]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/acpi/ec.c
KVM: arm64: vgic-v3: Log which GICv3 system registers are trapped
[mirror_ubuntu-zesty-kernel.git] / drivers / acpi / ec.c
1 /*
2 * ec.c - ACPI Embedded Controller Driver (v3)
3 *
4 * Copyright (C) 2001-2015 Intel Corporation
5 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
6 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
7 * 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 * 2004 Luming Yu <luming.yu@intel.com>
9 * 2001, 2002 Andy Grover <andrew.grover@intel.com>
10 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
11 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
12 *
13 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or (at
18 * your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 /* Uncomment next line to get verbose printout */
29 /* #define DEBUG */
30 #define pr_fmt(fmt) "ACPI : EC: " fmt
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/delay.h>
37 #include <linux/interrupt.h>
38 #include <linux/list.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/acpi.h>
42 #include <linux/dmi.h>
43 #include <asm/io.h>
44
45 #include "internal.h"
46
47 #define ACPI_EC_CLASS "embedded_controller"
48 #define ACPI_EC_DEVICE_NAME "Embedded Controller"
49 #define ACPI_EC_FILE_INFO "info"
50
51 /* EC status register */
52 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
53 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
54 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
55 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
56 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
57
58 /*
59 * The SCI_EVT clearing timing is not defined by the ACPI specification.
60 * This leads to lots of practical timing issues for the host EC driver.
61 * The following variations are defined (from the target EC firmware's
62 * perspective):
63 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
64 * target can clear SCI_EVT at any time so long as the host can see
65 * the indication by reading the status register (EC_SC). So the
66 * host should re-check SCI_EVT after the first time the SCI_EVT
67 * indication is seen, which is the same time the query request
68 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
69 * at any later time could indicate another event. Normally such
70 * kind of EC firmware has implemented an event queue and will
71 * return 0x00 to indicate "no outstanding event".
72 * QUERY: After seeing the query request (QR_EC) written to the command
73 * register (EC_CMD) by the host and having prepared the responding
74 * event value in the data register (EC_DATA), the target can safely
75 * clear SCI_EVT because the target can confirm that the current
76 * event is being handled by the host. The host then should check
77 * SCI_EVT right after reading the event response from the data
78 * register (EC_DATA).
79 * EVENT: After seeing the event response read from the data register
80 * (EC_DATA) by the host, the target can clear SCI_EVT. As the
81 * target requires time to notice the change in the data register
82 * (EC_DATA), the host may be required to wait additional guarding
83 * time before checking the SCI_EVT again. Such guarding may not be
84 * necessary if the host is notified via another IRQ.
85 */
86 #define ACPI_EC_EVT_TIMING_STATUS 0x00
87 #define ACPI_EC_EVT_TIMING_QUERY 0x01
88 #define ACPI_EC_EVT_TIMING_EVENT 0x02
89
90 /* EC commands */
91 enum ec_command {
92 ACPI_EC_COMMAND_READ = 0x80,
93 ACPI_EC_COMMAND_WRITE = 0x81,
94 ACPI_EC_BURST_ENABLE = 0x82,
95 ACPI_EC_BURST_DISABLE = 0x83,
96 ACPI_EC_COMMAND_QUERY = 0x84,
97 };
98
99 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
100 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
101 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
102 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
103 * when trying to clear the EC */
104 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
105
106 enum {
107 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
108 EC_FLAGS_QUERY_PENDING, /* Query is pending */
109 EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */
110 EC_FLAGS_GPE_HANDLER_INSTALLED, /* GPE handler installed */
111 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
112 EC_FLAGS_EVT_HANDLER_INSTALLED, /* _Qxx handlers installed */
113 EC_FLAGS_STARTED, /* Driver is started */
114 EC_FLAGS_STOPPED, /* Driver is stopped */
115 EC_FLAGS_COMMAND_STORM, /* GPE storms occurred to the
116 * current command processing */
117 };
118
119 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
120 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
121
122 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
123 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
124 module_param(ec_delay, uint, 0644);
125 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
126
127 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
128 module_param(ec_max_queries, uint, 0644);
129 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
130
131 static bool ec_busy_polling __read_mostly;
132 module_param(ec_busy_polling, bool, 0644);
133 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
134
135 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
136 module_param(ec_polling_guard, uint, 0644);
137 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
138
139 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
140
141 /*
142 * If the number of false interrupts per one transaction exceeds
143 * this threshold, will think there is a GPE storm happened and
144 * will disable the GPE for normal transaction.
145 */
146 static unsigned int ec_storm_threshold __read_mostly = 8;
147 module_param(ec_storm_threshold, uint, 0644);
148 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
149
150 static bool ec_freeze_events __read_mostly = true;
151 module_param(ec_freeze_events, bool, 0644);
152 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
153
154 struct acpi_ec_query_handler {
155 struct list_head node;
156 acpi_ec_query_func func;
157 acpi_handle handle;
158 void *data;
159 u8 query_bit;
160 struct kref kref;
161 };
162
163 struct transaction {
164 const u8 *wdata;
165 u8 *rdata;
166 unsigned short irq_count;
167 u8 command;
168 u8 wi;
169 u8 ri;
170 u8 wlen;
171 u8 rlen;
172 u8 flags;
173 };
174
175 struct acpi_ec_query {
176 struct transaction transaction;
177 struct work_struct work;
178 struct acpi_ec_query_handler *handler;
179 };
180
181 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
182 static void advance_transaction(struct acpi_ec *ec);
183 static void acpi_ec_event_handler(struct work_struct *work);
184 static void acpi_ec_event_processor(struct work_struct *work);
185
186 struct acpi_ec *boot_ec, *first_ec;
187 EXPORT_SYMBOL(first_ec);
188 static bool boot_ec_is_ecdt = false;
189 static struct workqueue_struct *ec_query_wq;
190
191 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
192 static int EC_FLAGS_QUERY_HANDSHAKE; /* Needs QR_EC issued when SCI_EVT set */
193 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
194
195 /* --------------------------------------------------------------------------
196 * Logging/Debugging
197 * -------------------------------------------------------------------------- */
198
199 /*
200 * Splitters used by the developers to track the boundary of the EC
201 * handling processes.
202 */
203 #ifdef DEBUG
204 #define EC_DBG_SEP " "
205 #define EC_DBG_DRV "+++++"
206 #define EC_DBG_STM "====="
207 #define EC_DBG_REQ "*****"
208 #define EC_DBG_EVT "#####"
209 #else
210 #define EC_DBG_SEP ""
211 #define EC_DBG_DRV
212 #define EC_DBG_STM
213 #define EC_DBG_REQ
214 #define EC_DBG_EVT
215 #endif
216
217 #define ec_log_raw(fmt, ...) \
218 pr_info(fmt "\n", ##__VA_ARGS__)
219 #define ec_dbg_raw(fmt, ...) \
220 pr_debug(fmt "\n", ##__VA_ARGS__)
221 #define ec_log(filter, fmt, ...) \
222 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
223 #define ec_dbg(filter, fmt, ...) \
224 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
225
226 #define ec_log_drv(fmt, ...) \
227 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
228 #define ec_dbg_drv(fmt, ...) \
229 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
230 #define ec_dbg_stm(fmt, ...) \
231 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
232 #define ec_dbg_req(fmt, ...) \
233 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
234 #define ec_dbg_evt(fmt, ...) \
235 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
236 #define ec_dbg_ref(ec, fmt, ...) \
237 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
238
239 /* --------------------------------------------------------------------------
240 * Device Flags
241 * -------------------------------------------------------------------------- */
242
243 static bool acpi_ec_started(struct acpi_ec *ec)
244 {
245 return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
246 !test_bit(EC_FLAGS_STOPPED, &ec->flags);
247 }
248
249 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
250 {
251 /*
252 * There is an OSPM early stage logic. During the early stages
253 * (boot/resume), OSPMs shouldn't enable the event handling, only
254 * the EC transactions are allowed to be performed.
255 */
256 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
257 return false;
258 /*
259 * However, disabling the event handling is experimental for late
260 * stage (suspend), and is controlled by the boot parameter of
261 * "ec_freeze_events":
262 * 1. true: The EC event handling is disabled before entering
263 * the noirq stage.
264 * 2. false: The EC event handling is automatically disabled as
265 * soon as the EC driver is stopped.
266 */
267 if (ec_freeze_events)
268 return acpi_ec_started(ec);
269 else
270 return test_bit(EC_FLAGS_STARTED, &ec->flags);
271 }
272
273 static bool acpi_ec_flushed(struct acpi_ec *ec)
274 {
275 return ec->reference_count == 1;
276 }
277
278 /* --------------------------------------------------------------------------
279 * EC Registers
280 * -------------------------------------------------------------------------- */
281
282 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
283 {
284 u8 x = inb(ec->command_addr);
285
286 ec_dbg_raw("EC_SC(R) = 0x%2.2x "
287 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
288 x,
289 !!(x & ACPI_EC_FLAG_SCI),
290 !!(x & ACPI_EC_FLAG_BURST),
291 !!(x & ACPI_EC_FLAG_CMD),
292 !!(x & ACPI_EC_FLAG_IBF),
293 !!(x & ACPI_EC_FLAG_OBF));
294 return x;
295 }
296
297 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
298 {
299 u8 x = inb(ec->data_addr);
300
301 ec->timestamp = jiffies;
302 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
303 return x;
304 }
305
306 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
307 {
308 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
309 outb(command, ec->command_addr);
310 ec->timestamp = jiffies;
311 }
312
313 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
314 {
315 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
316 outb(data, ec->data_addr);
317 ec->timestamp = jiffies;
318 }
319
320 #ifdef DEBUG
321 static const char *acpi_ec_cmd_string(u8 cmd)
322 {
323 switch (cmd) {
324 case 0x80:
325 return "RD_EC";
326 case 0x81:
327 return "WR_EC";
328 case 0x82:
329 return "BE_EC";
330 case 0x83:
331 return "BD_EC";
332 case 0x84:
333 return "QR_EC";
334 }
335 return "UNKNOWN";
336 }
337 #else
338 #define acpi_ec_cmd_string(cmd) "UNDEF"
339 #endif
340
341 /* --------------------------------------------------------------------------
342 * GPE Registers
343 * -------------------------------------------------------------------------- */
344
345 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
346 {
347 acpi_event_status gpe_status = 0;
348
349 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
350 return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
351 }
352
353 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
354 {
355 if (open)
356 acpi_enable_gpe(NULL, ec->gpe);
357 else {
358 BUG_ON(ec->reference_count < 1);
359 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
360 }
361 if (acpi_ec_is_gpe_raised(ec)) {
362 /*
363 * On some platforms, EN=1 writes cannot trigger GPE. So
364 * software need to manually trigger a pseudo GPE event on
365 * EN=1 writes.
366 */
367 ec_dbg_raw("Polling quirk");
368 advance_transaction(ec);
369 }
370 }
371
372 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
373 {
374 if (close)
375 acpi_disable_gpe(NULL, ec->gpe);
376 else {
377 BUG_ON(ec->reference_count < 1);
378 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
379 }
380 }
381
382 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
383 {
384 /*
385 * GPE STS is a W1C register, which means:
386 * 1. Software can clear it without worrying about clearing other
387 * GPEs' STS bits when the hardware sets them in parallel.
388 * 2. As long as software can ensure only clearing it when it is
389 * set, hardware won't set it in parallel.
390 * So software can clear GPE in any contexts.
391 * Warning: do not move the check into advance_transaction() as the
392 * EC commands will be sent without GPE raised.
393 */
394 if (!acpi_ec_is_gpe_raised(ec))
395 return;
396 acpi_clear_gpe(NULL, ec->gpe);
397 }
398
399 /* --------------------------------------------------------------------------
400 * Transaction Management
401 * -------------------------------------------------------------------------- */
402
403 static void acpi_ec_submit_request(struct acpi_ec *ec)
404 {
405 ec->reference_count++;
406 if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) &&
407 ec->reference_count == 1)
408 acpi_ec_enable_gpe(ec, true);
409 }
410
411 static void acpi_ec_complete_request(struct acpi_ec *ec)
412 {
413 bool flushed = false;
414
415 ec->reference_count--;
416 if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) &&
417 ec->reference_count == 0)
418 acpi_ec_disable_gpe(ec, true);
419 flushed = acpi_ec_flushed(ec);
420 if (flushed)
421 wake_up(&ec->wait);
422 }
423
424 static void acpi_ec_set_storm(struct acpi_ec *ec, u8 flag)
425 {
426 if (!test_bit(flag, &ec->flags)) {
427 acpi_ec_disable_gpe(ec, false);
428 ec_dbg_drv("Polling enabled");
429 set_bit(flag, &ec->flags);
430 }
431 }
432
433 static void acpi_ec_clear_storm(struct acpi_ec *ec, u8 flag)
434 {
435 if (test_bit(flag, &ec->flags)) {
436 clear_bit(flag, &ec->flags);
437 acpi_ec_enable_gpe(ec, false);
438 ec_dbg_drv("Polling disabled");
439 }
440 }
441
442 /*
443 * acpi_ec_submit_flushable_request() - Increase the reference count unless
444 * the flush operation is not in
445 * progress
446 * @ec: the EC device
447 *
448 * This function must be used before taking a new action that should hold
449 * the reference count. If this function returns false, then the action
450 * must be discarded or it will prevent the flush operation from being
451 * completed.
452 */
453 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
454 {
455 if (!acpi_ec_started(ec))
456 return false;
457 acpi_ec_submit_request(ec);
458 return true;
459 }
460
461 static void acpi_ec_submit_query(struct acpi_ec *ec)
462 {
463 if (acpi_ec_event_enabled(ec) &&
464 !test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
465 ec_dbg_evt("Command(%s) submitted/blocked",
466 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
467 ec->nr_pending_queries++;
468 schedule_work(&ec->work);
469 }
470 }
471
472 static void acpi_ec_complete_query(struct acpi_ec *ec)
473 {
474 if (test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
475 clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags);
476 ec_dbg_evt("Command(%s) unblocked",
477 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
478 }
479 }
480
481 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
482 {
483 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
484 ec_log_drv("event unblocked");
485 if (!test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
486 advance_transaction(ec);
487 }
488
489 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
490 {
491 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
492 ec_log_drv("event blocked");
493 }
494
495 /*
496 * Process _Q events that might have accumulated in the EC.
497 * Run with locked ec mutex.
498 */
499 static void acpi_ec_clear(struct acpi_ec *ec)
500 {
501 int i, status;
502 u8 value = 0;
503
504 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
505 status = acpi_ec_query(ec, &value);
506 if (status || !value)
507 break;
508 }
509 if (unlikely(i == ACPI_EC_CLEAR_MAX))
510 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
511 else
512 pr_info("%d stale EC events cleared\n", i);
513 }
514
515 static void acpi_ec_enable_event(struct acpi_ec *ec)
516 {
517 unsigned long flags;
518
519 spin_lock_irqsave(&ec->lock, flags);
520 if (acpi_ec_started(ec))
521 __acpi_ec_enable_event(ec);
522 spin_unlock_irqrestore(&ec->lock, flags);
523
524 /* Drain additional events if hardware requires that */
525 if (EC_FLAGS_CLEAR_ON_RESUME)
526 acpi_ec_clear(ec);
527 }
528
529 #ifdef CONFIG_PM_SLEEP
530 static bool acpi_ec_query_flushed(struct acpi_ec *ec)
531 {
532 bool flushed;
533 unsigned long flags;
534
535 spin_lock_irqsave(&ec->lock, flags);
536 flushed = !ec->nr_pending_queries;
537 spin_unlock_irqrestore(&ec->lock, flags);
538 return flushed;
539 }
540
541 static void __acpi_ec_flush_event(struct acpi_ec *ec)
542 {
543 /*
544 * When ec_freeze_events is true, we need to flush events in
545 * the proper position before entering the noirq stage.
546 */
547 wait_event(ec->wait, acpi_ec_query_flushed(ec));
548 if (ec_query_wq)
549 flush_workqueue(ec_query_wq);
550 }
551
552 static void acpi_ec_disable_event(struct acpi_ec *ec)
553 {
554 unsigned long flags;
555
556 spin_lock_irqsave(&ec->lock, flags);
557 __acpi_ec_disable_event(ec);
558 spin_unlock_irqrestore(&ec->lock, flags);
559 __acpi_ec_flush_event(ec);
560 }
561 #endif /* CONFIG_PM_SLEEP */
562
563 static bool acpi_ec_guard_event(struct acpi_ec *ec)
564 {
565 bool guarded = true;
566 unsigned long flags;
567
568 spin_lock_irqsave(&ec->lock, flags);
569 /*
570 * If firmware SCI_EVT clearing timing is "event", we actually
571 * don't know when the SCI_EVT will be cleared by firmware after
572 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
573 * acceptable period.
574 *
575 * The guarding period begins when EC_FLAGS_QUERY_PENDING is
576 * flagged, which means SCI_EVT check has just been performed.
577 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
578 * guarding should have already been performed (via
579 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
580 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
581 * ACPI_EC_COMMAND_POLL state immediately.
582 */
583 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
584 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
585 !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
586 (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
587 guarded = false;
588 spin_unlock_irqrestore(&ec->lock, flags);
589 return guarded;
590 }
591
592 static int ec_transaction_polled(struct acpi_ec *ec)
593 {
594 unsigned long flags;
595 int ret = 0;
596
597 spin_lock_irqsave(&ec->lock, flags);
598 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
599 ret = 1;
600 spin_unlock_irqrestore(&ec->lock, flags);
601 return ret;
602 }
603
604 static int ec_transaction_completed(struct acpi_ec *ec)
605 {
606 unsigned long flags;
607 int ret = 0;
608
609 spin_lock_irqsave(&ec->lock, flags);
610 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
611 ret = 1;
612 spin_unlock_irqrestore(&ec->lock, flags);
613 return ret;
614 }
615
616 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
617 {
618 ec->curr->flags |= flag;
619 if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
620 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
621 flag == ACPI_EC_COMMAND_POLL)
622 acpi_ec_complete_query(ec);
623 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
624 flag == ACPI_EC_COMMAND_COMPLETE)
625 acpi_ec_complete_query(ec);
626 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
627 flag == ACPI_EC_COMMAND_COMPLETE)
628 set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
629 }
630 }
631
632 static void advance_transaction(struct acpi_ec *ec)
633 {
634 struct transaction *t;
635 u8 status;
636 bool wakeup = false;
637
638 ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
639 smp_processor_id());
640 /*
641 * By always clearing STS before handling all indications, we can
642 * ensure a hardware STS 0->1 change after this clearing can always
643 * trigger a GPE interrupt.
644 */
645 acpi_ec_clear_gpe(ec);
646 status = acpi_ec_read_status(ec);
647 t = ec->curr;
648 /*
649 * Another IRQ or a guarded polling mode advancement is detected,
650 * the next QR_EC submission is then allowed.
651 */
652 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
653 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
654 (!ec->nr_pending_queries ||
655 test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
656 clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
657 acpi_ec_complete_query(ec);
658 }
659 }
660 if (!t)
661 goto err;
662 if (t->flags & ACPI_EC_COMMAND_POLL) {
663 if (t->wlen > t->wi) {
664 if ((status & ACPI_EC_FLAG_IBF) == 0)
665 acpi_ec_write_data(ec, t->wdata[t->wi++]);
666 else
667 goto err;
668 } else if (t->rlen > t->ri) {
669 if ((status & ACPI_EC_FLAG_OBF) == 1) {
670 t->rdata[t->ri++] = acpi_ec_read_data(ec);
671 if (t->rlen == t->ri) {
672 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
673 if (t->command == ACPI_EC_COMMAND_QUERY)
674 ec_dbg_evt("Command(%s) completed by hardware",
675 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
676 wakeup = true;
677 }
678 } else
679 goto err;
680 } else if (t->wlen == t->wi &&
681 (status & ACPI_EC_FLAG_IBF) == 0) {
682 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
683 wakeup = true;
684 }
685 goto out;
686 } else {
687 if (EC_FLAGS_QUERY_HANDSHAKE &&
688 !(status & ACPI_EC_FLAG_SCI) &&
689 (t->command == ACPI_EC_COMMAND_QUERY)) {
690 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
691 t->rdata[t->ri++] = 0x00;
692 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
693 ec_dbg_evt("Command(%s) completed by software",
694 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
695 wakeup = true;
696 } else if ((status & ACPI_EC_FLAG_IBF) == 0) {
697 acpi_ec_write_cmd(ec, t->command);
698 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
699 } else
700 goto err;
701 goto out;
702 }
703 err:
704 /*
705 * If SCI bit is set, then don't think it's a false IRQ
706 * otherwise will take a not handled IRQ as a false one.
707 */
708 if (!(status & ACPI_EC_FLAG_SCI)) {
709 if (in_interrupt() && t) {
710 if (t->irq_count < ec_storm_threshold)
711 ++t->irq_count;
712 /* Allow triggering on 0 threshold */
713 if (t->irq_count == ec_storm_threshold)
714 acpi_ec_set_storm(ec, EC_FLAGS_COMMAND_STORM);
715 }
716 }
717 out:
718 if (status & ACPI_EC_FLAG_SCI)
719 acpi_ec_submit_query(ec);
720 if (wakeup && in_interrupt())
721 wake_up(&ec->wait);
722 }
723
724 static void start_transaction(struct acpi_ec *ec)
725 {
726 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
727 ec->curr->flags = 0;
728 }
729
730 static int ec_guard(struct acpi_ec *ec)
731 {
732 unsigned long guard = usecs_to_jiffies(ec->polling_guard);
733 unsigned long timeout = ec->timestamp + guard;
734
735 /* Ensure guarding period before polling EC status */
736 do {
737 if (ec->busy_polling) {
738 /* Perform busy polling */
739 if (ec_transaction_completed(ec))
740 return 0;
741 udelay(jiffies_to_usecs(guard));
742 } else {
743 /*
744 * Perform wait polling
745 * 1. Wait the transaction to be completed by the
746 * GPE handler after the transaction enters
747 * ACPI_EC_COMMAND_POLL state.
748 * 2. A special guarding logic is also required
749 * for event clearing mode "event" before the
750 * transaction enters ACPI_EC_COMMAND_POLL
751 * state.
752 */
753 if (!ec_transaction_polled(ec) &&
754 !acpi_ec_guard_event(ec))
755 break;
756 if (wait_event_timeout(ec->wait,
757 ec_transaction_completed(ec),
758 guard))
759 return 0;
760 }
761 } while (time_before(jiffies, timeout));
762 return -ETIME;
763 }
764
765 static int ec_poll(struct acpi_ec *ec)
766 {
767 unsigned long flags;
768 int repeat = 5; /* number of command restarts */
769
770 while (repeat--) {
771 unsigned long delay = jiffies +
772 msecs_to_jiffies(ec_delay);
773 do {
774 if (!ec_guard(ec))
775 return 0;
776 spin_lock_irqsave(&ec->lock, flags);
777 advance_transaction(ec);
778 spin_unlock_irqrestore(&ec->lock, flags);
779 } while (time_before(jiffies, delay));
780 pr_debug("controller reset, restart transaction\n");
781 spin_lock_irqsave(&ec->lock, flags);
782 start_transaction(ec);
783 spin_unlock_irqrestore(&ec->lock, flags);
784 }
785 return -ETIME;
786 }
787
788 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
789 struct transaction *t)
790 {
791 unsigned long tmp;
792 int ret = 0;
793
794 /* start transaction */
795 spin_lock_irqsave(&ec->lock, tmp);
796 /* Enable GPE for command processing (IBF=0/OBF=1) */
797 if (!acpi_ec_submit_flushable_request(ec)) {
798 ret = -EINVAL;
799 goto unlock;
800 }
801 ec_dbg_ref(ec, "Increase command");
802 /* following two actions should be kept atomic */
803 ec->curr = t;
804 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
805 start_transaction(ec);
806 spin_unlock_irqrestore(&ec->lock, tmp);
807
808 ret = ec_poll(ec);
809
810 spin_lock_irqsave(&ec->lock, tmp);
811 if (t->irq_count == ec_storm_threshold)
812 acpi_ec_clear_storm(ec, EC_FLAGS_COMMAND_STORM);
813 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
814 ec->curr = NULL;
815 /* Disable GPE for command processing (IBF=0/OBF=1) */
816 acpi_ec_complete_request(ec);
817 ec_dbg_ref(ec, "Decrease command");
818 unlock:
819 spin_unlock_irqrestore(&ec->lock, tmp);
820 return ret;
821 }
822
823 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
824 {
825 int status;
826 u32 glk;
827
828 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
829 return -EINVAL;
830 if (t->rdata)
831 memset(t->rdata, 0, t->rlen);
832
833 mutex_lock(&ec->mutex);
834 if (ec->global_lock) {
835 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
836 if (ACPI_FAILURE(status)) {
837 status = -ENODEV;
838 goto unlock;
839 }
840 }
841
842 status = acpi_ec_transaction_unlocked(ec, t);
843
844 if (ec->global_lock)
845 acpi_release_global_lock(glk);
846 unlock:
847 mutex_unlock(&ec->mutex);
848 return status;
849 }
850
851 static int acpi_ec_burst_enable(struct acpi_ec *ec)
852 {
853 u8 d;
854 struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
855 .wdata = NULL, .rdata = &d,
856 .wlen = 0, .rlen = 1};
857
858 return acpi_ec_transaction(ec, &t);
859 }
860
861 static int acpi_ec_burst_disable(struct acpi_ec *ec)
862 {
863 struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
864 .wdata = NULL, .rdata = NULL,
865 .wlen = 0, .rlen = 0};
866
867 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
868 acpi_ec_transaction(ec, &t) : 0;
869 }
870
871 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
872 {
873 int result;
874 u8 d;
875 struct transaction t = {.command = ACPI_EC_COMMAND_READ,
876 .wdata = &address, .rdata = &d,
877 .wlen = 1, .rlen = 1};
878
879 result = acpi_ec_transaction(ec, &t);
880 *data = d;
881 return result;
882 }
883
884 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
885 {
886 u8 wdata[2] = { address, data };
887 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
888 .wdata = wdata, .rdata = NULL,
889 .wlen = 2, .rlen = 0};
890
891 return acpi_ec_transaction(ec, &t);
892 }
893
894 int ec_read(u8 addr, u8 *val)
895 {
896 int err;
897 u8 temp_data;
898
899 if (!first_ec)
900 return -ENODEV;
901
902 err = acpi_ec_read(first_ec, addr, &temp_data);
903
904 if (!err) {
905 *val = temp_data;
906 return 0;
907 }
908 return err;
909 }
910 EXPORT_SYMBOL(ec_read);
911
912 int ec_write(u8 addr, u8 val)
913 {
914 int err;
915
916 if (!first_ec)
917 return -ENODEV;
918
919 err = acpi_ec_write(first_ec, addr, val);
920
921 return err;
922 }
923 EXPORT_SYMBOL(ec_write);
924
925 int ec_transaction(u8 command,
926 const u8 *wdata, unsigned wdata_len,
927 u8 *rdata, unsigned rdata_len)
928 {
929 struct transaction t = {.command = command,
930 .wdata = wdata, .rdata = rdata,
931 .wlen = wdata_len, .rlen = rdata_len};
932
933 if (!first_ec)
934 return -ENODEV;
935
936 return acpi_ec_transaction(first_ec, &t);
937 }
938 EXPORT_SYMBOL(ec_transaction);
939
940 /* Get the handle to the EC device */
941 acpi_handle ec_get_handle(void)
942 {
943 if (!first_ec)
944 return NULL;
945 return first_ec->handle;
946 }
947 EXPORT_SYMBOL(ec_get_handle);
948
949 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
950 {
951 unsigned long flags;
952
953 spin_lock_irqsave(&ec->lock, flags);
954 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
955 ec_dbg_drv("Starting EC");
956 /* Enable GPE for event processing (SCI_EVT=1) */
957 if (!resuming) {
958 acpi_ec_submit_request(ec);
959 ec_dbg_ref(ec, "Increase driver");
960 }
961 ec_log_drv("EC started");
962 }
963 spin_unlock_irqrestore(&ec->lock, flags);
964 }
965
966 static bool acpi_ec_stopped(struct acpi_ec *ec)
967 {
968 unsigned long flags;
969 bool flushed;
970
971 spin_lock_irqsave(&ec->lock, flags);
972 flushed = acpi_ec_flushed(ec);
973 spin_unlock_irqrestore(&ec->lock, flags);
974 return flushed;
975 }
976
977 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
978 {
979 unsigned long flags;
980
981 spin_lock_irqsave(&ec->lock, flags);
982 if (acpi_ec_started(ec)) {
983 ec_dbg_drv("Stopping EC");
984 set_bit(EC_FLAGS_STOPPED, &ec->flags);
985 spin_unlock_irqrestore(&ec->lock, flags);
986 wait_event(ec->wait, acpi_ec_stopped(ec));
987 spin_lock_irqsave(&ec->lock, flags);
988 /* Disable GPE for event processing (SCI_EVT=1) */
989 if (!suspending) {
990 acpi_ec_complete_request(ec);
991 ec_dbg_ref(ec, "Decrease driver");
992 } else if (!ec_freeze_events)
993 __acpi_ec_disable_event(ec);
994 clear_bit(EC_FLAGS_STARTED, &ec->flags);
995 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
996 ec_log_drv("EC stopped");
997 }
998 spin_unlock_irqrestore(&ec->lock, flags);
999 }
1000
1001 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1002 {
1003 unsigned long flags;
1004
1005 spin_lock_irqsave(&ec->lock, flags);
1006 ec->busy_polling = true;
1007 ec->polling_guard = 0;
1008 ec_log_drv("interrupt blocked");
1009 spin_unlock_irqrestore(&ec->lock, flags);
1010 }
1011
1012 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1013 {
1014 unsigned long flags;
1015
1016 spin_lock_irqsave(&ec->lock, flags);
1017 ec->busy_polling = ec_busy_polling;
1018 ec->polling_guard = ec_polling_guard;
1019 ec_log_drv("interrupt unblocked");
1020 spin_unlock_irqrestore(&ec->lock, flags);
1021 }
1022
1023 void acpi_ec_block_transactions(void)
1024 {
1025 struct acpi_ec *ec = first_ec;
1026
1027 if (!ec)
1028 return;
1029
1030 mutex_lock(&ec->mutex);
1031 /* Prevent transactions from being carried out */
1032 acpi_ec_stop(ec, true);
1033 mutex_unlock(&ec->mutex);
1034 }
1035
1036 void acpi_ec_unblock_transactions(void)
1037 {
1038 /*
1039 * Allow transactions to happen again (this function is called from
1040 * atomic context during wakeup, so we don't need to acquire the mutex).
1041 */
1042 if (first_ec)
1043 acpi_ec_start(first_ec, true);
1044 }
1045
1046 /* --------------------------------------------------------------------------
1047 Event Management
1048 -------------------------------------------------------------------------- */
1049 static struct acpi_ec_query_handler *
1050 acpi_ec_get_query_handler(struct acpi_ec_query_handler *handler)
1051 {
1052 if (handler)
1053 kref_get(&handler->kref);
1054 return handler;
1055 }
1056
1057 static struct acpi_ec_query_handler *
1058 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1059 {
1060 struct acpi_ec_query_handler *handler;
1061 bool found = false;
1062
1063 mutex_lock(&ec->mutex);
1064 list_for_each_entry(handler, &ec->list, node) {
1065 if (value == handler->query_bit) {
1066 found = true;
1067 break;
1068 }
1069 }
1070 mutex_unlock(&ec->mutex);
1071 return found ? acpi_ec_get_query_handler(handler) : NULL;
1072 }
1073
1074 static void acpi_ec_query_handler_release(struct kref *kref)
1075 {
1076 struct acpi_ec_query_handler *handler =
1077 container_of(kref, struct acpi_ec_query_handler, kref);
1078
1079 kfree(handler);
1080 }
1081
1082 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1083 {
1084 kref_put(&handler->kref, acpi_ec_query_handler_release);
1085 }
1086
1087 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1088 acpi_handle handle, acpi_ec_query_func func,
1089 void *data)
1090 {
1091 struct acpi_ec_query_handler *handler =
1092 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1093
1094 if (!handler)
1095 return -ENOMEM;
1096
1097 handler->query_bit = query_bit;
1098 handler->handle = handle;
1099 handler->func = func;
1100 handler->data = data;
1101 mutex_lock(&ec->mutex);
1102 kref_init(&handler->kref);
1103 list_add(&handler->node, &ec->list);
1104 mutex_unlock(&ec->mutex);
1105 return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1108
1109 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1110 bool remove_all, u8 query_bit)
1111 {
1112 struct acpi_ec_query_handler *handler, *tmp;
1113 LIST_HEAD(free_list);
1114
1115 mutex_lock(&ec->mutex);
1116 list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1117 if (remove_all || query_bit == handler->query_bit) {
1118 list_del_init(&handler->node);
1119 list_add(&handler->node, &free_list);
1120 }
1121 }
1122 mutex_unlock(&ec->mutex);
1123 list_for_each_entry_safe(handler, tmp, &free_list, node)
1124 acpi_ec_put_query_handler(handler);
1125 }
1126
1127 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1128 {
1129 acpi_ec_remove_query_handlers(ec, false, query_bit);
1130 }
1131 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1132
1133 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1134 {
1135 struct acpi_ec_query *q;
1136 struct transaction *t;
1137
1138 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1139 if (!q)
1140 return NULL;
1141 INIT_WORK(&q->work, acpi_ec_event_processor);
1142 t = &q->transaction;
1143 t->command = ACPI_EC_COMMAND_QUERY;
1144 t->rdata = pval;
1145 t->rlen = 1;
1146 return q;
1147 }
1148
1149 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1150 {
1151 if (q) {
1152 if (q->handler)
1153 acpi_ec_put_query_handler(q->handler);
1154 kfree(q);
1155 }
1156 }
1157
1158 static void acpi_ec_event_processor(struct work_struct *work)
1159 {
1160 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1161 struct acpi_ec_query_handler *handler = q->handler;
1162
1163 ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1164 if (handler->func)
1165 handler->func(handler->data);
1166 else if (handler->handle)
1167 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1168 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1169 acpi_ec_delete_query(q);
1170 }
1171
1172 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1173 {
1174 u8 value = 0;
1175 int result;
1176 struct acpi_ec_query *q;
1177
1178 q = acpi_ec_create_query(&value);
1179 if (!q)
1180 return -ENOMEM;
1181
1182 /*
1183 * Query the EC to find out which _Qxx method we need to evaluate.
1184 * Note that successful completion of the query causes the ACPI_EC_SCI
1185 * bit to be cleared (and thus clearing the interrupt source).
1186 */
1187 result = acpi_ec_transaction(ec, &q->transaction);
1188 if (!value)
1189 result = -ENODATA;
1190 if (result)
1191 goto err_exit;
1192
1193 q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1194 if (!q->handler) {
1195 result = -ENODATA;
1196 goto err_exit;
1197 }
1198
1199 /*
1200 * It is reported that _Qxx are evaluated in a parallel way on
1201 * Windows:
1202 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1203 *
1204 * Put this log entry before schedule_work() in order to make
1205 * it appearing before any other log entries occurred during the
1206 * work queue execution.
1207 */
1208 ec_dbg_evt("Query(0x%02x) scheduled", value);
1209 if (!queue_work(ec_query_wq, &q->work)) {
1210 ec_dbg_evt("Query(0x%02x) overlapped", value);
1211 result = -EBUSY;
1212 }
1213
1214 err_exit:
1215 if (result)
1216 acpi_ec_delete_query(q);
1217 if (data)
1218 *data = value;
1219 return result;
1220 }
1221
1222 static void acpi_ec_check_event(struct acpi_ec *ec)
1223 {
1224 unsigned long flags;
1225
1226 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1227 if (ec_guard(ec)) {
1228 spin_lock_irqsave(&ec->lock, flags);
1229 /*
1230 * Take care of the SCI_EVT unless no one else is
1231 * taking care of it.
1232 */
1233 if (!ec->curr)
1234 advance_transaction(ec);
1235 spin_unlock_irqrestore(&ec->lock, flags);
1236 }
1237 }
1238 }
1239
1240 static void acpi_ec_event_handler(struct work_struct *work)
1241 {
1242 unsigned long flags;
1243 struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1244
1245 ec_dbg_evt("Event started");
1246
1247 spin_lock_irqsave(&ec->lock, flags);
1248 while (ec->nr_pending_queries) {
1249 spin_unlock_irqrestore(&ec->lock, flags);
1250 (void)acpi_ec_query(ec, NULL);
1251 spin_lock_irqsave(&ec->lock, flags);
1252 ec->nr_pending_queries--;
1253 /*
1254 * Before exit, make sure that this work item can be
1255 * scheduled again. There might be QR_EC failures, leaving
1256 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1257 * item from being scheduled again.
1258 */
1259 if (!ec->nr_pending_queries) {
1260 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1261 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1262 acpi_ec_complete_query(ec);
1263 }
1264 }
1265 spin_unlock_irqrestore(&ec->lock, flags);
1266
1267 ec_dbg_evt("Event stopped");
1268
1269 acpi_ec_check_event(ec);
1270 }
1271
1272 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1273 u32 gpe_number, void *data)
1274 {
1275 unsigned long flags;
1276 struct acpi_ec *ec = data;
1277
1278 spin_lock_irqsave(&ec->lock, flags);
1279 advance_transaction(ec);
1280 spin_unlock_irqrestore(&ec->lock, flags);
1281 return ACPI_INTERRUPT_HANDLED;
1282 }
1283
1284 /* --------------------------------------------------------------------------
1285 * Address Space Management
1286 * -------------------------------------------------------------------------- */
1287
1288 static acpi_status
1289 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1290 u32 bits, u64 *value64,
1291 void *handler_context, void *region_context)
1292 {
1293 struct acpi_ec *ec = handler_context;
1294 int result = 0, i, bytes = bits / 8;
1295 u8 *value = (u8 *)value64;
1296
1297 if ((address > 0xFF) || !value || !handler_context)
1298 return AE_BAD_PARAMETER;
1299
1300 if (function != ACPI_READ && function != ACPI_WRITE)
1301 return AE_BAD_PARAMETER;
1302
1303 if (ec->busy_polling || bits > 8)
1304 acpi_ec_burst_enable(ec);
1305
1306 for (i = 0; i < bytes; ++i, ++address, ++value)
1307 result = (function == ACPI_READ) ?
1308 acpi_ec_read(ec, address, value) :
1309 acpi_ec_write(ec, address, *value);
1310
1311 if (ec->busy_polling || bits > 8)
1312 acpi_ec_burst_disable(ec);
1313
1314 switch (result) {
1315 case -EINVAL:
1316 return AE_BAD_PARAMETER;
1317 case -ENODEV:
1318 return AE_NOT_FOUND;
1319 case -ETIME:
1320 return AE_TIME;
1321 default:
1322 return AE_OK;
1323 }
1324 }
1325
1326 /* --------------------------------------------------------------------------
1327 * Driver Interface
1328 * -------------------------------------------------------------------------- */
1329
1330 static acpi_status
1331 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1332
1333 static void acpi_ec_free(struct acpi_ec *ec)
1334 {
1335 if (first_ec == ec)
1336 first_ec = NULL;
1337 if (boot_ec == ec)
1338 boot_ec = NULL;
1339 kfree(ec);
1340 }
1341
1342 static struct acpi_ec *acpi_ec_alloc(void)
1343 {
1344 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1345
1346 if (!ec)
1347 return NULL;
1348 mutex_init(&ec->mutex);
1349 init_waitqueue_head(&ec->wait);
1350 INIT_LIST_HEAD(&ec->list);
1351 spin_lock_init(&ec->lock);
1352 INIT_WORK(&ec->work, acpi_ec_event_handler);
1353 ec->timestamp = jiffies;
1354 ec->busy_polling = true;
1355 ec->polling_guard = 0;
1356 return ec;
1357 }
1358
1359 static acpi_status
1360 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1361 void *context, void **return_value)
1362 {
1363 char node_name[5];
1364 struct acpi_buffer buffer = { sizeof(node_name), node_name };
1365 struct acpi_ec *ec = context;
1366 int value = 0;
1367 acpi_status status;
1368
1369 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1370
1371 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1372 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1373 return AE_OK;
1374 }
1375
1376 static acpi_status
1377 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1378 {
1379 acpi_status status;
1380 unsigned long long tmp = 0;
1381 struct acpi_ec *ec = context;
1382
1383 /* clear addr values, ec_parse_io_ports depend on it */
1384 ec->command_addr = ec->data_addr = 0;
1385
1386 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1387 ec_parse_io_ports, ec);
1388 if (ACPI_FAILURE(status))
1389 return status;
1390
1391 /* Get GPE bit assignment (EC events). */
1392 /* TODO: Add support for _GPE returning a package */
1393 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1394 if (ACPI_FAILURE(status))
1395 return status;
1396 ec->gpe = tmp;
1397 /* Use the global lock for all EC transactions? */
1398 tmp = 0;
1399 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1400 ec->global_lock = tmp;
1401 ec->handle = handle;
1402 return AE_CTRL_TERMINATE;
1403 }
1404
1405 /*
1406 * Note: This function returns an error code only when the address space
1407 * handler is not installed, which means "not able to handle
1408 * transactions".
1409 */
1410 static int ec_install_handlers(struct acpi_ec *ec, bool handle_events)
1411 {
1412 acpi_status status;
1413
1414 acpi_ec_start(ec, false);
1415
1416 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1417 acpi_ec_enter_noirq(ec);
1418 status = acpi_install_address_space_handler(ec->handle,
1419 ACPI_ADR_SPACE_EC,
1420 &acpi_ec_space_handler,
1421 NULL, ec);
1422 if (ACPI_FAILURE(status)) {
1423 if (status == AE_NOT_FOUND) {
1424 /*
1425 * Maybe OS fails in evaluating the _REG
1426 * object. The AE_NOT_FOUND error will be
1427 * ignored and OS * continue to initialize
1428 * EC.
1429 */
1430 pr_err("Fail in evaluating the _REG object"
1431 " of EC device. Broken bios is suspected.\n");
1432 } else {
1433 acpi_ec_stop(ec, false);
1434 return -ENODEV;
1435 }
1436 }
1437 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1438 }
1439
1440 if (!handle_events)
1441 return 0;
1442
1443 if (!test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) {
1444 /* Find and register all query methods */
1445 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1446 acpi_ec_register_query_methods,
1447 NULL, ec, NULL);
1448 set_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags);
1449 }
1450 if (!test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) {
1451 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1452 ACPI_GPE_EDGE_TRIGGERED,
1453 &acpi_ec_gpe_handler, ec);
1454 /* This is not fatal as we can poll EC events */
1455 if (ACPI_SUCCESS(status)) {
1456 set_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags);
1457 acpi_ec_leave_noirq(ec);
1458 if (test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1459 ec->reference_count >= 1)
1460 acpi_ec_enable_gpe(ec, true);
1461
1462 /* EC is fully operational, allow queries */
1463 acpi_ec_enable_event(ec);
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 static void ec_remove_handlers(struct acpi_ec *ec)
1471 {
1472 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1473 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1474 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1475 pr_err("failed to remove space handler\n");
1476 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1477 }
1478
1479 /*
1480 * Stops handling the EC transactions after removing the operation
1481 * region handler. This is required because _REG(DISCONNECT)
1482 * invoked during the removal can result in new EC transactions.
1483 *
1484 * Flushes the EC requests and thus disables the GPE before
1485 * removing the GPE handler. This is required by the current ACPICA
1486 * GPE core. ACPICA GPE core will automatically disable a GPE when
1487 * it is indicated but there is no way to handle it. So the drivers
1488 * must disable the GPEs prior to removing the GPE handlers.
1489 */
1490 acpi_ec_stop(ec, false);
1491
1492 if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) {
1493 if (ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1494 &acpi_ec_gpe_handler)))
1495 pr_err("failed to remove gpe handler\n");
1496 clear_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags);
1497 }
1498 if (test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) {
1499 acpi_ec_remove_query_handlers(ec, true, 0);
1500 clear_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags);
1501 }
1502 }
1503
1504 static int acpi_ec_setup(struct acpi_ec *ec, bool handle_events)
1505 {
1506 int ret;
1507
1508 ret = ec_install_handlers(ec, handle_events);
1509 if (ret)
1510 return ret;
1511
1512 /* First EC capable of handling transactions */
1513 if (!first_ec) {
1514 first_ec = ec;
1515 acpi_handle_info(first_ec->handle, "Used as first EC\n");
1516 }
1517
1518 acpi_handle_info(ec->handle,
1519 "GPE=0x%lx, EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n",
1520 ec->gpe, ec->command_addr, ec->data_addr);
1521 return ret;
1522 }
1523
1524 static int acpi_config_boot_ec(struct acpi_ec *ec, acpi_handle handle,
1525 bool handle_events, bool is_ecdt)
1526 {
1527 int ret;
1528
1529 /*
1530 * Changing the ACPI handle results in a re-configuration of the
1531 * boot EC. And if it happens after the namespace initialization,
1532 * it causes _REG evaluations.
1533 */
1534 if (boot_ec && boot_ec->handle != handle)
1535 ec_remove_handlers(boot_ec);
1536
1537 /* Unset old boot EC */
1538 if (boot_ec != ec)
1539 acpi_ec_free(boot_ec);
1540
1541 /*
1542 * ECDT device creation is split into acpi_ec_ecdt_probe() and
1543 * acpi_ec_ecdt_start(). This function takes care of completing the
1544 * ECDT parsing logic as the handle update should be performed
1545 * between the installation/uninstallation of the handlers.
1546 */
1547 if (ec->handle != handle)
1548 ec->handle = handle;
1549
1550 ret = acpi_ec_setup(ec, handle_events);
1551 if (ret)
1552 return ret;
1553
1554 /* Set new boot EC */
1555 if (!boot_ec) {
1556 boot_ec = ec;
1557 boot_ec_is_ecdt = is_ecdt;
1558 }
1559
1560 acpi_handle_info(boot_ec->handle,
1561 "Used as boot %s EC to handle transactions%s\n",
1562 is_ecdt ? "ECDT" : "DSDT",
1563 handle_events ? " and events" : "");
1564 return ret;
1565 }
1566
1567 static bool acpi_ec_ecdt_get_handle(acpi_handle *phandle)
1568 {
1569 struct acpi_table_ecdt *ecdt_ptr;
1570 acpi_status status;
1571 acpi_handle handle;
1572
1573 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1574 (struct acpi_table_header **)&ecdt_ptr);
1575 if (ACPI_FAILURE(status))
1576 return false;
1577
1578 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1579 if (ACPI_FAILURE(status))
1580 return false;
1581
1582 *phandle = handle;
1583 return true;
1584 }
1585
1586 static bool acpi_is_boot_ec(struct acpi_ec *ec)
1587 {
1588 if (!boot_ec)
1589 return false;
1590 if (ec->handle == boot_ec->handle &&
1591 ec->gpe == boot_ec->gpe &&
1592 ec->command_addr == boot_ec->command_addr &&
1593 ec->data_addr == boot_ec->data_addr)
1594 return true;
1595 return false;
1596 }
1597
1598 static int acpi_ec_add(struct acpi_device *device)
1599 {
1600 struct acpi_ec *ec = NULL;
1601 int ret;
1602
1603 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1604 strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1605
1606 ec = acpi_ec_alloc();
1607 if (!ec)
1608 return -ENOMEM;
1609 if (ec_parse_device(device->handle, 0, ec, NULL) !=
1610 AE_CTRL_TERMINATE) {
1611 ret = -EINVAL;
1612 goto err_alloc;
1613 }
1614
1615 if (acpi_is_boot_ec(ec)) {
1616 boot_ec_is_ecdt = false;
1617 acpi_handle_debug(ec->handle, "duplicated.\n");
1618 acpi_ec_free(ec);
1619 ec = boot_ec;
1620 ret = acpi_config_boot_ec(ec, ec->handle, true, false);
1621 } else
1622 ret = acpi_ec_setup(ec, true);
1623 if (ret)
1624 goto err_query;
1625
1626 device->driver_data = ec;
1627
1628 ret = !!request_region(ec->data_addr, 1, "EC data");
1629 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1630 ret = !!request_region(ec->command_addr, 1, "EC cmd");
1631 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1632
1633 /* Reprobe devices depending on the EC */
1634 acpi_walk_dep_device_list(ec->handle);
1635 acpi_handle_debug(ec->handle, "enumerated.\n");
1636 return 0;
1637
1638 err_query:
1639 if (ec != boot_ec)
1640 acpi_ec_remove_query_handlers(ec, true, 0);
1641 err_alloc:
1642 if (ec != boot_ec)
1643 acpi_ec_free(ec);
1644 return ret;
1645 }
1646
1647 static int acpi_ec_remove(struct acpi_device *device)
1648 {
1649 struct acpi_ec *ec;
1650
1651 if (!device)
1652 return -EINVAL;
1653
1654 ec = acpi_driver_data(device);
1655 release_region(ec->data_addr, 1);
1656 release_region(ec->command_addr, 1);
1657 device->driver_data = NULL;
1658 if (ec != boot_ec) {
1659 ec_remove_handlers(ec);
1660 acpi_ec_free(ec);
1661 }
1662 return 0;
1663 }
1664
1665 static acpi_status
1666 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1667 {
1668 struct acpi_ec *ec = context;
1669
1670 if (resource->type != ACPI_RESOURCE_TYPE_IO)
1671 return AE_OK;
1672
1673 /*
1674 * The first address region returned is the data port, and
1675 * the second address region returned is the status/command
1676 * port.
1677 */
1678 if (ec->data_addr == 0)
1679 ec->data_addr = resource->data.io.minimum;
1680 else if (ec->command_addr == 0)
1681 ec->command_addr = resource->data.io.minimum;
1682 else
1683 return AE_CTRL_TERMINATE;
1684
1685 return AE_OK;
1686 }
1687
1688 static const struct acpi_device_id ec_device_ids[] = {
1689 {"PNP0C09", 0},
1690 {"", 0},
1691 };
1692
1693 int __init acpi_ec_dsdt_probe(void)
1694 {
1695 acpi_status status;
1696 struct acpi_ec *ec;
1697 int ret;
1698
1699 ec = acpi_ec_alloc();
1700 if (!ec)
1701 return -ENOMEM;
1702 /*
1703 * At this point, the namespace is initialized, so start to find
1704 * the namespace objects.
1705 */
1706 status = acpi_get_devices(ec_device_ids[0].id,
1707 ec_parse_device, ec, NULL);
1708 if (ACPI_FAILURE(status) || !ec->handle) {
1709 ret = -ENODEV;
1710 goto error;
1711 }
1712 /*
1713 * When the DSDT EC is available, always re-configure boot EC to
1714 * have _REG evaluated. _REG can only be evaluated after the
1715 * namespace initialization.
1716 * At this point, the GPE is not fully initialized, so do not to
1717 * handle the events.
1718 */
1719 ret = acpi_config_boot_ec(ec, ec->handle, false, false);
1720 error:
1721 if (ret)
1722 acpi_ec_free(ec);
1723 return ret;
1724 }
1725
1726 /*
1727 * If the DSDT EC is not functioning, we still need to prepare a fully
1728 * functioning ECDT EC first in order to handle the events.
1729 * https://bugzilla.kernel.org/show_bug.cgi?id=115021
1730 */
1731 int __init acpi_ec_ecdt_start(void)
1732 {
1733 acpi_handle handle;
1734
1735 if (!boot_ec)
1736 return -ENODEV;
1737 /*
1738 * The DSDT EC should have already been started in
1739 * acpi_ec_add().
1740 */
1741 if (!boot_ec_is_ecdt)
1742 return -ENODEV;
1743
1744 /*
1745 * At this point, the namespace and the GPE is initialized, so
1746 * start to find the namespace objects and handle the events.
1747 */
1748 if (!acpi_ec_ecdt_get_handle(&handle))
1749 return -ENODEV;
1750 return acpi_config_boot_ec(boot_ec, handle, true, true);
1751 }
1752
1753 #if 0
1754 /*
1755 * Some EC firmware variations refuses to respond QR_EC when SCI_EVT is not
1756 * set, for which case, we complete the QR_EC without issuing it to the
1757 * firmware.
1758 * https://bugzilla.kernel.org/show_bug.cgi?id=82611
1759 * https://bugzilla.kernel.org/show_bug.cgi?id=97381
1760 */
1761 static int ec_flag_query_handshake(const struct dmi_system_id *id)
1762 {
1763 pr_debug("Detected the EC firmware requiring QR_EC issued when SCI_EVT set\n");
1764 EC_FLAGS_QUERY_HANDSHAKE = 1;
1765 return 0;
1766 }
1767 #endif
1768
1769 /*
1770 * On some hardware it is necessary to clear events accumulated by the EC during
1771 * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1772 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1773 *
1774 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1775 *
1776 * Ideally, the EC should also be instructed NOT to accumulate events during
1777 * sleep (which Windows seems to do somehow), but the interface to control this
1778 * behaviour is not known at this time.
1779 *
1780 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1781 * however it is very likely that other Samsung models are affected.
1782 *
1783 * On systems which don't accumulate _Q events during sleep, this extra check
1784 * should be harmless.
1785 */
1786 static int ec_clear_on_resume(const struct dmi_system_id *id)
1787 {
1788 pr_debug("Detected system needing EC poll on resume.\n");
1789 EC_FLAGS_CLEAR_ON_RESUME = 1;
1790 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1791 return 0;
1792 }
1793
1794 /*
1795 * Some ECDTs contain wrong register addresses.
1796 * MSI MS-171F
1797 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1798 */
1799 static int ec_correct_ecdt(const struct dmi_system_id *id)
1800 {
1801 pr_debug("Detected system needing ECDT address correction.\n");
1802 EC_FLAGS_CORRECT_ECDT = 1;
1803 return 0;
1804 }
1805
1806 static struct dmi_system_id ec_dmi_table[] __initdata = {
1807 {
1808 ec_correct_ecdt, "MSI MS-171F", {
1809 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1810 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1811 {
1812 ec_clear_on_resume, "Samsung hardware", {
1813 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1814 {},
1815 };
1816
1817 int __init acpi_ec_ecdt_probe(void)
1818 {
1819 int ret;
1820 acpi_status status;
1821 struct acpi_table_ecdt *ecdt_ptr;
1822 struct acpi_ec *ec;
1823
1824 ec = acpi_ec_alloc();
1825 if (!ec)
1826 return -ENOMEM;
1827 /*
1828 * Generate a boot ec context
1829 */
1830 dmi_check_system(ec_dmi_table);
1831 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1832 (struct acpi_table_header **)&ecdt_ptr);
1833 if (ACPI_FAILURE(status)) {
1834 ret = -ENODEV;
1835 goto error;
1836 }
1837
1838 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1839 /*
1840 * Asus X50GL:
1841 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1842 */
1843 ret = -ENODEV;
1844 goto error;
1845 }
1846
1847 if (EC_FLAGS_CORRECT_ECDT) {
1848 ec->command_addr = ecdt_ptr->data.address;
1849 ec->data_addr = ecdt_ptr->control.address;
1850 } else {
1851 ec->command_addr = ecdt_ptr->control.address;
1852 ec->data_addr = ecdt_ptr->data.address;
1853 }
1854 ec->gpe = ecdt_ptr->gpe;
1855
1856 /*
1857 * At this point, the namespace is not initialized, so do not find
1858 * the namespace objects, or handle the events.
1859 */
1860 ret = acpi_config_boot_ec(ec, ACPI_ROOT_OBJECT, false, true);
1861 error:
1862 if (ret)
1863 acpi_ec_free(ec);
1864 return ret;
1865 }
1866
1867 #ifdef CONFIG_PM_SLEEP
1868 static int acpi_ec_suspend_noirq(struct device *dev)
1869 {
1870 struct acpi_ec *ec =
1871 acpi_driver_data(to_acpi_device(dev));
1872
1873 acpi_ec_enter_noirq(ec);
1874 return 0;
1875 }
1876
1877 static int acpi_ec_resume_noirq(struct device *dev)
1878 {
1879 struct acpi_ec *ec =
1880 acpi_driver_data(to_acpi_device(dev));
1881
1882 acpi_ec_leave_noirq(ec);
1883 return 0;
1884 }
1885
1886 static int acpi_ec_suspend(struct device *dev)
1887 {
1888 struct acpi_ec *ec =
1889 acpi_driver_data(to_acpi_device(dev));
1890
1891 if (ec_freeze_events)
1892 acpi_ec_disable_event(ec);
1893 return 0;
1894 }
1895
1896 static int acpi_ec_resume(struct device *dev)
1897 {
1898 struct acpi_ec *ec =
1899 acpi_driver_data(to_acpi_device(dev));
1900
1901 acpi_ec_enable_event(ec);
1902 return 0;
1903 }
1904 #endif
1905
1906 static const struct dev_pm_ops acpi_ec_pm = {
1907 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
1908 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
1909 };
1910
1911 static int param_set_event_clearing(const char *val, struct kernel_param *kp)
1912 {
1913 int result = 0;
1914
1915 if (!strncmp(val, "status", sizeof("status") - 1)) {
1916 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1917 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
1918 } else if (!strncmp(val, "query", sizeof("query") - 1)) {
1919 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
1920 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
1921 } else if (!strncmp(val, "event", sizeof("event") - 1)) {
1922 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
1923 pr_info("Assuming SCI_EVT clearing on event reads\n");
1924 } else
1925 result = -EINVAL;
1926 return result;
1927 }
1928
1929 static int param_get_event_clearing(char *buffer, struct kernel_param *kp)
1930 {
1931 switch (ec_event_clearing) {
1932 case ACPI_EC_EVT_TIMING_STATUS:
1933 return sprintf(buffer, "status");
1934 case ACPI_EC_EVT_TIMING_QUERY:
1935 return sprintf(buffer, "query");
1936 case ACPI_EC_EVT_TIMING_EVENT:
1937 return sprintf(buffer, "event");
1938 default:
1939 return sprintf(buffer, "invalid");
1940 }
1941 return 0;
1942 }
1943
1944 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
1945 NULL, 0644);
1946 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
1947
1948 static struct acpi_driver acpi_ec_driver = {
1949 .name = "ec",
1950 .class = ACPI_EC_CLASS,
1951 .ids = ec_device_ids,
1952 .ops = {
1953 .add = acpi_ec_add,
1954 .remove = acpi_ec_remove,
1955 },
1956 .drv.pm = &acpi_ec_pm,
1957 };
1958
1959 static inline int acpi_ec_query_init(void)
1960 {
1961 if (!ec_query_wq) {
1962 ec_query_wq = alloc_workqueue("kec_query", 0,
1963 ec_max_queries);
1964 if (!ec_query_wq)
1965 return -ENODEV;
1966 }
1967 return 0;
1968 }
1969
1970 static inline void acpi_ec_query_exit(void)
1971 {
1972 if (ec_query_wq) {
1973 destroy_workqueue(ec_query_wq);
1974 ec_query_wq = NULL;
1975 }
1976 }
1977
1978 int __init acpi_ec_init(void)
1979 {
1980 int result;
1981
1982 /* register workqueue for _Qxx evaluations */
1983 result = acpi_ec_query_init();
1984 if (result)
1985 goto err_exit;
1986 /* Now register the driver for the EC */
1987 result = acpi_bus_register_driver(&acpi_ec_driver);
1988 if (result)
1989 goto err_exit;
1990
1991 err_exit:
1992 if (result)
1993 acpi_ec_query_exit();
1994 return result;
1995 }
1996
1997 /* EC driver currently not unloadable */
1998 #if 0
1999 static void __exit acpi_ec_exit(void)
2000 {
2001
2002 acpi_bus_unregister_driver(&acpi_ec_driver);
2003 acpi_ec_query_exit();
2004 }
2005 #endif /* 0 */