int count_target, i;
439
440 /*
441 * Now that we have _PSD data from all CPUs, let's setup P-state
442 * domain info.
443 */
444 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
445 if (!cpc_ptr)
446 return -EFAULT;
447
448 pdomain = &(cpc_ptr->domain_info);
449 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
450 if (pdomain->num_processors <= 1)
451 return 0;
452
453 /* Validate the Domain info */
454 count_target = pdomain->num_processors;
455 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
456 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
458 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
459 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
460 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
461
462 for_each_possible_cpu(i) {
463 if (i == cpu)
464 continue;
465
466 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
467 if (!match_cpc_ptr)
468 goto err_fault;
469
470 match_pdomain = &(match_cpc_ptr->domain_info);
471 if (match_pdomain->domain != pdomain->domain)
472 continue;
473
474 /* Here i and cpu are in the same domain */
475 if (match_pdomain->num_processors != count_target)
476 goto err_fault;
477
478 if (pdomain->coord_type != match_pdomain->coord_type)
479 goto err_fault;
480
481 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
482 }
483
484 return 0;
485
486 err_fault:
487 /* Assume no coordination on any error parsing domain info */
488 cpumask_clear(cpu_data->shared_cpu_map);
489 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
490 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
491
492 return -EFAULT;
493 }
494 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
495
496 static int register_pcc_channel(int pcc_ss_idx)
497 {
498 struct acpi_pcct_hw_reduced *cppc_ss;
499 u64 usecs_lat;
500
501 if (pcc_ss_idx >= 0) {
502 pcc_data[pcc_ss_idx]->pcc_channel =
503 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
504
505 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
506 pr_err("Failed to find PCC channel for subspace %d\n",
507 pcc_ss_idx);
508 return -ENODEV;
509 }
510
511 /*
512 * The PCC mailbox controller driver should
513 * have parsed the PCCT (global table of all
514 * PCC channels) and stored pointers to the
515 * subspace communication region in con_priv.
516 */
517 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
518
519 if (!cppc_ss) {
520 pr_err("No PCC subspace found for %d CPPC\n",
521 pcc_ss_idx);
522 return -ENODEV;
523 }
524
525 /*
526 * cppc_ss->latency is just a Nominal value. In reality
527 * the remote processor could be much slower to reply.
528 * So add an arbitrary amount of wait on top of Nominal.
529 */
530 usecs_lat = NUM_RETRIES * cppc_ss->latency;
531 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
532 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
533 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
534 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
535
536 pcc_data[pcc_ss_idx]->pcc_comm_addr =
537 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
538 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
539 pr_err("Failed to ioremap PCC comm region mem for %d\n",
540 pcc_ss_idx);
541 return -ENOMEM;
542 }
543
544 /* Set flag so that we don't come here for each CPU. */
545 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
546 }
547
548 return 0;
549 }
550
551 /**
552 * cpc_ffh_supported() - check if FFH reading supported
553 *
554 * Check if the architecture has support for functional fixed hardware
555 * read/write capability.
556 *
557 * Return: true for supported, false for not supported
558 */
559 bool __weak cpc_ffh_supported(void)
560 {
561 return false;
562 }
563
564 /**
565 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
566 *
567 * Check and allocate the cppc_pcc_data memory.
568 * In some processor configurations it is possible that same subspace
569 * is shared between multiple CPUs. This is seen especially in CPUs
570 * with hardware multi-threading support.
571 *
572 * Return: 0 for success, errno for failure
573 */
574 static int pcc_data_alloc(int pcc_ss_id)
575 {
576 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
577 return -EINVAL;
578
579 if (pcc_data[pcc_ss_id]) {
580 pcc_data[pcc_ss_id]->refcount++;
581 } else {
582 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
583 GFP_KERNEL);
584 if (!pcc_data[pcc_ss_id])
585 return -ENOMEM;
586 pcc_data[pcc_ss_id]->refcount++;
587 }
588
589 return 0;
590 }
591
592 /* Check if CPPC revision + num_ent combination is supported */
593 static bool is_cppc_supported(int revision, int num_ent)
594 {
595 int expected_num_ent;
596
597 switch (revision) {
598 case CPPC_V2_REV:
599 expected_num_ent = CPPC_V2_NUM_ENT;
600 break;
601 case CPPC_V3_REV:
602 expected_num_ent = CPPC_V3_NUM_ENT;
603 break;
604 default:
605 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
606 revision);
607 return false;
608 }
609
610 if (expected_num_ent != num_ent) {
611 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
612 num_ent, expected_num_ent, revision);
613 return false;
614 }
615
616 return true;
617 }
618
619 /*
620 * An example CPC table looks like the following.
621 *
622 * Name(_CPC, Package()
623 * {
624 * 17,
625 * NumEntries
626 * 1,
627 * // Revision
628 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
629 * // Highest Performance
630 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
631 * // Nominal Performance
632 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
633 * // Lowest Nonlinear Performance
634 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
635 * // Lowest Performance
636 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
637 * // Guaranteed Performance Register
638 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
639 * // Desired Performance Register
640 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
641 * ..
642 * ..
643 * ..
644 *
645 * }
646 * Each Register() encodes how to access that specific register.
647 * e.g. a sample PCC entry has the following encoding:
648 *
649 * Register (
650 * PCC,
651 * AddressSpaceKeyword
652 * 8,
653 * //RegisterBitWidth
654 * 8,
655 * //RegisterBitOffset
656 * 0x30,
657 * //RegisterAddress
658 * 9
659 * //AccessSize (subspace ID)
660 * 0
661 * )
662 * }
663 */
664
665 #ifndef init_freq_invariance_cppc
666 static inline void init_freq_invariance_cppc(void) { }
667 #endif
668
669 /**
670 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
671 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
672 *
673 * Return: 0 for success or negative value for err.
674 */
675 int acpi_cppc_processor_probe(struct acpi_processor *pr)
676 {
677 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
678 union acpi_object *out_obj, *cpc_obj;
679 struct cpc_desc *cpc_ptr;
680 struct cpc_reg *gas_t;
681 struct device *cpu_dev;
682 acpi_handle handle = pr->handle;
683 unsigned int num_ent, i, cpc_rev;
684 int pcc_subspace_id = -1;
685 acpi_status status;
686 int ret = -EFAULT;
687
688 /* Parse the ACPI _CPC table for this CPU. */
689 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
690 ACPI_TYPE_PACKAGE);
691 if (ACPI_FAILURE(status)) {
692 ret = -ENODEV;
693 goto out_buf_free;
694 }
695
696 out_obj = (union acpi_object *) output.pointer;
697
698 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
699 if (!cpc_ptr) {
700 ret = -ENOMEM;
701 goto out_buf_free;
702 }
703
704 /* First entry is NumEntries. */
705 cpc_obj = &out_obj->package.elements[0];
706 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
707 num_ent = cpc_obj->integer.value;
708 if (num_ent <= 1) {
709 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
710 num_ent, pr->id);
711 goto out_free;
712 }
713 } else {
714 pr_debug("Unexpected entry type(%d) for NumEntries\n",
715 cpc_obj->type);
716 goto out_free;
717 }
718 cpc_ptr->num_entries = num_ent;
719
720 /* Second entry should be revision. */
721 cpc_obj = &out_obj->package.elements[1];
722 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
723 cpc_rev = cpc_obj->integer.value;
724 } else {
725 pr_debug("Unexpected entry type(%d) for Revision\n",
726 cpc_obj->type);
727 goto out_free;
728 }
729 cpc_ptr->version = cpc_rev;
730
731 if (!is_cppc_supported(cpc_rev, num_ent))
732 goto out_free;
733
734 /* Iterate through remaining entries in _CPC */
735 for (i = 2; i < num_ent; i++) {
736 cpc_obj = &out_obj->package.elements[i];
737
738 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
739 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
740 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
741 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
742 gas_t = (struct cpc_reg *)
743 cpc_obj->buffer.pointer;
744
745 /*
746 * The PCC Subspace index is encoded inside
747 * the CPC table entries. The same PCC index
748 * will be used for all the PCC entries,
749 * so extract it only once.
750 */
751 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
752 if (pcc_subspace_id < 0) {
753 pcc_subspace_id = gas_t->access_width;
754 if (pcc_data_alloc(pcc_subspace_id))
755 goto out_free;
756 } else if (pcc_subspace_id != gas_t->access_width) {
757 pr_debug("Mismatched PCC ids.\n");
758 goto out_free;
759 }
760 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
761 if (gas_t->address) {
762 void __iomem *addr;
763
764 addr = ioremap(gas_t->address, gas_t->bit_width/8);
765 if (!addr)
766 goto out_free;
767 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
768 }
769 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
770 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
771 /*
772 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
773 * SystemIO doesn't implement 64-bit
774 * registers.
775 */
776 pr_debug("Invalid access width %d for SystemIO register\n",
777 gas_t->access_width);
778 goto out_free;
779 }
780 if (gas_t->address & OVER_16BTS_MASK) {
781 /* SystemIO registers use 16-bit integer addresses */
782 pr_debug("Invalid IO port %llu for SystemIO register\n",
783 gas_t->address);
784 goto out_free;
785 }
786 } else {
787 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
788 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
789 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
790 goto out_free;
791 }
792 }
793
794 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
795 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
796 } else {
797 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
798 goto out_free;
799 }
800 }
801 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
802
803 /*
804 * Initialize the remaining cpc_regs as unsupported.
805 * Example: In case FW exposes CPPC v2, the below loop will initialize
806 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
807 */
808 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
809 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
810 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
811 }
812
813
814 /* Store CPU Logical ID */
815 cpc_ptr->cpu_id = pr->id;
816
817 /* Parse PSD data for this CPU */
818 ret = acpi_get_psd(cpc_ptr, handle);
819 if (ret)
820 goto out_free;
821
822 /* Register PCC channel once for all PCC subspace ID. */
823 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
824 ret = register_pcc_channel(pcc_subspace_id);
825 if (ret)
826 goto out_free;
827
828 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
829 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
830 }
831
832 /* Everything looks okay */
833 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
834
835 /* Add per logical CPU nodes for reading its feedback counters. */
836 cpu_dev = get_cpu_device(pr->id);
837 if (!cpu_dev) {
838 ret = -EINVAL;
839 goto out_free;
840 }
841
842 /* Plug PSD data into this CPU's CPC descriptor. */
843 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
844
845 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
846 "acpi_cppc");
847 if (ret) {
848 per_cpu(cpc_desc_ptr, pr->id) = NULL;
849 kobject_put(&cpc_ptr->kobj);
850 goto out_free;
851 }
852
853 init_freq_invariance_cppc();
854
855 kfree(output.pointer);
856 return 0;
857
858 out_free:
859 /* Free all the mapped sys mem areas for this CPU */
860 for (i = 2; i < cpc_ptr->num_entries; i++) {
861 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
862
863 if (addr)
864 iounmap(addr);
865 }
866 kfree(cpc_ptr);
867
868 out_buf_free:
869 kfree(output.pointer);
870 return ret;
871 }
872 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
873
874 /**
875 * acpi_cppc_processor_exit - Cleanup CPC structs.
876 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
877 *
878 * Return: Void
879 */
880 void acpi_cppc_processor_exit(struct acpi_processor *pr)
881 {
882 struct cpc_desc *cpc_ptr;
883 unsigned int i;
884 void __iomem *addr;
885 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
886
887 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
888 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
889 pcc_data[pcc_ss_id]->refcount--;
890 if (!pcc_data[pcc_ss_id]->refcount) {
891 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
892 kfree(pcc_data[pcc_ss_id]);
893 pcc_data[pcc_ss_id] = NULL;
894 }
895 }
896 }
897
898 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
899 if (!cpc_ptr)
900 return;
901
902 /* Free all the mapped sys mem areas for this CPU */
903 for (i = 2; i < cpc_ptr->num_entries; i++) {
904 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
905 if (addr)
906 iounmap(addr);
907 }
908
909 kobject_put(&cpc_ptr->kobj);
910 kfree(cpc_ptr);
911 }
912 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
913
914 /**
915 * cpc_read_ffh() - Read FFH register
916 * @cpunum: CPU number to read
917 * @reg: cppc register information
918 * @val: place holder for return value
919 *
920 * Read bit_width bits from a specified address and bit_offset
921 *
922 * Return: 0 for success and error code
923 */
924 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
925 {
926 return -ENOTSUPP;
927 }
928
929 /**
930 * cpc_write_ffh() - Write FFH register
931 * @cpunum: CPU number to write
932 * @reg: cppc register information
933 * @val: value to write
934 *
935 * Write value of bit_width bits to a specified address and bit_offset
936 *
937 * Return: 0 for success and error code
938 */
939 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
940 {
941 return -ENOTSUPP;
942 }
943
944 /*
945 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
946 * as fast as possible. We have already mapped the PCC subspace during init, so
947 * we can directly write to it.
948 */
949
950 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
951 {
952 int ret_val = 0;
953 void __iomem *vaddr = NULL;
954 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
955 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
956
957 if (reg_res->type == ACPI_TYPE_INTEGER) {
958 *val = reg_res->cpc_entry.int_value;
959 return ret_val;
960 }
961
962 *val = 0;
963
964 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
965 u32 width = 8 << (reg->access_width - 1);
966 acpi_status status;
967
968 status = acpi_os_read_port((acpi_io_address)reg->address,
969 (u32 *)val, width);
970 if (ACPI_FAILURE(status)) {
971 pr_debug("Error: Failed to read SystemIO port %llx\n",
972 reg->address);
973 return -EFAULT;
974 }
975
976 return 0;
977 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
978 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
979 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
980 vaddr = reg_res->sys_mem_vaddr;
981 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
982 return cpc_read_ffh(cpu, reg, val);
983 else
984 return acpi_os_read_memory((acpi_physical_address)reg->address,
985 val, reg->bit_width);
986
987 switch (reg->bit_width) {
988 case 8:
989 *val = readb_relaxed(vaddr);
990 break;
991 case 16:
992 *val = readw_relaxed(vaddr);
993 break;
994 case 32:
995 *val = readl_relaxed(vaddr);
996 break;
997 case 64:
998 *val = readq_relaxed(vaddr);
999 break;
1000 default:
1001 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1002 reg->bit_width, pcc_ss_id);
1003 ret_val = -EFAULT;
1004 }
1005
1006 return ret_val;
1007 }
1008
1009 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1010 {
1011 int ret_val = 0;
1012 void __iomem *vaddr = NULL;
1013 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1014 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1015
1016 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1017 u32 width = 8 << (reg->access_width - 1);
1018 acpi_status status;
1019
1020 status = acpi_os_write_port((acpi_io_address)reg->address,
1021 (u32)val, width);
1022 if (ACPI_FAILURE(status)) {
1023 pr_debug("Error: Failed to write SystemIO port %llx\n",
1024 reg->address);
1025 return -EFAULT;
1026 }
1027
1028 return 0;
1029 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1030 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1031 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1032 vaddr = reg_res->sys_mem_vaddr;
1033 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1034 return cpc_write_ffh(cpu, reg, val);
1035 else
1036 return acpi_os_write_memory((acpi_physical_address)reg->address,
1037 val, reg->bit_width);
1038
1039 switch (reg->bit_width) {
1040 case 8:
1041 writeb_relaxed(val, vaddr);
1042 break;
1043 case 16:
1044 writew_relaxed(val, vaddr);
1045 break;
1046 case 32:
1047 writel_relaxed(val, vaddr);
1048 break;
1049 case 64:
1050 writeq_relaxed(val, vaddr);
1051 break;
1052 default:
1053 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1054 reg->bit_width, pcc_ss_id);
1055 ret_val = -EFAULT;
1056 break;
1057 }
1058
1059 return ret_val;
1060 }
1061
1062 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1063 {
1064 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1065 struct cpc_register_resource *reg;
1066
1067 if (!cpc_desc) {
1068 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1069 return -ENODEV;
1070 }
1071
1072 reg = &cpc_desc->cpc_regs[reg_idx];
1073
1074 if (CPC_IN_PCC(reg)) {
1075 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1076 struct cppc_pcc_data *pcc_ss_data = NULL;
1077 int ret = 0;
1078
1079 if (pcc_ss_id < 0)
1080 return -EIO;
1081
1082 pcc_ss_data = pcc_data[pcc_ss_id];
1083
1084 down_write(&pcc_ss_data->pcc_lock);
1085
1086 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1087 cpc_read(cpunum, reg, perf);
1088 else
1089 ret = -EIO;
1090
1091 up_write(&pcc_ss_data->pcc_lock);
1092
1093 return ret;
1094 }
1095
1096 cpc_read(cpunum, reg, perf);
1097
1098 return 0;
1099 }
1100
1101 /**
1102 * cppc_get_desired_perf - Get the desired performance register value.
1103 * @cpunum: CPU from which to get desired performance.
1104 * @desired_perf: Return address.
1105 *
1106 * Return: 0 for success, -EIO otherwise.
1107 */
1108 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1109 {
1110 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1111 }
1112 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1113
1114 /**
1115 * cppc_get_nominal_perf - Get the nominal performance register value.
1116 * @cpunum: CPU from which to get nominal performance.
1117 * @nominal_perf: Return address.
1118 *
1119 * Return: 0 for success, -EIO otherwise.
1120 */
1121 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1122 {
1123 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1124 }
1125
1126 /**
1127 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1128 * @cpunum: CPU from which to get capabilities info.
1129 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1130 *
1131 * Return: 0 for success with perf_caps populated else -ERRNO.
1132 */
1133 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1134 {
1135 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1136 struct cpc_register_resource *highest_reg, *lowest_reg,
1137 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1138 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1139 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1140 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1141 struct cppc_pcc_data *pcc_ss_data = NULL;
1142 int ret = 0, regs_in_pcc = 0;
1143
1144 if (!cpc_desc) {
1145 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1146 return -ENODEV;
1147 }
1148
1149 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1150 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1151 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1152 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1153 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1154 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1155 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1156
1157 /* Are any of the regs PCC ?*/
1158 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1159 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1160 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1161 if (pcc_ss_id < 0) {
1162 pr_debug("Invalid pcc_ss_id\n");
1163 return -ENODEV;
1164 }
1165 pcc_ss_data = pcc_data[pcc_ss_id];
1166 regs_in_pcc = 1;
1167 down_write(&pcc_ss_data->pcc_lock);
1168 /* Ring doorbell once to update PCC subspace */
1169 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1170 ret = -EIO;
1171 goto out_err;
1172 }
1173 }
1174
1175 cpc_read(cpunum, highest_reg, &high);
1176 perf_caps->highest_perf = high;
1177
1178 cpc_read(cpunum, lowest_reg, &low);
1179 perf_caps->lowest_perf = low;
1180
1181 cpc_read(cpunum, nominal_reg, &nom);
1182 perf_caps->nominal_perf = nom;
1183
1184 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1185 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1186 perf_caps->guaranteed_perf = 0;
1187 } else {
1188 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1189 perf_caps->guaranteed_perf = guaranteed;
1190 }
1191
1192 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1193 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1194
1195 if (!high || !low || !nom || !min_nonlinear)
1196 ret = -EFAULT;
1197
1198 /* Read optional lowest and nominal frequencies if present */
1199 if (CPC_SUPPORTED(low_freq_reg))
1200 cpc_read(cpunum, low_freq_reg, &low_f);
1201
1202 if (CPC_SUPPORTED(nom_freq_reg))
1203 cpc_read(cpunum, nom_freq_reg, &nom_f);
1204
1205 perf_caps->lowest_freq = low_f;
1206 perf_caps->nominal_freq = nom_f;
1207
1208
1209 out_err:
1210 if (regs_in_pcc)
1211 up_write(&pcc_ss_data->pcc_lock);
1212 return ret;
1213 }
1214 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1215
1216 /**
1217 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1218 * @cpunum: CPU from which to read counters.
1219 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1220 *
1221 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1222 */
1223 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1224 {
1225 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1226 struct cpc_register_resource *delivered_reg, *reference_reg,
1227 *ref_perf_reg, *ctr_wrap_reg;
1228 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1229 struct cppc_pcc_data *pcc_ss_data = NULL;
1230 u64 delivered, reference, ref_perf, ctr_wrap_time;
1231 int ret = 0, regs_in_pcc = 0;
1232
1233 if (!cpc_desc) {
1234 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1235 return -ENODEV;
1236 }
1237
1238 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1239 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1240 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1241 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1242
1243 /*
1244 * If reference perf register is not supported then we should
1245 * use the nominal perf value
1246 */
1247 if (!CPC_SUPPORTED(ref_perf_reg))
1248 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1249
1250 /* Are any of the regs PCC ?*/
1251 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1252 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1253 if (pcc_ss_id < 0) {
1254 pr_debug("Invalid pcc_ss_id\n");
1255 return -ENODEV;
1256 }
1257 pcc_ss_data = pcc_data[pcc_ss_id];
1258 down_write(&pcc_ss_data->pcc_lock);
1259 regs_in_pcc = 1;
1260 /* Ring doorbell once to update PCC subspace */
1261 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1262 ret = -EIO;
1263 goto out_err;
1264 }
1265 }
1266
1267 cpc_read(cpunum, delivered_reg, &delivered);
1268 cpc_read(cpunum, reference_reg, &reference);
1269 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1270
1271 /*
1272 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1273 * performance counters are assumed to never wrap during the lifetime of
1274 * platform
1275 */
1276 ctr_wrap_time = (u64)(~((u64)0));
1277 if (CPC_SUPPORTED(ctr_wrap_reg))
1278 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1279
1280 if (!delivered || !reference || !ref_perf) {
1281 ret = -EFAULT;
1282 goto out_err;
1283 }
1284
1285 perf_fb_ctrs->delivered = delivered;
1286 perf_fb_ctrs->reference = reference;
1287 perf_fb_ctrs->reference_perf = ref_perf;
1288 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1289 out_err:
1290 if (regs_in_pcc)
1291 up_write(&pcc_ss_data->pcc_lock);
1292 return ret;
1293 }
1294 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1295
1296 /**
1297 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1298 * Continuous Performance Control package EnableRegister field.
1299 * @cpu: CPU for which to enable CPPC register.
1300 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1301 *
1302 * Return: 0 for success, -ERRNO or -EIO otherwise.
1303 */
1304 int cppc_set_enable(int cpu, bool enable)
1305 {
1306 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1307 struct cpc_register_resource *enable_reg;
1308 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1309 struct cppc_pcc_data *pcc_ss_data = NULL;
1310 int ret = -EINVAL;
1311
1312 if (!cpc_desc) {
1313 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1314 return -EINVAL;
1315 }
1316
1317 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1318
1319 if (CPC_IN_PCC(enable_reg)) {
1320
1321 if (pcc_ss_id < 0)
1322 return -EIO;
1323
1324 ret = cpc_write(cpu, enable_reg, enable);
1325 if (ret)
1326 return ret;
1327
1328 pcc_ss_data = pcc_data[pcc_ss_id];
1329
1330 down_write(&pcc_ss_data->pcc_lock);
1331 /* after writing CPC, transfer the ownership of PCC to platfrom */
1332 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1333 up_write(&pcc_ss_data->pcc_lock);
1334 return ret;
1335 }
1336
1337 return cpc_write(cpu, enable_reg, enable);
1338 }
1339 EXPORT_SYMBOL_GPL(cppc_set_enable);
1340
1341 /**
1342 * cppc_set_perf - Set a CPU's performance controls.
1343 * @cpu: CPU for which to set performance controls.
1344 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1345 *
1346 * Return: 0 for success, -ERRNO otherwise.
1347 */
1348 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1349 {
1350 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1351 struct cpc_register_resource *desired_reg;
1352 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1353 struct cppc_pcc_data *pcc_ss_data = NULL;
1354 int ret = 0;
1355
1356 if (!cpc_desc) {
1357 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1358 return -ENODEV;
1359 }
1360
1361 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1362
1363 /*
1364 * This is Phase-I where we want to write to CPC registers
1365 * -> We want all CPUs to be able to execute this phase in parallel
1366 *
1367 * Since read_lock can be acquired by multiple CPUs simultaneously we
1368 * achieve that goal here
1369 */
1370 if (CPC_IN_PCC(desired_reg)) {
1371 if (pcc_ss_id < 0) {
1372 pr_debug("Invalid pcc_ss_id\n");
1373 return -ENODEV;
1374 }
1375 pcc_ss_data = pcc_data[pcc_ss_id];
1376 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1377 if (pcc_ss_data->platform_owns_pcc) {
1378 ret = check_pcc_chan(pcc_ss_id, false);
1379 if (ret) {
1380 up_read(&pcc_ss_data->pcc_lock);
1381 return ret;
1382 }
1383 }
1384 /*
1385 * Update the pending_write to make sure a PCC CMD_READ will not
1386 * arrive and steal the channel during the switch to write lock
1387 */
1388 pcc_ss_data->pending_pcc_write_cmd = true;
1389 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1390 cpc_desc->write_cmd_status = 0;
1391 }
1392
1393 /*
1394 * Skip writing MIN/MAX until Linux knows how to come up with
1395 * useful values.
1396 */
1397 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1398
1399 if (CPC_IN_PCC(desired_reg))
1400 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1401 /*
1402 * This is Phase-II where we transfer the ownership of PCC to Platform
1403 *
1404 * Short Summary: Basically if we think of a group of cppc_set_perf
1405 * requests that happened in short overlapping interval. The last CPU to
1406 * come out of Phase-I will enter Phase-II and ring the doorbell.
1407 *
1408 * We have the following requirements for Phase-II:
1409 * 1. We want to execute Phase-II only when there are no CPUs
1410 * currently executing in Phase-I
1411 * 2. Once we start Phase-II we want to avoid all other CPUs from
1412 * entering Phase-I.
1413 * 3. We want only one CPU among all those who went through Phase-I
1414 * to run phase-II
1415 *
1416 * If write_trylock fails to get the lock and doesn't transfer the
1417 * PCC ownership to the platform, then one of the following will be TRUE
1418 * 1. There is at-least one CPU in Phase-I which will later execute
1419 * write_trylock, so the CPUs in Phase-I will be responsible for
1420 * executing the Phase-II.
1421 * 2. Some other CPU has beaten this CPU to successfully execute the
1422 * write_trylock and has already acquired the write_lock. We know for a
1423 * fact it (other CPU acquiring the write_lock) couldn't have happened
1424 * before this CPU's Phase-I as we held the read_lock.
1425 * 3. Some other CPU executing pcc CMD_READ has stolen the
1426 * down_write, in which case, send_pcc_cmd will check for pending
1427 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1428 * So this CPU can be certain that its request will be delivered
1429 * So in all cases, this CPU knows that its request will be delivered
1430 * by another CPU and can return
1431 *
1432 * After getting the down_write we still need to check for
1433 * pending_pcc_write_cmd to take care of the following scenario
1434 * The thread running this code could be scheduled out between
1435 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1436 * could have delivered the request to Platform by triggering the
1437 * doorbell and transferred the ownership of PCC to platform. So this
1438 * avoids triggering an unnecessary doorbell and more importantly before
1439 * triggering the doorbell it makes sure that the PCC channel ownership
1440 * is still with OSPM.
1441 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1442 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1443 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1444 * case during a CMD_READ and if there are pending writes it delivers
1445 * the write command before servicing the read command
1446 */
1447 if (CPC_IN_PCC(desired_reg)) {
1448 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1449 /* Update only if there are pending write commands */
1450 if (pcc_ss_data->pending_pcc_write_cmd)
1451 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1452 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1453 } else
1454 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1455 wait_event(pcc_ss_data->pcc_write_wait_q,
1456 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1457
1458 /* send_pcc_cmd updates the status in case of failure */
1459 ret = cpc_desc->write_cmd_status;
1460 }
1461 return ret;
1462 }
1463 EXPORT_SYMBOL_GPL(cppc_set_perf);
1464
1465 /**
1466 * cppc_get_transition_latency - returns frequency transition latency in ns
1467 *
1468 * ACPI CPPC does not explicitly specify how a platform can specify the
1469 * transition latency for performance change requests. The closest we have
1470 * is the timing information from the PCCT tables which provides the info
1471 * on the number and frequency of PCC commands the platform can handle.
1472 */
1473 unsigned int cppc_get_transition_latency(int cpu_num)
1474 {
1475 /*
1476 * Expected transition latency is based on the PCCT timing values
1477 * Below are definition from ACPI spec:
1478 * pcc_nominal- Expected latency to process a command, in microseconds
1479 * pcc_mpar - The maximum number of periodic requests that the subspace
1480 * channel can support, reported in commands per minute. 0
1481 * indicates no limitation.
1482 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1483 * completion of a command before issuing the next command,
1484 * in microseconds.
1485 */
1486 unsigned int latency_ns = 0;
1487 struct cpc_desc *cpc_desc;
1488 struct cpc_register_resource *desired_reg;
1489 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1490 struct cppc_pcc_data *pcc_ss_data;
1491
1492 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1493 if (!cpc_desc)
1494 return CPUFREQ_ETERNAL;
1495
1496 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1497 if (!CPC_IN_PCC(desired_reg))
1498 return CPUFREQ_ETERNAL;
1499
1500 if (pcc_ss_id < 0)
1501 return CPUFREQ_ETERNAL;
1502
1503 pcc_ss_data = pcc_data[pcc_ss_id];
1504 if (pcc_ss_data->pcc_mpar)
1505 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1506
1507 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1508 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1509
1510 return latency_ns;
1511 }
1512 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);