]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/ec.c
ACPI: EC: Consolidate event handler installation code
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / ec.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ec.c - ACPI Embedded Controller Driver (v3)
4 *
5 * Copyright (C) 2001-2015 Intel Corporation
6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * 2004 Luming Yu <luming.yu@intel.com>
10 * 2001, 2002 Andy Grover <andrew.grover@intel.com>
11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
13 */
14
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32
33 #include "internal.h"
34
35 #define ACPI_EC_CLASS "embedded_controller"
36 #define ACPI_EC_DEVICE_NAME "Embedded Controller"
37 #define ACPI_EC_FILE_INFO "info"
38
39 /* EC status register */
40 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
41 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
42 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
43 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
44 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
45
46 /*
47 * The SCI_EVT clearing timing is not defined by the ACPI specification.
48 * This leads to lots of practical timing issues for the host EC driver.
49 * The following variations are defined (from the target EC firmware's
50 * perspective):
51 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
52 * target can clear SCI_EVT at any time so long as the host can see
53 * the indication by reading the status register (EC_SC). So the
54 * host should re-check SCI_EVT after the first time the SCI_EVT
55 * indication is seen, which is the same time the query request
56 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
57 * at any later time could indicate another event. Normally such
58 * kind of EC firmware has implemented an event queue and will
59 * return 0x00 to indicate "no outstanding event".
60 * QUERY: After seeing the query request (QR_EC) written to the command
61 * register (EC_CMD) by the host and having prepared the responding
62 * event value in the data register (EC_DATA), the target can safely
63 * clear SCI_EVT because the target can confirm that the current
64 * event is being handled by the host. The host then should check
65 * SCI_EVT right after reading the event response from the data
66 * register (EC_DATA).
67 * EVENT: After seeing the event response read from the data register
68 * (EC_DATA) by the host, the target can clear SCI_EVT. As the
69 * target requires time to notice the change in the data register
70 * (EC_DATA), the host may be required to wait additional guarding
71 * time before checking the SCI_EVT again. Such guarding may not be
72 * necessary if the host is notified via another IRQ.
73 */
74 #define ACPI_EC_EVT_TIMING_STATUS 0x00
75 #define ACPI_EC_EVT_TIMING_QUERY 0x01
76 #define ACPI_EC_EVT_TIMING_EVENT 0x02
77
78 /* EC commands */
79 enum ec_command {
80 ACPI_EC_COMMAND_READ = 0x80,
81 ACPI_EC_COMMAND_WRITE = 0x81,
82 ACPI_EC_BURST_ENABLE = 0x82,
83 ACPI_EC_BURST_DISABLE = 0x83,
84 ACPI_EC_COMMAND_QUERY = 0x84,
85 };
86
87 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
88 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
89 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
90 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
91 * when trying to clear the EC */
92 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
93
94 enum {
95 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
96 EC_FLAGS_QUERY_PENDING, /* Query is pending */
97 EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */
98 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */
99 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
100 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
101 EC_FLAGS_STARTED, /* Driver is started */
102 EC_FLAGS_STOPPED, /* Driver is stopped */
103 EC_FLAGS_EVENTS_MASKED, /* Events masked */
104 };
105
106 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
107 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
108
109 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
110 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
111 module_param(ec_delay, uint, 0644);
112 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
113
114 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
115 module_param(ec_max_queries, uint, 0644);
116 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
117
118 static bool ec_busy_polling __read_mostly;
119 module_param(ec_busy_polling, bool, 0644);
120 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
121
122 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
123 module_param(ec_polling_guard, uint, 0644);
124 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
125
126 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
127
128 /*
129 * If the number of false interrupts per one transaction exceeds
130 * this threshold, will think there is a GPE storm happened and
131 * will disable the GPE for normal transaction.
132 */
133 static unsigned int ec_storm_threshold __read_mostly = 8;
134 module_param(ec_storm_threshold, uint, 0644);
135 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
136
137 static bool ec_freeze_events __read_mostly = false;
138 module_param(ec_freeze_events, bool, 0644);
139 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
140
141 static bool ec_no_wakeup __read_mostly;
142 module_param(ec_no_wakeup, bool, 0644);
143 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
144
145 struct acpi_ec_query_handler {
146 struct list_head node;
147 acpi_ec_query_func func;
148 acpi_handle handle;
149 void *data;
150 u8 query_bit;
151 struct kref kref;
152 };
153
154 struct transaction {
155 const u8 *wdata;
156 u8 *rdata;
157 unsigned short irq_count;
158 u8 command;
159 u8 wi;
160 u8 ri;
161 u8 wlen;
162 u8 rlen;
163 u8 flags;
164 };
165
166 struct acpi_ec_query {
167 struct transaction transaction;
168 struct work_struct work;
169 struct acpi_ec_query_handler *handler;
170 };
171
172 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
173 static void advance_transaction(struct acpi_ec *ec);
174 static void acpi_ec_event_handler(struct work_struct *work);
175 static void acpi_ec_event_processor(struct work_struct *work);
176
177 struct acpi_ec *first_ec;
178 EXPORT_SYMBOL(first_ec);
179
180 static struct acpi_ec *boot_ec;
181 static bool boot_ec_is_ecdt = false;
182 static struct workqueue_struct *ec_wq;
183 static struct workqueue_struct *ec_query_wq;
184
185 static int EC_FLAGS_QUERY_HANDSHAKE; /* Needs QR_EC issued when SCI_EVT set */
186 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
187 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */
188 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
189
190 /* --------------------------------------------------------------------------
191 * Logging/Debugging
192 * -------------------------------------------------------------------------- */
193
194 /*
195 * Splitters used by the developers to track the boundary of the EC
196 * handling processes.
197 */
198 #ifdef DEBUG
199 #define EC_DBG_SEP " "
200 #define EC_DBG_DRV "+++++"
201 #define EC_DBG_STM "====="
202 #define EC_DBG_REQ "*****"
203 #define EC_DBG_EVT "#####"
204 #else
205 #define EC_DBG_SEP ""
206 #define EC_DBG_DRV
207 #define EC_DBG_STM
208 #define EC_DBG_REQ
209 #define EC_DBG_EVT
210 #endif
211
212 #define ec_log_raw(fmt, ...) \
213 pr_info(fmt "\n", ##__VA_ARGS__)
214 #define ec_dbg_raw(fmt, ...) \
215 pr_debug(fmt "\n", ##__VA_ARGS__)
216 #define ec_log(filter, fmt, ...) \
217 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
218 #define ec_dbg(filter, fmt, ...) \
219 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
220
221 #define ec_log_drv(fmt, ...) \
222 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
223 #define ec_dbg_drv(fmt, ...) \
224 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
225 #define ec_dbg_stm(fmt, ...) \
226 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
227 #define ec_dbg_req(fmt, ...) \
228 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
229 #define ec_dbg_evt(fmt, ...) \
230 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
231 #define ec_dbg_ref(ec, fmt, ...) \
232 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
233
234 /* --------------------------------------------------------------------------
235 * Device Flags
236 * -------------------------------------------------------------------------- */
237
238 static bool acpi_ec_started(struct acpi_ec *ec)
239 {
240 return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
241 !test_bit(EC_FLAGS_STOPPED, &ec->flags);
242 }
243
244 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
245 {
246 /*
247 * There is an OSPM early stage logic. During the early stages
248 * (boot/resume), OSPMs shouldn't enable the event handling, only
249 * the EC transactions are allowed to be performed.
250 */
251 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
252 return false;
253 /*
254 * However, disabling the event handling is experimental for late
255 * stage (suspend), and is controlled by the boot parameter of
256 * "ec_freeze_events":
257 * 1. true: The EC event handling is disabled before entering
258 * the noirq stage.
259 * 2. false: The EC event handling is automatically disabled as
260 * soon as the EC driver is stopped.
261 */
262 if (ec_freeze_events)
263 return acpi_ec_started(ec);
264 else
265 return test_bit(EC_FLAGS_STARTED, &ec->flags);
266 }
267
268 static bool acpi_ec_flushed(struct acpi_ec *ec)
269 {
270 return ec->reference_count == 1;
271 }
272
273 /* --------------------------------------------------------------------------
274 * EC Registers
275 * -------------------------------------------------------------------------- */
276
277 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
278 {
279 u8 x = inb(ec->command_addr);
280
281 ec_dbg_raw("EC_SC(R) = 0x%2.2x "
282 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
283 x,
284 !!(x & ACPI_EC_FLAG_SCI),
285 !!(x & ACPI_EC_FLAG_BURST),
286 !!(x & ACPI_EC_FLAG_CMD),
287 !!(x & ACPI_EC_FLAG_IBF),
288 !!(x & ACPI_EC_FLAG_OBF));
289 return x;
290 }
291
292 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
293 {
294 u8 x = inb(ec->data_addr);
295
296 ec->timestamp = jiffies;
297 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
298 return x;
299 }
300
301 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
302 {
303 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
304 outb(command, ec->command_addr);
305 ec->timestamp = jiffies;
306 }
307
308 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
309 {
310 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
311 outb(data, ec->data_addr);
312 ec->timestamp = jiffies;
313 }
314
315 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
316 static const char *acpi_ec_cmd_string(u8 cmd)
317 {
318 switch (cmd) {
319 case 0x80:
320 return "RD_EC";
321 case 0x81:
322 return "WR_EC";
323 case 0x82:
324 return "BE_EC";
325 case 0x83:
326 return "BD_EC";
327 case 0x84:
328 return "QR_EC";
329 }
330 return "UNKNOWN";
331 }
332 #else
333 #define acpi_ec_cmd_string(cmd) "UNDEF"
334 #endif
335
336 /* --------------------------------------------------------------------------
337 * GPE Registers
338 * -------------------------------------------------------------------------- */
339
340 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
341 {
342 acpi_event_status gpe_status = 0;
343
344 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
345 return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
346 }
347
348 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
349 {
350 if (open)
351 acpi_enable_gpe(NULL, ec->gpe);
352 else {
353 BUG_ON(ec->reference_count < 1);
354 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
355 }
356 if (acpi_ec_is_gpe_raised(ec)) {
357 /*
358 * On some platforms, EN=1 writes cannot trigger GPE. So
359 * software need to manually trigger a pseudo GPE event on
360 * EN=1 writes.
361 */
362 ec_dbg_raw("Polling quirk");
363 advance_transaction(ec);
364 }
365 }
366
367 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
368 {
369 if (close)
370 acpi_disable_gpe(NULL, ec->gpe);
371 else {
372 BUG_ON(ec->reference_count < 1);
373 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
374 }
375 }
376
377 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
378 {
379 /*
380 * GPE STS is a W1C register, which means:
381 * 1. Software can clear it without worrying about clearing other
382 * GPEs' STS bits when the hardware sets them in parallel.
383 * 2. As long as software can ensure only clearing it when it is
384 * set, hardware won't set it in parallel.
385 * So software can clear GPE in any contexts.
386 * Warning: do not move the check into advance_transaction() as the
387 * EC commands will be sent without GPE raised.
388 */
389 if (!acpi_ec_is_gpe_raised(ec))
390 return;
391 acpi_clear_gpe(NULL, ec->gpe);
392 }
393
394 /* --------------------------------------------------------------------------
395 * Transaction Management
396 * -------------------------------------------------------------------------- */
397
398 static void acpi_ec_submit_request(struct acpi_ec *ec)
399 {
400 ec->reference_count++;
401 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
402 ec->gpe >= 0 && ec->reference_count == 1)
403 acpi_ec_enable_gpe(ec, true);
404 }
405
406 static void acpi_ec_complete_request(struct acpi_ec *ec)
407 {
408 bool flushed = false;
409
410 ec->reference_count--;
411 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
412 ec->gpe >= 0 && ec->reference_count == 0)
413 acpi_ec_disable_gpe(ec, true);
414 flushed = acpi_ec_flushed(ec);
415 if (flushed)
416 wake_up(&ec->wait);
417 }
418
419 static void acpi_ec_mask_events(struct acpi_ec *ec)
420 {
421 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
422 if (ec->gpe >= 0)
423 acpi_ec_disable_gpe(ec, false);
424 else
425 disable_irq_nosync(ec->irq);
426
427 ec_dbg_drv("Polling enabled");
428 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
429 }
430 }
431
432 static void acpi_ec_unmask_events(struct acpi_ec *ec)
433 {
434 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
435 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
436 if (ec->gpe >= 0)
437 acpi_ec_enable_gpe(ec, false);
438 else
439 enable_irq(ec->irq);
440
441 ec_dbg_drv("Polling disabled");
442 }
443 }
444
445 /*
446 * acpi_ec_submit_flushable_request() - Increase the reference count unless
447 * the flush operation is not in
448 * progress
449 * @ec: the EC device
450 *
451 * This function must be used before taking a new action that should hold
452 * the reference count. If this function returns false, then the action
453 * must be discarded or it will prevent the flush operation from being
454 * completed.
455 */
456 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
457 {
458 if (!acpi_ec_started(ec))
459 return false;
460 acpi_ec_submit_request(ec);
461 return true;
462 }
463
464 static void acpi_ec_submit_query(struct acpi_ec *ec)
465 {
466 acpi_ec_mask_events(ec);
467 if (!acpi_ec_event_enabled(ec))
468 return;
469 if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
470 ec_dbg_evt("Command(%s) submitted/blocked",
471 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
472 ec->nr_pending_queries++;
473 queue_work(ec_wq, &ec->work);
474 }
475 }
476
477 static void acpi_ec_complete_query(struct acpi_ec *ec)
478 {
479 if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
480 ec_dbg_evt("Command(%s) unblocked",
481 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
482 acpi_ec_unmask_events(ec);
483 }
484
485 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
486 {
487 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
488 ec_log_drv("event unblocked");
489 /*
490 * Unconditionally invoke this once after enabling the event
491 * handling mechanism to detect the pending events.
492 */
493 advance_transaction(ec);
494 }
495
496 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
497 {
498 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
499 ec_log_drv("event blocked");
500 }
501
502 /*
503 * Process _Q events that might have accumulated in the EC.
504 * Run with locked ec mutex.
505 */
506 static void acpi_ec_clear(struct acpi_ec *ec)
507 {
508 int i, status;
509 u8 value = 0;
510
511 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
512 status = acpi_ec_query(ec, &value);
513 if (status || !value)
514 break;
515 }
516 if (unlikely(i == ACPI_EC_CLEAR_MAX))
517 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
518 else
519 pr_info("%d stale EC events cleared\n", i);
520 }
521
522 static void acpi_ec_enable_event(struct acpi_ec *ec)
523 {
524 unsigned long flags;
525
526 spin_lock_irqsave(&ec->lock, flags);
527 if (acpi_ec_started(ec))
528 __acpi_ec_enable_event(ec);
529 spin_unlock_irqrestore(&ec->lock, flags);
530
531 /* Drain additional events if hardware requires that */
532 if (EC_FLAGS_CLEAR_ON_RESUME)
533 acpi_ec_clear(ec);
534 }
535
536 #ifdef CONFIG_PM_SLEEP
537 static void __acpi_ec_flush_work(void)
538 {
539 drain_workqueue(ec_wq); /* flush ec->work */
540 flush_workqueue(ec_query_wq); /* flush queries */
541 }
542
543 static void acpi_ec_disable_event(struct acpi_ec *ec)
544 {
545 unsigned long flags;
546
547 spin_lock_irqsave(&ec->lock, flags);
548 __acpi_ec_disable_event(ec);
549 spin_unlock_irqrestore(&ec->lock, flags);
550
551 /*
552 * When ec_freeze_events is true, we need to flush events in
553 * the proper position before entering the noirq stage.
554 */
555 __acpi_ec_flush_work();
556 }
557
558 void acpi_ec_flush_work(void)
559 {
560 /* Without ec_wq there is nothing to flush. */
561 if (!ec_wq)
562 return;
563
564 __acpi_ec_flush_work();
565 }
566 #endif /* CONFIG_PM_SLEEP */
567
568 static bool acpi_ec_guard_event(struct acpi_ec *ec)
569 {
570 bool guarded = true;
571 unsigned long flags;
572
573 spin_lock_irqsave(&ec->lock, flags);
574 /*
575 * If firmware SCI_EVT clearing timing is "event", we actually
576 * don't know when the SCI_EVT will be cleared by firmware after
577 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
578 * acceptable period.
579 *
580 * The guarding period begins when EC_FLAGS_QUERY_PENDING is
581 * flagged, which means SCI_EVT check has just been performed.
582 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
583 * guarding should have already been performed (via
584 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
585 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
586 * ACPI_EC_COMMAND_POLL state immediately.
587 */
588 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
589 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
590 !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
591 (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
592 guarded = false;
593 spin_unlock_irqrestore(&ec->lock, flags);
594 return guarded;
595 }
596
597 static int ec_transaction_polled(struct acpi_ec *ec)
598 {
599 unsigned long flags;
600 int ret = 0;
601
602 spin_lock_irqsave(&ec->lock, flags);
603 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
604 ret = 1;
605 spin_unlock_irqrestore(&ec->lock, flags);
606 return ret;
607 }
608
609 static int ec_transaction_completed(struct acpi_ec *ec)
610 {
611 unsigned long flags;
612 int ret = 0;
613
614 spin_lock_irqsave(&ec->lock, flags);
615 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
616 ret = 1;
617 spin_unlock_irqrestore(&ec->lock, flags);
618 return ret;
619 }
620
621 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
622 {
623 ec->curr->flags |= flag;
624 if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
625 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
626 flag == ACPI_EC_COMMAND_POLL)
627 acpi_ec_complete_query(ec);
628 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
629 flag == ACPI_EC_COMMAND_COMPLETE)
630 acpi_ec_complete_query(ec);
631 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
632 flag == ACPI_EC_COMMAND_COMPLETE)
633 set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
634 }
635 }
636
637 static void advance_transaction(struct acpi_ec *ec)
638 {
639 struct transaction *t;
640 u8 status;
641 bool wakeup = false;
642
643 ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
644 smp_processor_id());
645 /*
646 * By always clearing STS before handling all indications, we can
647 * ensure a hardware STS 0->1 change after this clearing can always
648 * trigger a GPE interrupt.
649 */
650 if (ec->gpe >= 0)
651 acpi_ec_clear_gpe(ec);
652
653 status = acpi_ec_read_status(ec);
654 t = ec->curr;
655 /*
656 * Another IRQ or a guarded polling mode advancement is detected,
657 * the next QR_EC submission is then allowed.
658 */
659 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
660 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
661 (!ec->nr_pending_queries ||
662 test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
663 clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
664 acpi_ec_complete_query(ec);
665 }
666 }
667 if (!t)
668 goto err;
669 if (t->flags & ACPI_EC_COMMAND_POLL) {
670 if (t->wlen > t->wi) {
671 if ((status & ACPI_EC_FLAG_IBF) == 0)
672 acpi_ec_write_data(ec, t->wdata[t->wi++]);
673 else
674 goto err;
675 } else if (t->rlen > t->ri) {
676 if ((status & ACPI_EC_FLAG_OBF) == 1) {
677 t->rdata[t->ri++] = acpi_ec_read_data(ec);
678 if (t->rlen == t->ri) {
679 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
680 if (t->command == ACPI_EC_COMMAND_QUERY)
681 ec_dbg_evt("Command(%s) completed by hardware",
682 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
683 wakeup = true;
684 }
685 } else
686 goto err;
687 } else if (t->wlen == t->wi &&
688 (status & ACPI_EC_FLAG_IBF) == 0) {
689 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
690 wakeup = true;
691 }
692 goto out;
693 } else {
694 if (EC_FLAGS_QUERY_HANDSHAKE &&
695 !(status & ACPI_EC_FLAG_SCI) &&
696 (t->command == ACPI_EC_COMMAND_QUERY)) {
697 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
698 t->rdata[t->ri++] = 0x00;
699 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
700 ec_dbg_evt("Command(%s) completed by software",
701 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
702 wakeup = true;
703 } else if ((status & ACPI_EC_FLAG_IBF) == 0) {
704 acpi_ec_write_cmd(ec, t->command);
705 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
706 } else
707 goto err;
708 goto out;
709 }
710 err:
711 /*
712 * If SCI bit is set, then don't think it's a false IRQ
713 * otherwise will take a not handled IRQ as a false one.
714 */
715 if (!(status & ACPI_EC_FLAG_SCI)) {
716 if (in_interrupt() && t) {
717 if (t->irq_count < ec_storm_threshold)
718 ++t->irq_count;
719 /* Allow triggering on 0 threshold */
720 if (t->irq_count == ec_storm_threshold)
721 acpi_ec_mask_events(ec);
722 }
723 }
724 out:
725 if (status & ACPI_EC_FLAG_SCI)
726 acpi_ec_submit_query(ec);
727 if (wakeup && in_interrupt())
728 wake_up(&ec->wait);
729 }
730
731 static void start_transaction(struct acpi_ec *ec)
732 {
733 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
734 ec->curr->flags = 0;
735 }
736
737 static int ec_guard(struct acpi_ec *ec)
738 {
739 unsigned long guard = usecs_to_jiffies(ec->polling_guard);
740 unsigned long timeout = ec->timestamp + guard;
741
742 /* Ensure guarding period before polling EC status */
743 do {
744 if (ec->busy_polling) {
745 /* Perform busy polling */
746 if (ec_transaction_completed(ec))
747 return 0;
748 udelay(jiffies_to_usecs(guard));
749 } else {
750 /*
751 * Perform wait polling
752 * 1. Wait the transaction to be completed by the
753 * GPE handler after the transaction enters
754 * ACPI_EC_COMMAND_POLL state.
755 * 2. A special guarding logic is also required
756 * for event clearing mode "event" before the
757 * transaction enters ACPI_EC_COMMAND_POLL
758 * state.
759 */
760 if (!ec_transaction_polled(ec) &&
761 !acpi_ec_guard_event(ec))
762 break;
763 if (wait_event_timeout(ec->wait,
764 ec_transaction_completed(ec),
765 guard))
766 return 0;
767 }
768 } while (time_before(jiffies, timeout));
769 return -ETIME;
770 }
771
772 static int ec_poll(struct acpi_ec *ec)
773 {
774 unsigned long flags;
775 int repeat = 5; /* number of command restarts */
776
777 while (repeat--) {
778 unsigned long delay = jiffies +
779 msecs_to_jiffies(ec_delay);
780 do {
781 if (!ec_guard(ec))
782 return 0;
783 spin_lock_irqsave(&ec->lock, flags);
784 advance_transaction(ec);
785 spin_unlock_irqrestore(&ec->lock, flags);
786 } while (time_before(jiffies, delay));
787 pr_debug("controller reset, restart transaction\n");
788 spin_lock_irqsave(&ec->lock, flags);
789 start_transaction(ec);
790 spin_unlock_irqrestore(&ec->lock, flags);
791 }
792 return -ETIME;
793 }
794
795 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
796 struct transaction *t)
797 {
798 unsigned long tmp;
799 int ret = 0;
800
801 /* start transaction */
802 spin_lock_irqsave(&ec->lock, tmp);
803 /* Enable GPE for command processing (IBF=0/OBF=1) */
804 if (!acpi_ec_submit_flushable_request(ec)) {
805 ret = -EINVAL;
806 goto unlock;
807 }
808 ec_dbg_ref(ec, "Increase command");
809 /* following two actions should be kept atomic */
810 ec->curr = t;
811 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
812 start_transaction(ec);
813 spin_unlock_irqrestore(&ec->lock, tmp);
814
815 ret = ec_poll(ec);
816
817 spin_lock_irqsave(&ec->lock, tmp);
818 if (t->irq_count == ec_storm_threshold)
819 acpi_ec_unmask_events(ec);
820 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
821 ec->curr = NULL;
822 /* Disable GPE for command processing (IBF=0/OBF=1) */
823 acpi_ec_complete_request(ec);
824 ec_dbg_ref(ec, "Decrease command");
825 unlock:
826 spin_unlock_irqrestore(&ec->lock, tmp);
827 return ret;
828 }
829
830 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
831 {
832 int status;
833 u32 glk;
834
835 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
836 return -EINVAL;
837 if (t->rdata)
838 memset(t->rdata, 0, t->rlen);
839
840 mutex_lock(&ec->mutex);
841 if (ec->global_lock) {
842 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
843 if (ACPI_FAILURE(status)) {
844 status = -ENODEV;
845 goto unlock;
846 }
847 }
848
849 status = acpi_ec_transaction_unlocked(ec, t);
850
851 if (ec->global_lock)
852 acpi_release_global_lock(glk);
853 unlock:
854 mutex_unlock(&ec->mutex);
855 return status;
856 }
857
858 static int acpi_ec_burst_enable(struct acpi_ec *ec)
859 {
860 u8 d;
861 struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
862 .wdata = NULL, .rdata = &d,
863 .wlen = 0, .rlen = 1};
864
865 return acpi_ec_transaction(ec, &t);
866 }
867
868 static int acpi_ec_burst_disable(struct acpi_ec *ec)
869 {
870 struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
871 .wdata = NULL, .rdata = NULL,
872 .wlen = 0, .rlen = 0};
873
874 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
875 acpi_ec_transaction(ec, &t) : 0;
876 }
877
878 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
879 {
880 int result;
881 u8 d;
882 struct transaction t = {.command = ACPI_EC_COMMAND_READ,
883 .wdata = &address, .rdata = &d,
884 .wlen = 1, .rlen = 1};
885
886 result = acpi_ec_transaction(ec, &t);
887 *data = d;
888 return result;
889 }
890
891 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
892 {
893 u8 wdata[2] = { address, data };
894 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
895 .wdata = wdata, .rdata = NULL,
896 .wlen = 2, .rlen = 0};
897
898 return acpi_ec_transaction(ec, &t);
899 }
900
901 int ec_read(u8 addr, u8 *val)
902 {
903 int err;
904 u8 temp_data;
905
906 if (!first_ec)
907 return -ENODEV;
908
909 err = acpi_ec_read(first_ec, addr, &temp_data);
910
911 if (!err) {
912 *val = temp_data;
913 return 0;
914 }
915 return err;
916 }
917 EXPORT_SYMBOL(ec_read);
918
919 int ec_write(u8 addr, u8 val)
920 {
921 int err;
922
923 if (!first_ec)
924 return -ENODEV;
925
926 err = acpi_ec_write(first_ec, addr, val);
927
928 return err;
929 }
930 EXPORT_SYMBOL(ec_write);
931
932 int ec_transaction(u8 command,
933 const u8 *wdata, unsigned wdata_len,
934 u8 *rdata, unsigned rdata_len)
935 {
936 struct transaction t = {.command = command,
937 .wdata = wdata, .rdata = rdata,
938 .wlen = wdata_len, .rlen = rdata_len};
939
940 if (!first_ec)
941 return -ENODEV;
942
943 return acpi_ec_transaction(first_ec, &t);
944 }
945 EXPORT_SYMBOL(ec_transaction);
946
947 /* Get the handle to the EC device */
948 acpi_handle ec_get_handle(void)
949 {
950 if (!first_ec)
951 return NULL;
952 return first_ec->handle;
953 }
954 EXPORT_SYMBOL(ec_get_handle);
955
956 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
957 {
958 unsigned long flags;
959
960 spin_lock_irqsave(&ec->lock, flags);
961 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
962 ec_dbg_drv("Starting EC");
963 /* Enable GPE for event processing (SCI_EVT=1) */
964 if (!resuming) {
965 acpi_ec_submit_request(ec);
966 ec_dbg_ref(ec, "Increase driver");
967 }
968 ec_log_drv("EC started");
969 }
970 spin_unlock_irqrestore(&ec->lock, flags);
971 }
972
973 static bool acpi_ec_stopped(struct acpi_ec *ec)
974 {
975 unsigned long flags;
976 bool flushed;
977
978 spin_lock_irqsave(&ec->lock, flags);
979 flushed = acpi_ec_flushed(ec);
980 spin_unlock_irqrestore(&ec->lock, flags);
981 return flushed;
982 }
983
984 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
985 {
986 unsigned long flags;
987
988 spin_lock_irqsave(&ec->lock, flags);
989 if (acpi_ec_started(ec)) {
990 ec_dbg_drv("Stopping EC");
991 set_bit(EC_FLAGS_STOPPED, &ec->flags);
992 spin_unlock_irqrestore(&ec->lock, flags);
993 wait_event(ec->wait, acpi_ec_stopped(ec));
994 spin_lock_irqsave(&ec->lock, flags);
995 /* Disable GPE for event processing (SCI_EVT=1) */
996 if (!suspending) {
997 acpi_ec_complete_request(ec);
998 ec_dbg_ref(ec, "Decrease driver");
999 } else if (!ec_freeze_events)
1000 __acpi_ec_disable_event(ec);
1001 clear_bit(EC_FLAGS_STARTED, &ec->flags);
1002 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1003 ec_log_drv("EC stopped");
1004 }
1005 spin_unlock_irqrestore(&ec->lock, flags);
1006 }
1007
1008 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1009 {
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&ec->lock, flags);
1013 ec->busy_polling = true;
1014 ec->polling_guard = 0;
1015 ec_log_drv("interrupt blocked");
1016 spin_unlock_irqrestore(&ec->lock, flags);
1017 }
1018
1019 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1020 {
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&ec->lock, flags);
1024 ec->busy_polling = ec_busy_polling;
1025 ec->polling_guard = ec_polling_guard;
1026 ec_log_drv("interrupt unblocked");
1027 spin_unlock_irqrestore(&ec->lock, flags);
1028 }
1029
1030 void acpi_ec_block_transactions(void)
1031 {
1032 struct acpi_ec *ec = first_ec;
1033
1034 if (!ec)
1035 return;
1036
1037 mutex_lock(&ec->mutex);
1038 /* Prevent transactions from being carried out */
1039 acpi_ec_stop(ec, true);
1040 mutex_unlock(&ec->mutex);
1041 }
1042
1043 void acpi_ec_unblock_transactions(void)
1044 {
1045 /*
1046 * Allow transactions to happen again (this function is called from
1047 * atomic context during wakeup, so we don't need to acquire the mutex).
1048 */
1049 if (first_ec)
1050 acpi_ec_start(first_ec, true);
1051 }
1052
1053 /* --------------------------------------------------------------------------
1054 Event Management
1055 -------------------------------------------------------------------------- */
1056 static struct acpi_ec_query_handler *
1057 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1058 {
1059 struct acpi_ec_query_handler *handler;
1060
1061 mutex_lock(&ec->mutex);
1062 list_for_each_entry(handler, &ec->list, node) {
1063 if (value == handler->query_bit) {
1064 kref_get(&handler->kref);
1065 mutex_unlock(&ec->mutex);
1066 return handler;
1067 }
1068 }
1069 mutex_unlock(&ec->mutex);
1070 return NULL;
1071 }
1072
1073 static void acpi_ec_query_handler_release(struct kref *kref)
1074 {
1075 struct acpi_ec_query_handler *handler =
1076 container_of(kref, struct acpi_ec_query_handler, kref);
1077
1078 kfree(handler);
1079 }
1080
1081 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1082 {
1083 kref_put(&handler->kref, acpi_ec_query_handler_release);
1084 }
1085
1086 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1087 acpi_handle handle, acpi_ec_query_func func,
1088 void *data)
1089 {
1090 struct acpi_ec_query_handler *handler =
1091 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1092
1093 if (!handler)
1094 return -ENOMEM;
1095
1096 handler->query_bit = query_bit;
1097 handler->handle = handle;
1098 handler->func = func;
1099 handler->data = data;
1100 mutex_lock(&ec->mutex);
1101 kref_init(&handler->kref);
1102 list_add(&handler->node, &ec->list);
1103 mutex_unlock(&ec->mutex);
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1107
1108 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1109 bool remove_all, u8 query_bit)
1110 {
1111 struct acpi_ec_query_handler *handler, *tmp;
1112 LIST_HEAD(free_list);
1113
1114 mutex_lock(&ec->mutex);
1115 list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1116 if (remove_all || query_bit == handler->query_bit) {
1117 list_del_init(&handler->node);
1118 list_add(&handler->node, &free_list);
1119 }
1120 }
1121 mutex_unlock(&ec->mutex);
1122 list_for_each_entry_safe(handler, tmp, &free_list, node)
1123 acpi_ec_put_query_handler(handler);
1124 }
1125
1126 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1127 {
1128 acpi_ec_remove_query_handlers(ec, false, query_bit);
1129 }
1130 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1131
1132 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1133 {
1134 struct acpi_ec_query *q;
1135 struct transaction *t;
1136
1137 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1138 if (!q)
1139 return NULL;
1140 INIT_WORK(&q->work, acpi_ec_event_processor);
1141 t = &q->transaction;
1142 t->command = ACPI_EC_COMMAND_QUERY;
1143 t->rdata = pval;
1144 t->rlen = 1;
1145 return q;
1146 }
1147
1148 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1149 {
1150 if (q) {
1151 if (q->handler)
1152 acpi_ec_put_query_handler(q->handler);
1153 kfree(q);
1154 }
1155 }
1156
1157 static void acpi_ec_event_processor(struct work_struct *work)
1158 {
1159 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1160 struct acpi_ec_query_handler *handler = q->handler;
1161
1162 ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1163 if (handler->func)
1164 handler->func(handler->data);
1165 else if (handler->handle)
1166 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1167 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1168 acpi_ec_delete_query(q);
1169 }
1170
1171 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1172 {
1173 u8 value = 0;
1174 int result;
1175 struct acpi_ec_query *q;
1176
1177 q = acpi_ec_create_query(&value);
1178 if (!q)
1179 return -ENOMEM;
1180
1181 /*
1182 * Query the EC to find out which _Qxx method we need to evaluate.
1183 * Note that successful completion of the query causes the ACPI_EC_SCI
1184 * bit to be cleared (and thus clearing the interrupt source).
1185 */
1186 result = acpi_ec_transaction(ec, &q->transaction);
1187 if (!value)
1188 result = -ENODATA;
1189 if (result)
1190 goto err_exit;
1191
1192 q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1193 if (!q->handler) {
1194 result = -ENODATA;
1195 goto err_exit;
1196 }
1197
1198 /*
1199 * It is reported that _Qxx are evaluated in a parallel way on
1200 * Windows:
1201 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1202 *
1203 * Put this log entry before schedule_work() in order to make
1204 * it appearing before any other log entries occurred during the
1205 * work queue execution.
1206 */
1207 ec_dbg_evt("Query(0x%02x) scheduled", value);
1208 if (!queue_work(ec_query_wq, &q->work)) {
1209 ec_dbg_evt("Query(0x%02x) overlapped", value);
1210 result = -EBUSY;
1211 }
1212
1213 err_exit:
1214 if (result)
1215 acpi_ec_delete_query(q);
1216 if (data)
1217 *data = value;
1218 return result;
1219 }
1220
1221 static void acpi_ec_check_event(struct acpi_ec *ec)
1222 {
1223 unsigned long flags;
1224
1225 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1226 if (ec_guard(ec)) {
1227 spin_lock_irqsave(&ec->lock, flags);
1228 /*
1229 * Take care of the SCI_EVT unless no one else is
1230 * taking care of it.
1231 */
1232 if (!ec->curr)
1233 advance_transaction(ec);
1234 spin_unlock_irqrestore(&ec->lock, flags);
1235 }
1236 }
1237 }
1238
1239 static void acpi_ec_event_handler(struct work_struct *work)
1240 {
1241 unsigned long flags;
1242 struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1243
1244 ec_dbg_evt("Event started");
1245
1246 spin_lock_irqsave(&ec->lock, flags);
1247 while (ec->nr_pending_queries) {
1248 spin_unlock_irqrestore(&ec->lock, flags);
1249 (void)acpi_ec_query(ec, NULL);
1250 spin_lock_irqsave(&ec->lock, flags);
1251 ec->nr_pending_queries--;
1252 /*
1253 * Before exit, make sure that this work item can be
1254 * scheduled again. There might be QR_EC failures, leaving
1255 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1256 * item from being scheduled again.
1257 */
1258 if (!ec->nr_pending_queries) {
1259 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1260 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1261 acpi_ec_complete_query(ec);
1262 }
1263 }
1264 spin_unlock_irqrestore(&ec->lock, flags);
1265
1266 ec_dbg_evt("Event stopped");
1267
1268 acpi_ec_check_event(ec);
1269 }
1270
1271 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1272 {
1273 unsigned long flags;
1274
1275 spin_lock_irqsave(&ec->lock, flags);
1276 advance_transaction(ec);
1277 spin_unlock_irqrestore(&ec->lock, flags);
1278 }
1279
1280 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1281 u32 gpe_number, void *data)
1282 {
1283 acpi_ec_handle_interrupt(data);
1284 return ACPI_INTERRUPT_HANDLED;
1285 }
1286
1287 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1288 {
1289 acpi_ec_handle_interrupt(data);
1290 return IRQ_HANDLED;
1291 }
1292
1293 /* --------------------------------------------------------------------------
1294 * Address Space Management
1295 * -------------------------------------------------------------------------- */
1296
1297 static acpi_status
1298 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1299 u32 bits, u64 *value64,
1300 void *handler_context, void *region_context)
1301 {
1302 struct acpi_ec *ec = handler_context;
1303 int result = 0, i, bytes = bits / 8;
1304 u8 *value = (u8 *)value64;
1305
1306 if ((address > 0xFF) || !value || !handler_context)
1307 return AE_BAD_PARAMETER;
1308
1309 if (function != ACPI_READ && function != ACPI_WRITE)
1310 return AE_BAD_PARAMETER;
1311
1312 if (ec->busy_polling || bits > 8)
1313 acpi_ec_burst_enable(ec);
1314
1315 for (i = 0; i < bytes; ++i, ++address, ++value)
1316 result = (function == ACPI_READ) ?
1317 acpi_ec_read(ec, address, value) :
1318 acpi_ec_write(ec, address, *value);
1319
1320 if (ec->busy_polling || bits > 8)
1321 acpi_ec_burst_disable(ec);
1322
1323 switch (result) {
1324 case -EINVAL:
1325 return AE_BAD_PARAMETER;
1326 case -ENODEV:
1327 return AE_NOT_FOUND;
1328 case -ETIME:
1329 return AE_TIME;
1330 default:
1331 return AE_OK;
1332 }
1333 }
1334
1335 /* --------------------------------------------------------------------------
1336 * Driver Interface
1337 * -------------------------------------------------------------------------- */
1338
1339 static acpi_status
1340 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1341
1342 static void acpi_ec_free(struct acpi_ec *ec)
1343 {
1344 if (first_ec == ec)
1345 first_ec = NULL;
1346 if (boot_ec == ec)
1347 boot_ec = NULL;
1348 kfree(ec);
1349 }
1350
1351 static struct acpi_ec *acpi_ec_alloc(void)
1352 {
1353 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1354
1355 if (!ec)
1356 return NULL;
1357 mutex_init(&ec->mutex);
1358 init_waitqueue_head(&ec->wait);
1359 INIT_LIST_HEAD(&ec->list);
1360 spin_lock_init(&ec->lock);
1361 INIT_WORK(&ec->work, acpi_ec_event_handler);
1362 ec->timestamp = jiffies;
1363 ec->busy_polling = true;
1364 ec->polling_guard = 0;
1365 ec->gpe = -1;
1366 ec->irq = -1;
1367 return ec;
1368 }
1369
1370 static acpi_status
1371 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1372 void *context, void **return_value)
1373 {
1374 char node_name[5];
1375 struct acpi_buffer buffer = { sizeof(node_name), node_name };
1376 struct acpi_ec *ec = context;
1377 int value = 0;
1378 acpi_status status;
1379
1380 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1381
1382 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1383 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1384 return AE_OK;
1385 }
1386
1387 static acpi_status
1388 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1389 {
1390 acpi_status status;
1391 unsigned long long tmp = 0;
1392 struct acpi_ec *ec = context;
1393
1394 /* clear addr values, ec_parse_io_ports depend on it */
1395 ec->command_addr = ec->data_addr = 0;
1396
1397 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1398 ec_parse_io_ports, ec);
1399 if (ACPI_FAILURE(status))
1400 return status;
1401 if (ec->data_addr == 0 || ec->command_addr == 0)
1402 return AE_OK;
1403
1404 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) {
1405 /*
1406 * Always inherit the GPE number setting from the ECDT
1407 * EC.
1408 */
1409 ec->gpe = boot_ec->gpe;
1410 } else {
1411 /* Get GPE bit assignment (EC events). */
1412 /* TODO: Add support for _GPE returning a package */
1413 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1414 if (ACPI_SUCCESS(status))
1415 ec->gpe = tmp;
1416
1417 /*
1418 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1419 * platforms which use GpioInt instead of GPE.
1420 */
1421 }
1422 /* Use the global lock for all EC transactions? */
1423 tmp = 0;
1424 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1425 ec->global_lock = tmp;
1426 ec->handle = handle;
1427 return AE_CTRL_TERMINATE;
1428 }
1429
1430 static bool install_gpe_event_handler(struct acpi_ec *ec)
1431 {
1432 acpi_status status;
1433
1434 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1435 ACPI_GPE_EDGE_TRIGGERED,
1436 &acpi_ec_gpe_handler, ec);
1437 if (ACPI_FAILURE(status))
1438 return false;
1439
1440 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1441 acpi_ec_enable_gpe(ec, true);
1442
1443 return true;
1444 }
1445
1446 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1447 {
1448 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1449 "ACPI EC", ec) >= 0;
1450 }
1451
1452 /**
1453 * ec_install_handlers - Install service callbacks and register query methods.
1454 * @ec: Target EC.
1455 * @device: ACPI device object corresponding to @ec.
1456 *
1457 * Install a handler for the EC address space type unless it has been installed
1458 * already. If @device is not NULL, also look for EC query methods in the
1459 * namespace and register them, and install an event (either GPE or GPIO IRQ)
1460 * handler for the EC, if possible.
1461 *
1462 * Return:
1463 * -ENODEV if the address space handler cannot be installed, which means
1464 * "unable to handle transactions",
1465 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1466 * or 0 (success) otherwise.
1467 */
1468 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1469 {
1470 acpi_status status;
1471
1472 acpi_ec_start(ec, false);
1473
1474 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1475 acpi_ec_enter_noirq(ec);
1476 status = acpi_install_address_space_handler(ec->handle,
1477 ACPI_ADR_SPACE_EC,
1478 &acpi_ec_space_handler,
1479 NULL, ec);
1480 if (ACPI_FAILURE(status)) {
1481 acpi_ec_stop(ec, false);
1482 return -ENODEV;
1483 }
1484 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1485 }
1486
1487 if (!device)
1488 return 0;
1489
1490 if (ec->gpe < 0) {
1491 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1492 int irq = acpi_dev_gpio_irq_get(device, 0);
1493 /*
1494 * Bail out right away for deferred probing or complete the
1495 * initialization regardless of any other errors.
1496 */
1497 if (irq == -EPROBE_DEFER)
1498 return -EPROBE_DEFER;
1499 else if (irq >= 0)
1500 ec->irq = irq;
1501 }
1502
1503 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1504 /* Find and register all query methods */
1505 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1506 acpi_ec_register_query_methods,
1507 NULL, ec, NULL);
1508 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1509 }
1510 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1511 bool ready = false;
1512
1513 if (ec->gpe >= 0)
1514 ready = install_gpe_event_handler(ec);
1515 else if (ec->irq >= 0)
1516 ready = install_gpio_irq_event_handler(ec);
1517
1518 if (ready) {
1519 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1520 acpi_ec_leave_noirq(ec);
1521 }
1522 /*
1523 * Failures to install an event handler are not fatal, because
1524 * the EC can be polled for events.
1525 */
1526 }
1527 /* EC is fully operational, allow queries */
1528 acpi_ec_enable_event(ec);
1529
1530 return 0;
1531 }
1532
1533 static void ec_remove_handlers(struct acpi_ec *ec)
1534 {
1535 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1536 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1537 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1538 pr_err("failed to remove space handler\n");
1539 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1540 }
1541
1542 /*
1543 * Stops handling the EC transactions after removing the operation
1544 * region handler. This is required because _REG(DISCONNECT)
1545 * invoked during the removal can result in new EC transactions.
1546 *
1547 * Flushes the EC requests and thus disables the GPE before
1548 * removing the GPE handler. This is required by the current ACPICA
1549 * GPE core. ACPICA GPE core will automatically disable a GPE when
1550 * it is indicated but there is no way to handle it. So the drivers
1551 * must disable the GPEs prior to removing the GPE handlers.
1552 */
1553 acpi_ec_stop(ec, false);
1554
1555 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1556 if (ec->gpe >= 0 &&
1557 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1558 &acpi_ec_gpe_handler)))
1559 pr_err("failed to remove gpe handler\n");
1560
1561 if (ec->irq >= 0)
1562 free_irq(ec->irq, ec);
1563
1564 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1565 }
1566 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1567 acpi_ec_remove_query_handlers(ec, true, 0);
1568 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1569 }
1570 }
1571
1572 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1573 {
1574 int ret;
1575
1576 ret = ec_install_handlers(ec, device);
1577 if (ret)
1578 return ret;
1579
1580 /* First EC capable of handling transactions */
1581 if (!first_ec)
1582 first_ec = ec;
1583
1584 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1585 ec->data_addr);
1586
1587 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1588 if (ec->gpe >= 0)
1589 pr_info("GPE=0x%x\n", ec->gpe);
1590 else
1591 pr_info("IRQ=%d\n", ec->irq);
1592 }
1593
1594 return ret;
1595 }
1596
1597 static bool acpi_ec_ecdt_get_handle(acpi_handle *phandle)
1598 {
1599 struct acpi_table_ecdt *ecdt_ptr;
1600 acpi_status status;
1601 acpi_handle handle;
1602
1603 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1604 (struct acpi_table_header **)&ecdt_ptr);
1605 if (ACPI_FAILURE(status))
1606 return false;
1607
1608 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1609 if (ACPI_FAILURE(status))
1610 return false;
1611
1612 *phandle = handle;
1613 return true;
1614 }
1615
1616 static int acpi_ec_add(struct acpi_device *device)
1617 {
1618 struct acpi_ec *ec;
1619 int ret;
1620
1621 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1622 strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1623
1624 if ((boot_ec && boot_ec->handle == device->handle) ||
1625 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID)) {
1626 /* Fast path: this device corresponds to the boot EC. */
1627 ec = boot_ec;
1628 } else {
1629 acpi_status status;
1630
1631 ec = acpi_ec_alloc();
1632 if (!ec)
1633 return -ENOMEM;
1634
1635 status = ec_parse_device(device->handle, 0, ec, NULL);
1636 if (status != AE_CTRL_TERMINATE) {
1637 ret = -EINVAL;
1638 goto err;
1639 }
1640
1641 if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1642 ec->data_addr == boot_ec->data_addr) {
1643 boot_ec_is_ecdt = false;
1644 /*
1645 * Trust PNP0C09 namespace location rather than
1646 * ECDT ID. But trust ECDT GPE rather than _GPE
1647 * because of ASUS quirks, so do not change
1648 * boot_ec->gpe to ec->gpe.
1649 */
1650 boot_ec->handle = ec->handle;
1651 acpi_handle_debug(ec->handle, "duplicated.\n");
1652 acpi_ec_free(ec);
1653 ec = boot_ec;
1654 }
1655 }
1656
1657 ret = acpi_ec_setup(ec, device);
1658 if (ret)
1659 goto err;
1660
1661 if (ec == boot_ec)
1662 acpi_handle_info(boot_ec->handle,
1663 "Boot %s EC used to handle transactions and events\n",
1664 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1665
1666 device->driver_data = ec;
1667
1668 ret = !!request_region(ec->data_addr, 1, "EC data");
1669 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1670 ret = !!request_region(ec->command_addr, 1, "EC cmd");
1671 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1672
1673 /* Reprobe devices depending on the EC */
1674 acpi_walk_dep_device_list(ec->handle);
1675
1676 acpi_handle_debug(ec->handle, "enumerated.\n");
1677 return 0;
1678
1679 err:
1680 if (ec != boot_ec)
1681 acpi_ec_free(ec);
1682
1683 return ret;
1684 }
1685
1686 static int acpi_ec_remove(struct acpi_device *device)
1687 {
1688 struct acpi_ec *ec;
1689
1690 if (!device)
1691 return -EINVAL;
1692
1693 ec = acpi_driver_data(device);
1694 release_region(ec->data_addr, 1);
1695 release_region(ec->command_addr, 1);
1696 device->driver_data = NULL;
1697 if (ec != boot_ec) {
1698 ec_remove_handlers(ec);
1699 acpi_ec_free(ec);
1700 }
1701 return 0;
1702 }
1703
1704 static acpi_status
1705 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1706 {
1707 struct acpi_ec *ec = context;
1708
1709 if (resource->type != ACPI_RESOURCE_TYPE_IO)
1710 return AE_OK;
1711
1712 /*
1713 * The first address region returned is the data port, and
1714 * the second address region returned is the status/command
1715 * port.
1716 */
1717 if (ec->data_addr == 0)
1718 ec->data_addr = resource->data.io.minimum;
1719 else if (ec->command_addr == 0)
1720 ec->command_addr = resource->data.io.minimum;
1721 else
1722 return AE_CTRL_TERMINATE;
1723
1724 return AE_OK;
1725 }
1726
1727 static const struct acpi_device_id ec_device_ids[] = {
1728 {"PNP0C09", 0},
1729 {ACPI_ECDT_HID, 0},
1730 {"", 0},
1731 };
1732
1733 /*
1734 * This function is not Windows-compatible as Windows never enumerates the
1735 * namespace EC before the main ACPI device enumeration process. It is
1736 * retained for historical reason and will be deprecated in the future.
1737 */
1738 void __init acpi_ec_dsdt_probe(void)
1739 {
1740 struct acpi_ec *ec;
1741 acpi_status status;
1742 int ret;
1743
1744 /*
1745 * If a platform has ECDT, there is no need to proceed as the
1746 * following probe is not a part of the ACPI device enumeration,
1747 * executing _STA is not safe, and thus this probe may risk of
1748 * picking up an invalid EC device.
1749 */
1750 if (boot_ec)
1751 return;
1752
1753 ec = acpi_ec_alloc();
1754 if (!ec)
1755 return;
1756
1757 /*
1758 * At this point, the namespace is initialized, so start to find
1759 * the namespace objects.
1760 */
1761 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1762 if (ACPI_FAILURE(status) || !ec->handle) {
1763 acpi_ec_free(ec);
1764 return;
1765 }
1766
1767 /*
1768 * When the DSDT EC is available, always re-configure boot EC to
1769 * have _REG evaluated. _REG can only be evaluated after the
1770 * namespace initialization.
1771 * At this point, the GPE is not fully initialized, so do not to
1772 * handle the events.
1773 */
1774 ret = acpi_ec_setup(ec, NULL);
1775 if (ret) {
1776 acpi_ec_free(ec);
1777 return;
1778 }
1779
1780 boot_ec = ec;
1781
1782 acpi_handle_info(ec->handle,
1783 "Boot DSDT EC used to handle transactions\n");
1784 }
1785
1786 /*
1787 * If the DSDT EC is not functioning, we still need to prepare a fully
1788 * functioning ECDT EC first in order to handle the events.
1789 * https://bugzilla.kernel.org/show_bug.cgi?id=115021
1790 */
1791 static int __init acpi_ec_ecdt_start(void)
1792 {
1793 acpi_handle handle;
1794
1795 if (!boot_ec)
1796 return -ENODEV;
1797 /* In case acpi_ec_ecdt_start() is called after acpi_ec_add() */
1798 if (!boot_ec_is_ecdt)
1799 return -ENODEV;
1800
1801 /*
1802 * At this point, the namespace and the GPE is initialized, so
1803 * start to find the namespace objects and handle the events.
1804 *
1805 * Note: ec->handle can be valid if this function is called after
1806 * acpi_ec_add(), hence the fast path.
1807 */
1808 if (boot_ec->handle == ACPI_ROOT_OBJECT) {
1809 if (!acpi_ec_ecdt_get_handle(&handle))
1810 return -ENODEV;
1811 boot_ec->handle = handle;
1812 }
1813
1814 /* Register to ACPI bus with PM ops attached */
1815 return acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1816 }
1817
1818 #if 0
1819 /*
1820 * Some EC firmware variations refuses to respond QR_EC when SCI_EVT is not
1821 * set, for which case, we complete the QR_EC without issuing it to the
1822 * firmware.
1823 * https://bugzilla.kernel.org/show_bug.cgi?id=82611
1824 * https://bugzilla.kernel.org/show_bug.cgi?id=97381
1825 */
1826 static int ec_flag_query_handshake(const struct dmi_system_id *id)
1827 {
1828 pr_debug("Detected the EC firmware requiring QR_EC issued when SCI_EVT set\n");
1829 EC_FLAGS_QUERY_HANDSHAKE = 1;
1830 return 0;
1831 }
1832 #endif
1833
1834 /*
1835 * On some hardware it is necessary to clear events accumulated by the EC during
1836 * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1837 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1838 *
1839 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1840 *
1841 * Ideally, the EC should also be instructed NOT to accumulate events during
1842 * sleep (which Windows seems to do somehow), but the interface to control this
1843 * behaviour is not known at this time.
1844 *
1845 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1846 * however it is very likely that other Samsung models are affected.
1847 *
1848 * On systems which don't accumulate _Q events during sleep, this extra check
1849 * should be harmless.
1850 */
1851 static int ec_clear_on_resume(const struct dmi_system_id *id)
1852 {
1853 pr_debug("Detected system needing EC poll on resume.\n");
1854 EC_FLAGS_CLEAR_ON_RESUME = 1;
1855 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1856 return 0;
1857 }
1858
1859 /*
1860 * Some ECDTs contain wrong register addresses.
1861 * MSI MS-171F
1862 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1863 */
1864 static int ec_correct_ecdt(const struct dmi_system_id *id)
1865 {
1866 pr_debug("Detected system needing ECDT address correction.\n");
1867 EC_FLAGS_CORRECT_ECDT = 1;
1868 return 0;
1869 }
1870
1871 /*
1872 * Some DSDTs contain wrong GPE setting.
1873 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD
1874 * https://bugzilla.kernel.org/show_bug.cgi?id=195651
1875 */
1876 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id)
1877 {
1878 pr_debug("Detected system needing ignore DSDT GPE setting.\n");
1879 EC_FLAGS_IGNORE_DSDT_GPE = 1;
1880 return 0;
1881 }
1882
1883 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1884 {
1885 ec_correct_ecdt, "MSI MS-171F", {
1886 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1887 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1888 {
1889 ec_honor_ecdt_gpe, "ASUS FX502VD", {
1890 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1891 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL},
1892 {
1893 ec_honor_ecdt_gpe, "ASUS FX502VE", {
1894 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1895 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL},
1896 {
1897 ec_honor_ecdt_gpe, "ASUS GL702VMK", {
1898 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1899 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL},
1900 {
1901 ec_honor_ecdt_gpe, "ASUS X550VXK", {
1902 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1903 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL},
1904 {
1905 ec_honor_ecdt_gpe, "ASUS X580VD", {
1906 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1907 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL},
1908 {
1909 ec_clear_on_resume, "Samsung hardware", {
1910 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1911 {},
1912 };
1913
1914 void __init acpi_ec_ecdt_probe(void)
1915 {
1916 struct acpi_table_ecdt *ecdt_ptr;
1917 struct acpi_ec *ec;
1918 acpi_status status;
1919 int ret;
1920
1921 /* Generate a boot ec context. */
1922 dmi_check_system(ec_dmi_table);
1923 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1924 (struct acpi_table_header **)&ecdt_ptr);
1925 if (ACPI_FAILURE(status))
1926 return;
1927
1928 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1929 /*
1930 * Asus X50GL:
1931 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1932 */
1933 return;
1934 }
1935
1936 ec = acpi_ec_alloc();
1937 if (!ec)
1938 return;
1939
1940 if (EC_FLAGS_CORRECT_ECDT) {
1941 ec->command_addr = ecdt_ptr->data.address;
1942 ec->data_addr = ecdt_ptr->control.address;
1943 } else {
1944 ec->command_addr = ecdt_ptr->control.address;
1945 ec->data_addr = ecdt_ptr->data.address;
1946 }
1947
1948 /*
1949 * Ignore the GPE value on Reduced Hardware platforms.
1950 * Some products have this set to an erroneous value.
1951 */
1952 if (!acpi_gbl_reduced_hardware)
1953 ec->gpe = ecdt_ptr->gpe;
1954
1955 ec->handle = ACPI_ROOT_OBJECT;
1956
1957 /*
1958 * At this point, the namespace is not initialized, so do not find
1959 * the namespace objects, or handle the events.
1960 */
1961 ret = acpi_ec_setup(ec, NULL);
1962 if (ret) {
1963 acpi_ec_free(ec);
1964 return;
1965 }
1966
1967 boot_ec = ec;
1968 boot_ec_is_ecdt = true;
1969
1970 pr_info("Boot ECDT EC used to handle transactions\n");
1971 }
1972
1973 #ifdef CONFIG_PM_SLEEP
1974 static int acpi_ec_suspend(struct device *dev)
1975 {
1976 struct acpi_ec *ec =
1977 acpi_driver_data(to_acpi_device(dev));
1978
1979 if (!pm_suspend_no_platform() && ec_freeze_events)
1980 acpi_ec_disable_event(ec);
1981 return 0;
1982 }
1983
1984 static int acpi_ec_suspend_noirq(struct device *dev)
1985 {
1986 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1987
1988 /*
1989 * The SCI handler doesn't run at this point, so the GPE can be
1990 * masked at the low level without side effects.
1991 */
1992 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1993 ec->gpe >= 0 && ec->reference_count >= 1)
1994 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1995
1996 acpi_ec_enter_noirq(ec);
1997
1998 return 0;
1999 }
2000
2001 static int acpi_ec_resume_noirq(struct device *dev)
2002 {
2003 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2004
2005 acpi_ec_leave_noirq(ec);
2006
2007 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2008 ec->gpe >= 0 && ec->reference_count >= 1)
2009 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2010
2011 return 0;
2012 }
2013
2014 static int acpi_ec_resume(struct device *dev)
2015 {
2016 struct acpi_ec *ec =
2017 acpi_driver_data(to_acpi_device(dev));
2018
2019 acpi_ec_enable_event(ec);
2020 return 0;
2021 }
2022
2023 void acpi_ec_mark_gpe_for_wake(void)
2024 {
2025 if (first_ec && !ec_no_wakeup)
2026 acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2027 }
2028 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2029
2030 void acpi_ec_set_gpe_wake_mask(u8 action)
2031 {
2032 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2033 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2034 }
2035
2036 bool acpi_ec_dispatch_gpe(void)
2037 {
2038 u32 ret;
2039
2040 if (!first_ec)
2041 return false;
2042
2043 ret = acpi_dispatch_gpe(NULL, first_ec->gpe);
2044 if (ret == ACPI_INTERRUPT_HANDLED) {
2045 pm_pr_dbg("EC GPE dispatched\n");
2046 return true;
2047 }
2048 return false;
2049 }
2050 #endif /* CONFIG_PM_SLEEP */
2051
2052 static const struct dev_pm_ops acpi_ec_pm = {
2053 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2054 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2055 };
2056
2057 static int param_set_event_clearing(const char *val,
2058 const struct kernel_param *kp)
2059 {
2060 int result = 0;
2061
2062 if (!strncmp(val, "status", sizeof("status") - 1)) {
2063 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2064 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2065 } else if (!strncmp(val, "query", sizeof("query") - 1)) {
2066 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2067 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2068 } else if (!strncmp(val, "event", sizeof("event") - 1)) {
2069 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2070 pr_info("Assuming SCI_EVT clearing on event reads\n");
2071 } else
2072 result = -EINVAL;
2073 return result;
2074 }
2075
2076 static int param_get_event_clearing(char *buffer,
2077 const struct kernel_param *kp)
2078 {
2079 switch (ec_event_clearing) {
2080 case ACPI_EC_EVT_TIMING_STATUS:
2081 return sprintf(buffer, "status");
2082 case ACPI_EC_EVT_TIMING_QUERY:
2083 return sprintf(buffer, "query");
2084 case ACPI_EC_EVT_TIMING_EVENT:
2085 return sprintf(buffer, "event");
2086 default:
2087 return sprintf(buffer, "invalid");
2088 }
2089 return 0;
2090 }
2091
2092 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2093 NULL, 0644);
2094 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2095
2096 static struct acpi_driver acpi_ec_driver = {
2097 .name = "ec",
2098 .class = ACPI_EC_CLASS,
2099 .ids = ec_device_ids,
2100 .ops = {
2101 .add = acpi_ec_add,
2102 .remove = acpi_ec_remove,
2103 },
2104 .drv.pm = &acpi_ec_pm,
2105 };
2106
2107 static void acpi_ec_destroy_workqueues(void)
2108 {
2109 if (ec_wq) {
2110 destroy_workqueue(ec_wq);
2111 ec_wq = NULL;
2112 }
2113 if (ec_query_wq) {
2114 destroy_workqueue(ec_query_wq);
2115 ec_query_wq = NULL;
2116 }
2117 }
2118
2119 static int acpi_ec_init_workqueues(void)
2120 {
2121 if (!ec_wq)
2122 ec_wq = alloc_ordered_workqueue("kec", 0);
2123
2124 if (!ec_query_wq)
2125 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2126
2127 if (!ec_wq || !ec_query_wq) {
2128 acpi_ec_destroy_workqueues();
2129 return -ENODEV;
2130 }
2131 return 0;
2132 }
2133
2134 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2135 {
2136 .ident = "Thinkpad X1 Carbon 6th",
2137 .matches = {
2138 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2139 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2140 },
2141 },
2142 {
2143 .ident = "ThinkPad X1 Carbon 6th",
2144 .matches = {
2145 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2146 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"),
2147 },
2148 },
2149 {
2150 .ident = "ThinkPad X1 Yoga 3rd",
2151 .matches = {
2152 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2153 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2154 },
2155 },
2156 { },
2157 };
2158
2159 int __init acpi_ec_init(void)
2160 {
2161 int result;
2162 int ecdt_fail, dsdt_fail;
2163
2164 result = acpi_ec_init_workqueues();
2165 if (result)
2166 return result;
2167
2168 /*
2169 * Disable EC wakeup on following systems to prevent periodic
2170 * wakeup from EC GPE.
2171 */
2172 if (dmi_check_system(acpi_ec_no_wakeup)) {
2173 ec_no_wakeup = true;
2174 pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2175 }
2176
2177 /* Drivers must be started after acpi_ec_query_init() */
2178 dsdt_fail = acpi_bus_register_driver(&acpi_ec_driver);
2179 /*
2180 * Register ECDT to ACPI bus only when PNP0C09 probe fails. This is
2181 * useful for platforms (confirmed on ASUS X550ZE) with valid ECDT
2182 * settings but invalid DSDT settings.
2183 * https://bugzilla.kernel.org/show_bug.cgi?id=196847
2184 */
2185 ecdt_fail = acpi_ec_ecdt_start();
2186 return ecdt_fail && dsdt_fail ? -ENODEV : 0;
2187 }
2188
2189 /* EC driver currently not unloadable */
2190 #if 0
2191 static void __exit acpi_ec_exit(void)
2192 {
2193
2194 acpi_bus_unregister_driver(&acpi_ec_driver);
2195 acpi_ec_destroy_workqueues();
2196 }
2197 #endif /* 0 */