]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/acpi/nfit/core.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / acpi / nfit / core.c
1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/pmem.h>
24 #include <linux/io.h>
25 #include <linux/nd.h>
26 #include <asm/cacheflush.h>
27 #include "nfit.h"
28
29 /*
30 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31 * irrelevant.
32 */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38
39 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
40 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
41 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
42
43 /* after three payloads of overflow, it's dead jim */
44 static unsigned int scrub_overflow_abort = 3;
45 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
46 MODULE_PARM_DESC(scrub_overflow_abort,
47 "Number of times we overflow ARS results before abort");
48
49 static bool disable_vendor_specific;
50 module_param(disable_vendor_specific, bool, S_IRUGO);
51 MODULE_PARM_DESC(disable_vendor_specific,
52 "Limit commands to the publicly specified set\n");
53
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56
57 static struct workqueue_struct *nfit_wq;
58
59 struct nfit_table_prev {
60 struct list_head spas;
61 struct list_head memdevs;
62 struct list_head dcrs;
63 struct list_head bdws;
64 struct list_head idts;
65 struct list_head flushes;
66 };
67
68 static u8 nfit_uuid[NFIT_UUID_MAX][16];
69
70 const u8 *to_nfit_uuid(enum nfit_uuids id)
71 {
72 return nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75
76 static struct acpi_nfit_desc *to_acpi_nfit_desc(
77 struct nvdimm_bus_descriptor *nd_desc)
78 {
79 return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
80 }
81
82 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
83 {
84 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
85
86 /*
87 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
88 * acpi_device.
89 */
90 if (!nd_desc->provider_name
91 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
92 return NULL;
93
94 return to_acpi_device(acpi_desc->dev);
95 }
96
97 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
98 {
99 struct nd_cmd_clear_error *clear_err;
100 struct nd_cmd_ars_status *ars_status;
101 u16 flags;
102
103 switch (cmd) {
104 case ND_CMD_ARS_CAP:
105 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
106 return -ENOTTY;
107
108 /* Command failed */
109 if (status & 0xffff)
110 return -EIO;
111
112 /* No supported scan types for this range */
113 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
114 if ((status >> 16 & flags) == 0)
115 return -ENOTTY;
116 return 0;
117 case ND_CMD_ARS_START:
118 /* ARS is in progress */
119 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
120 return -EBUSY;
121
122 /* Command failed */
123 if (status & 0xffff)
124 return -EIO;
125 return 0;
126 case ND_CMD_ARS_STATUS:
127 ars_status = buf;
128 /* Command failed */
129 if (status & 0xffff)
130 return -EIO;
131 /* Check extended status (Upper two bytes) */
132 if (status == NFIT_ARS_STATUS_DONE)
133 return 0;
134
135 /* ARS is in progress */
136 if (status == NFIT_ARS_STATUS_BUSY)
137 return -EBUSY;
138
139 /* No ARS performed for the current boot */
140 if (status == NFIT_ARS_STATUS_NONE)
141 return -EAGAIN;
142
143 /*
144 * ARS interrupted, either we overflowed or some other
145 * agent wants the scan to stop. If we didn't overflow
146 * then just continue with the returned results.
147 */
148 if (status == NFIT_ARS_STATUS_INTR) {
149 if (ars_status->out_length >= 40 && (ars_status->flags
150 & NFIT_ARS_F_OVERFLOW))
151 return -ENOSPC;
152 return 0;
153 }
154
155 /* Unknown status */
156 if (status >> 16)
157 return -EIO;
158 return 0;
159 case ND_CMD_CLEAR_ERROR:
160 clear_err = buf;
161 if (status & 0xffff)
162 return -EIO;
163 if (!clear_err->cleared)
164 return -EIO;
165 if (clear_err->length > clear_err->cleared)
166 return clear_err->cleared;
167 return 0;
168 default:
169 break;
170 }
171
172 /* all other non-zero status results in an error */
173 if (status)
174 return -EIO;
175 return 0;
176 }
177
178 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
179 u32 status)
180 {
181 if (!nvdimm)
182 return xlat_bus_status(buf, cmd, status);
183 if (status)
184 return -EIO;
185 return 0;
186 }
187
188 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
189 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
190 {
191 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
192 union acpi_object in_obj, in_buf, *out_obj;
193 const struct nd_cmd_desc *desc = NULL;
194 struct device *dev = acpi_desc->dev;
195 struct nd_cmd_pkg *call_pkg = NULL;
196 const char *cmd_name, *dimm_name;
197 unsigned long cmd_mask, dsm_mask;
198 u32 offset, fw_status = 0;
199 acpi_handle handle;
200 unsigned int func;
201 const u8 *uuid;
202 int rc, i;
203
204 func = cmd;
205 if (cmd == ND_CMD_CALL) {
206 call_pkg = buf;
207 func = call_pkg->nd_command;
208 }
209
210 if (nvdimm) {
211 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
212 struct acpi_device *adev = nfit_mem->adev;
213
214 if (!adev)
215 return -ENOTTY;
216 if (call_pkg && nfit_mem->family != call_pkg->nd_family)
217 return -ENOTTY;
218
219 dimm_name = nvdimm_name(nvdimm);
220 cmd_name = nvdimm_cmd_name(cmd);
221 cmd_mask = nvdimm_cmd_mask(nvdimm);
222 dsm_mask = nfit_mem->dsm_mask;
223 desc = nd_cmd_dimm_desc(cmd);
224 uuid = to_nfit_uuid(nfit_mem->family);
225 handle = adev->handle;
226 } else {
227 struct acpi_device *adev = to_acpi_dev(acpi_desc);
228
229 cmd_name = nvdimm_bus_cmd_name(cmd);
230 cmd_mask = nd_desc->cmd_mask;
231 dsm_mask = cmd_mask;
232 desc = nd_cmd_bus_desc(cmd);
233 uuid = to_nfit_uuid(NFIT_DEV_BUS);
234 handle = adev->handle;
235 dimm_name = "bus";
236 }
237
238 if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
239 return -ENOTTY;
240
241 if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
242 return -ENOTTY;
243
244 in_obj.type = ACPI_TYPE_PACKAGE;
245 in_obj.package.count = 1;
246 in_obj.package.elements = &in_buf;
247 in_buf.type = ACPI_TYPE_BUFFER;
248 in_buf.buffer.pointer = buf;
249 in_buf.buffer.length = 0;
250
251 /* libnvdimm has already validated the input envelope */
252 for (i = 0; i < desc->in_num; i++)
253 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
254 i, buf);
255
256 if (call_pkg) {
257 /* skip over package wrapper */
258 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
259 in_buf.buffer.length = call_pkg->nd_size_in;
260 }
261
262 if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
263 dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
264 __func__, dimm_name, cmd, func,
265 in_buf.buffer.length);
266 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
267 in_buf.buffer.pointer,
268 min_t(u32, 256, in_buf.buffer.length), true);
269 }
270
271 out_obj = acpi_evaluate_dsm(handle, uuid, 1, func, &in_obj);
272 if (!out_obj) {
273 dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
274 cmd_name);
275 return -EINVAL;
276 }
277
278 if (call_pkg) {
279 call_pkg->nd_fw_size = out_obj->buffer.length;
280 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
281 out_obj->buffer.pointer,
282 min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
283
284 ACPI_FREE(out_obj);
285 /*
286 * Need to support FW function w/o known size in advance.
287 * Caller can determine required size based upon nd_fw_size.
288 * If we return an error (like elsewhere) then caller wouldn't
289 * be able to rely upon data returned to make calculation.
290 */
291 return 0;
292 }
293
294 if (out_obj->package.type != ACPI_TYPE_BUFFER) {
295 dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
296 __func__, dimm_name, cmd_name, out_obj->type);
297 rc = -EINVAL;
298 goto out;
299 }
300
301 if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
302 dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__,
303 dimm_name, cmd_name, out_obj->buffer.length);
304 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
305 4, out_obj->buffer.pointer, min_t(u32, 128,
306 out_obj->buffer.length), true);
307 }
308
309 for (i = 0, offset = 0; i < desc->out_num; i++) {
310 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
311 (u32 *) out_obj->buffer.pointer,
312 out_obj->buffer.length - offset);
313
314 if (offset + out_size > out_obj->buffer.length) {
315 dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
316 __func__, dimm_name, cmd_name, i);
317 break;
318 }
319
320 if (in_buf.buffer.length + offset + out_size > buf_len) {
321 dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
322 __func__, dimm_name, cmd_name, i);
323 rc = -ENXIO;
324 goto out;
325 }
326 memcpy(buf + in_buf.buffer.length + offset,
327 out_obj->buffer.pointer + offset, out_size);
328 offset += out_size;
329 }
330
331 /*
332 * Set fw_status for all the commands with a known format to be
333 * later interpreted by xlat_status().
334 */
335 if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
336 || (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
337 fw_status = *(u32 *) out_obj->buffer.pointer;
338
339 if (offset + in_buf.buffer.length < buf_len) {
340 if (i >= 1) {
341 /*
342 * status valid, return the number of bytes left
343 * unfilled in the output buffer
344 */
345 rc = buf_len - offset - in_buf.buffer.length;
346 if (cmd_rc)
347 *cmd_rc = xlat_status(nvdimm, buf, cmd,
348 fw_status);
349 } else {
350 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
351 __func__, dimm_name, cmd_name, buf_len,
352 offset);
353 rc = -ENXIO;
354 }
355 } else {
356 rc = 0;
357 if (cmd_rc)
358 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
359 }
360
361 out:
362 ACPI_FREE(out_obj);
363
364 return rc;
365 }
366 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
367
368 static const char *spa_type_name(u16 type)
369 {
370 static const char *to_name[] = {
371 [NFIT_SPA_VOLATILE] = "volatile",
372 [NFIT_SPA_PM] = "pmem",
373 [NFIT_SPA_DCR] = "dimm-control-region",
374 [NFIT_SPA_BDW] = "block-data-window",
375 [NFIT_SPA_VDISK] = "volatile-disk",
376 [NFIT_SPA_VCD] = "volatile-cd",
377 [NFIT_SPA_PDISK] = "persistent-disk",
378 [NFIT_SPA_PCD] = "persistent-cd",
379
380 };
381
382 if (type > NFIT_SPA_PCD)
383 return "unknown";
384
385 return to_name[type];
386 }
387
388 int nfit_spa_type(struct acpi_nfit_system_address *spa)
389 {
390 int i;
391
392 for (i = 0; i < NFIT_UUID_MAX; i++)
393 if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0)
394 return i;
395 return -1;
396 }
397
398 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
399 struct nfit_table_prev *prev,
400 struct acpi_nfit_system_address *spa)
401 {
402 struct device *dev = acpi_desc->dev;
403 struct nfit_spa *nfit_spa;
404
405 if (spa->header.length != sizeof(*spa))
406 return false;
407
408 list_for_each_entry(nfit_spa, &prev->spas, list) {
409 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
410 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
411 return true;
412 }
413 }
414
415 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
416 GFP_KERNEL);
417 if (!nfit_spa)
418 return false;
419 INIT_LIST_HEAD(&nfit_spa->list);
420 memcpy(nfit_spa->spa, spa, sizeof(*spa));
421 list_add_tail(&nfit_spa->list, &acpi_desc->spas);
422 dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
423 spa->range_index,
424 spa_type_name(nfit_spa_type(spa)));
425 return true;
426 }
427
428 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
429 struct nfit_table_prev *prev,
430 struct acpi_nfit_memory_map *memdev)
431 {
432 struct device *dev = acpi_desc->dev;
433 struct nfit_memdev *nfit_memdev;
434
435 if (memdev->header.length != sizeof(*memdev))
436 return false;
437
438 list_for_each_entry(nfit_memdev, &prev->memdevs, list)
439 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
440 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
441 return true;
442 }
443
444 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
445 GFP_KERNEL);
446 if (!nfit_memdev)
447 return false;
448 INIT_LIST_HEAD(&nfit_memdev->list);
449 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
450 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
451 dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n",
452 __func__, memdev->device_handle, memdev->range_index,
453 memdev->region_index);
454 return true;
455 }
456
457 /*
458 * An implementation may provide a truncated control region if no block windows
459 * are defined.
460 */
461 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
462 {
463 if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
464 window_size))
465 return 0;
466 if (dcr->windows)
467 return sizeof(*dcr);
468 return offsetof(struct acpi_nfit_control_region, window_size);
469 }
470
471 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
472 struct nfit_table_prev *prev,
473 struct acpi_nfit_control_region *dcr)
474 {
475 struct device *dev = acpi_desc->dev;
476 struct nfit_dcr *nfit_dcr;
477
478 if (!sizeof_dcr(dcr))
479 return false;
480
481 list_for_each_entry(nfit_dcr, &prev->dcrs, list)
482 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
483 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
484 return true;
485 }
486
487 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
488 GFP_KERNEL);
489 if (!nfit_dcr)
490 return false;
491 INIT_LIST_HEAD(&nfit_dcr->list);
492 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
493 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
494 dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
495 dcr->region_index, dcr->windows);
496 return true;
497 }
498
499 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
500 struct nfit_table_prev *prev,
501 struct acpi_nfit_data_region *bdw)
502 {
503 struct device *dev = acpi_desc->dev;
504 struct nfit_bdw *nfit_bdw;
505
506 if (bdw->header.length != sizeof(*bdw))
507 return false;
508 list_for_each_entry(nfit_bdw, &prev->bdws, list)
509 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
510 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
511 return true;
512 }
513
514 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
515 GFP_KERNEL);
516 if (!nfit_bdw)
517 return false;
518 INIT_LIST_HEAD(&nfit_bdw->list);
519 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
520 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
521 dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
522 bdw->region_index, bdw->windows);
523 return true;
524 }
525
526 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
527 {
528 if (idt->header.length < sizeof(*idt))
529 return 0;
530 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
531 }
532
533 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
534 struct nfit_table_prev *prev,
535 struct acpi_nfit_interleave *idt)
536 {
537 struct device *dev = acpi_desc->dev;
538 struct nfit_idt *nfit_idt;
539
540 if (!sizeof_idt(idt))
541 return false;
542
543 list_for_each_entry(nfit_idt, &prev->idts, list) {
544 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
545 continue;
546
547 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
548 list_move_tail(&nfit_idt->list, &acpi_desc->idts);
549 return true;
550 }
551 }
552
553 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
554 GFP_KERNEL);
555 if (!nfit_idt)
556 return false;
557 INIT_LIST_HEAD(&nfit_idt->list);
558 memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
559 list_add_tail(&nfit_idt->list, &acpi_desc->idts);
560 dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
561 idt->interleave_index, idt->line_count);
562 return true;
563 }
564
565 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
566 {
567 if (flush->header.length < sizeof(*flush))
568 return 0;
569 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
570 }
571
572 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
573 struct nfit_table_prev *prev,
574 struct acpi_nfit_flush_address *flush)
575 {
576 struct device *dev = acpi_desc->dev;
577 struct nfit_flush *nfit_flush;
578
579 if (!sizeof_flush(flush))
580 return false;
581
582 list_for_each_entry(nfit_flush, &prev->flushes, list) {
583 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
584 continue;
585
586 if (memcmp(nfit_flush->flush, flush,
587 sizeof_flush(flush)) == 0) {
588 list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
589 return true;
590 }
591 }
592
593 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
594 + sizeof_flush(flush), GFP_KERNEL);
595 if (!nfit_flush)
596 return false;
597 INIT_LIST_HEAD(&nfit_flush->list);
598 memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
599 list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
600 dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
601 flush->device_handle, flush->hint_count);
602 return true;
603 }
604
605 static void *add_table(struct acpi_nfit_desc *acpi_desc,
606 struct nfit_table_prev *prev, void *table, const void *end)
607 {
608 struct device *dev = acpi_desc->dev;
609 struct acpi_nfit_header *hdr;
610 void *err = ERR_PTR(-ENOMEM);
611
612 if (table >= end)
613 return NULL;
614
615 hdr = table;
616 if (!hdr->length) {
617 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
618 hdr->type);
619 return NULL;
620 }
621
622 switch (hdr->type) {
623 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
624 if (!add_spa(acpi_desc, prev, table))
625 return err;
626 break;
627 case ACPI_NFIT_TYPE_MEMORY_MAP:
628 if (!add_memdev(acpi_desc, prev, table))
629 return err;
630 break;
631 case ACPI_NFIT_TYPE_CONTROL_REGION:
632 if (!add_dcr(acpi_desc, prev, table))
633 return err;
634 break;
635 case ACPI_NFIT_TYPE_DATA_REGION:
636 if (!add_bdw(acpi_desc, prev, table))
637 return err;
638 break;
639 case ACPI_NFIT_TYPE_INTERLEAVE:
640 if (!add_idt(acpi_desc, prev, table))
641 return err;
642 break;
643 case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
644 if (!add_flush(acpi_desc, prev, table))
645 return err;
646 break;
647 case ACPI_NFIT_TYPE_SMBIOS:
648 dev_dbg(dev, "%s: smbios\n", __func__);
649 break;
650 default:
651 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
652 break;
653 }
654
655 return table + hdr->length;
656 }
657
658 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
659 struct nfit_mem *nfit_mem)
660 {
661 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
662 u16 dcr = nfit_mem->dcr->region_index;
663 struct nfit_spa *nfit_spa;
664
665 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
666 u16 range_index = nfit_spa->spa->range_index;
667 int type = nfit_spa_type(nfit_spa->spa);
668 struct nfit_memdev *nfit_memdev;
669
670 if (type != NFIT_SPA_BDW)
671 continue;
672
673 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
674 if (nfit_memdev->memdev->range_index != range_index)
675 continue;
676 if (nfit_memdev->memdev->device_handle != device_handle)
677 continue;
678 if (nfit_memdev->memdev->region_index != dcr)
679 continue;
680
681 nfit_mem->spa_bdw = nfit_spa->spa;
682 return;
683 }
684 }
685
686 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
687 nfit_mem->spa_dcr->range_index);
688 nfit_mem->bdw = NULL;
689 }
690
691 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
692 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
693 {
694 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
695 struct nfit_memdev *nfit_memdev;
696 struct nfit_bdw *nfit_bdw;
697 struct nfit_idt *nfit_idt;
698 u16 idt_idx, range_index;
699
700 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
701 if (nfit_bdw->bdw->region_index != dcr)
702 continue;
703 nfit_mem->bdw = nfit_bdw->bdw;
704 break;
705 }
706
707 if (!nfit_mem->bdw)
708 return;
709
710 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
711
712 if (!nfit_mem->spa_bdw)
713 return;
714
715 range_index = nfit_mem->spa_bdw->range_index;
716 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
717 if (nfit_memdev->memdev->range_index != range_index ||
718 nfit_memdev->memdev->region_index != dcr)
719 continue;
720 nfit_mem->memdev_bdw = nfit_memdev->memdev;
721 idt_idx = nfit_memdev->memdev->interleave_index;
722 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
723 if (nfit_idt->idt->interleave_index != idt_idx)
724 continue;
725 nfit_mem->idt_bdw = nfit_idt->idt;
726 break;
727 }
728 break;
729 }
730 }
731
732 static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc,
733 struct acpi_nfit_system_address *spa)
734 {
735 struct nfit_mem *nfit_mem, *found;
736 struct nfit_memdev *nfit_memdev;
737 int type = nfit_spa_type(spa);
738
739 switch (type) {
740 case NFIT_SPA_DCR:
741 case NFIT_SPA_PM:
742 break;
743 default:
744 return 0;
745 }
746
747 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
748 struct nfit_flush *nfit_flush;
749 struct nfit_dcr *nfit_dcr;
750 u32 device_handle;
751 u16 dcr;
752
753 if (nfit_memdev->memdev->range_index != spa->range_index)
754 continue;
755 found = NULL;
756 dcr = nfit_memdev->memdev->region_index;
757 device_handle = nfit_memdev->memdev->device_handle;
758 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
759 if (__to_nfit_memdev(nfit_mem)->device_handle
760 == device_handle) {
761 found = nfit_mem;
762 break;
763 }
764
765 if (found)
766 nfit_mem = found;
767 else {
768 nfit_mem = devm_kzalloc(acpi_desc->dev,
769 sizeof(*nfit_mem), GFP_KERNEL);
770 if (!nfit_mem)
771 return -ENOMEM;
772 INIT_LIST_HEAD(&nfit_mem->list);
773 nfit_mem->acpi_desc = acpi_desc;
774 list_add(&nfit_mem->list, &acpi_desc->dimms);
775 }
776
777 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
778 if (nfit_dcr->dcr->region_index != dcr)
779 continue;
780 /*
781 * Record the control region for the dimm. For
782 * the ACPI 6.1 case, where there are separate
783 * control regions for the pmem vs blk
784 * interfaces, be sure to record the extended
785 * blk details.
786 */
787 if (!nfit_mem->dcr)
788 nfit_mem->dcr = nfit_dcr->dcr;
789 else if (nfit_mem->dcr->windows == 0
790 && nfit_dcr->dcr->windows)
791 nfit_mem->dcr = nfit_dcr->dcr;
792 break;
793 }
794
795 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
796 struct acpi_nfit_flush_address *flush;
797 u16 i;
798
799 if (nfit_flush->flush->device_handle != device_handle)
800 continue;
801 nfit_mem->nfit_flush = nfit_flush;
802 flush = nfit_flush->flush;
803 nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
804 flush->hint_count
805 * sizeof(struct resource), GFP_KERNEL);
806 if (!nfit_mem->flush_wpq)
807 return -ENOMEM;
808 for (i = 0; i < flush->hint_count; i++) {
809 struct resource *res = &nfit_mem->flush_wpq[i];
810
811 res->start = flush->hint_address[i];
812 res->end = res->start + 8 - 1;
813 }
814 break;
815 }
816
817 if (dcr && !nfit_mem->dcr) {
818 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
819 spa->range_index, dcr);
820 return -ENODEV;
821 }
822
823 if (type == NFIT_SPA_DCR) {
824 struct nfit_idt *nfit_idt;
825 u16 idt_idx;
826
827 /* multiple dimms may share a SPA when interleaved */
828 nfit_mem->spa_dcr = spa;
829 nfit_mem->memdev_dcr = nfit_memdev->memdev;
830 idt_idx = nfit_memdev->memdev->interleave_index;
831 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
832 if (nfit_idt->idt->interleave_index != idt_idx)
833 continue;
834 nfit_mem->idt_dcr = nfit_idt->idt;
835 break;
836 }
837 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
838 } else {
839 /*
840 * A single dimm may belong to multiple SPA-PM
841 * ranges, record at least one in addition to
842 * any SPA-DCR range.
843 */
844 nfit_mem->memdev_pmem = nfit_memdev->memdev;
845 }
846 }
847
848 return 0;
849 }
850
851 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
852 {
853 struct nfit_mem *a = container_of(_a, typeof(*a), list);
854 struct nfit_mem *b = container_of(_b, typeof(*b), list);
855 u32 handleA, handleB;
856
857 handleA = __to_nfit_memdev(a)->device_handle;
858 handleB = __to_nfit_memdev(b)->device_handle;
859 if (handleA < handleB)
860 return -1;
861 else if (handleA > handleB)
862 return 1;
863 return 0;
864 }
865
866 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
867 {
868 struct nfit_spa *nfit_spa;
869
870 /*
871 * For each SPA-DCR or SPA-PMEM address range find its
872 * corresponding MEMDEV(s). From each MEMDEV find the
873 * corresponding DCR. Then, if we're operating on a SPA-DCR,
874 * try to find a SPA-BDW and a corresponding BDW that references
875 * the DCR. Throw it all into an nfit_mem object. Note, that
876 * BDWs are optional.
877 */
878 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
879 int rc;
880
881 rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa);
882 if (rc)
883 return rc;
884 }
885
886 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
887
888 return 0;
889 }
890
891 static ssize_t revision_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
895 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
896 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
897
898 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
899 }
900 static DEVICE_ATTR_RO(revision);
901
902 static ssize_t hw_error_scrub_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904 {
905 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
906 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
907 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
908
909 return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
910 }
911
912 /*
913 * The 'hw_error_scrub' attribute can have the following values written to it:
914 * '0': Switch to the default mode where an exception will only insert
915 * the address of the memory error into the poison and badblocks lists.
916 * '1': Enable a full scrub to happen if an exception for a memory error is
917 * received.
918 */
919 static ssize_t hw_error_scrub_store(struct device *dev,
920 struct device_attribute *attr, const char *buf, size_t size)
921 {
922 struct nvdimm_bus_descriptor *nd_desc;
923 ssize_t rc;
924 long val;
925
926 rc = kstrtol(buf, 0, &val);
927 if (rc)
928 return rc;
929
930 device_lock(dev);
931 nd_desc = dev_get_drvdata(dev);
932 if (nd_desc) {
933 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
934
935 switch (val) {
936 case HW_ERROR_SCRUB_ON:
937 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
938 break;
939 case HW_ERROR_SCRUB_OFF:
940 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
941 break;
942 default:
943 rc = -EINVAL;
944 break;
945 }
946 }
947 device_unlock(dev);
948 if (rc)
949 return rc;
950 return size;
951 }
952 static DEVICE_ATTR_RW(hw_error_scrub);
953
954 /*
955 * This shows the number of full Address Range Scrubs that have been
956 * completed since driver load time. Userspace can wait on this using
957 * select/poll etc. A '+' at the end indicates an ARS is in progress
958 */
959 static ssize_t scrub_show(struct device *dev,
960 struct device_attribute *attr, char *buf)
961 {
962 struct nvdimm_bus_descriptor *nd_desc;
963 ssize_t rc = -ENXIO;
964
965 device_lock(dev);
966 nd_desc = dev_get_drvdata(dev);
967 if (nd_desc) {
968 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
969
970 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
971 (work_busy(&acpi_desc->work)) ? "+\n" : "\n");
972 }
973 device_unlock(dev);
974 return rc;
975 }
976
977 static ssize_t scrub_store(struct device *dev,
978 struct device_attribute *attr, const char *buf, size_t size)
979 {
980 struct nvdimm_bus_descriptor *nd_desc;
981 ssize_t rc;
982 long val;
983
984 rc = kstrtol(buf, 0, &val);
985 if (rc)
986 return rc;
987 if (val != 1)
988 return -EINVAL;
989
990 device_lock(dev);
991 nd_desc = dev_get_drvdata(dev);
992 if (nd_desc) {
993 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
994
995 rc = acpi_nfit_ars_rescan(acpi_desc);
996 }
997 device_unlock(dev);
998 if (rc)
999 return rc;
1000 return size;
1001 }
1002 static DEVICE_ATTR_RW(scrub);
1003
1004 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1005 {
1006 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1007 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1008 | 1 << ND_CMD_ARS_STATUS;
1009
1010 return (nd_desc->cmd_mask & mask) == mask;
1011 }
1012
1013 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1014 {
1015 struct device *dev = container_of(kobj, struct device, kobj);
1016 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1017
1018 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1019 return 0;
1020 return a->mode;
1021 }
1022
1023 static struct attribute *acpi_nfit_attributes[] = {
1024 &dev_attr_revision.attr,
1025 &dev_attr_scrub.attr,
1026 &dev_attr_hw_error_scrub.attr,
1027 NULL,
1028 };
1029
1030 static struct attribute_group acpi_nfit_attribute_group = {
1031 .name = "nfit",
1032 .attrs = acpi_nfit_attributes,
1033 .is_visible = nfit_visible,
1034 };
1035
1036 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1037 &nvdimm_bus_attribute_group,
1038 &acpi_nfit_attribute_group,
1039 NULL,
1040 };
1041
1042 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1043 {
1044 struct nvdimm *nvdimm = to_nvdimm(dev);
1045 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1046
1047 return __to_nfit_memdev(nfit_mem);
1048 }
1049
1050 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1051 {
1052 struct nvdimm *nvdimm = to_nvdimm(dev);
1053 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1054
1055 return nfit_mem->dcr;
1056 }
1057
1058 static ssize_t handle_show(struct device *dev,
1059 struct device_attribute *attr, char *buf)
1060 {
1061 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1062
1063 return sprintf(buf, "%#x\n", memdev->device_handle);
1064 }
1065 static DEVICE_ATTR_RO(handle);
1066
1067 static ssize_t phys_id_show(struct device *dev,
1068 struct device_attribute *attr, char *buf)
1069 {
1070 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1071
1072 return sprintf(buf, "%#x\n", memdev->physical_id);
1073 }
1074 static DEVICE_ATTR_RO(phys_id);
1075
1076 static ssize_t vendor_show(struct device *dev,
1077 struct device_attribute *attr, char *buf)
1078 {
1079 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1080
1081 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1082 }
1083 static DEVICE_ATTR_RO(vendor);
1084
1085 static ssize_t rev_id_show(struct device *dev,
1086 struct device_attribute *attr, char *buf)
1087 {
1088 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1089
1090 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1091 }
1092 static DEVICE_ATTR_RO(rev_id);
1093
1094 static ssize_t device_show(struct device *dev,
1095 struct device_attribute *attr, char *buf)
1096 {
1097 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1098
1099 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1100 }
1101 static DEVICE_ATTR_RO(device);
1102
1103 static ssize_t subsystem_vendor_show(struct device *dev,
1104 struct device_attribute *attr, char *buf)
1105 {
1106 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1107
1108 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1109 }
1110 static DEVICE_ATTR_RO(subsystem_vendor);
1111
1112 static ssize_t subsystem_rev_id_show(struct device *dev,
1113 struct device_attribute *attr, char *buf)
1114 {
1115 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1116
1117 return sprintf(buf, "0x%04x\n",
1118 be16_to_cpu(dcr->subsystem_revision_id));
1119 }
1120 static DEVICE_ATTR_RO(subsystem_rev_id);
1121
1122 static ssize_t subsystem_device_show(struct device *dev,
1123 struct device_attribute *attr, char *buf)
1124 {
1125 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1126
1127 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1128 }
1129 static DEVICE_ATTR_RO(subsystem_device);
1130
1131 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1132 {
1133 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1134 int formats = 0;
1135
1136 if (nfit_mem->memdev_pmem)
1137 formats++;
1138 if (nfit_mem->memdev_bdw)
1139 formats++;
1140 return formats;
1141 }
1142
1143 static ssize_t format_show(struct device *dev,
1144 struct device_attribute *attr, char *buf)
1145 {
1146 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1147
1148 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1149 }
1150 static DEVICE_ATTR_RO(format);
1151
1152 static ssize_t format1_show(struct device *dev,
1153 struct device_attribute *attr, char *buf)
1154 {
1155 u32 handle;
1156 ssize_t rc = -ENXIO;
1157 struct nfit_mem *nfit_mem;
1158 struct nfit_memdev *nfit_memdev;
1159 struct acpi_nfit_desc *acpi_desc;
1160 struct nvdimm *nvdimm = to_nvdimm(dev);
1161 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1162
1163 nfit_mem = nvdimm_provider_data(nvdimm);
1164 acpi_desc = nfit_mem->acpi_desc;
1165 handle = to_nfit_memdev(dev)->device_handle;
1166
1167 /* assumes DIMMs have at most 2 published interface codes */
1168 mutex_lock(&acpi_desc->init_mutex);
1169 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1170 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1171 struct nfit_dcr *nfit_dcr;
1172
1173 if (memdev->device_handle != handle)
1174 continue;
1175
1176 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1177 if (nfit_dcr->dcr->region_index != memdev->region_index)
1178 continue;
1179 if (nfit_dcr->dcr->code == dcr->code)
1180 continue;
1181 rc = sprintf(buf, "0x%04x\n",
1182 le16_to_cpu(nfit_dcr->dcr->code));
1183 break;
1184 }
1185 if (rc != ENXIO)
1186 break;
1187 }
1188 mutex_unlock(&acpi_desc->init_mutex);
1189 return rc;
1190 }
1191 static DEVICE_ATTR_RO(format1);
1192
1193 static ssize_t formats_show(struct device *dev,
1194 struct device_attribute *attr, char *buf)
1195 {
1196 struct nvdimm *nvdimm = to_nvdimm(dev);
1197
1198 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1199 }
1200 static DEVICE_ATTR_RO(formats);
1201
1202 static ssize_t serial_show(struct device *dev,
1203 struct device_attribute *attr, char *buf)
1204 {
1205 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1206
1207 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1208 }
1209 static DEVICE_ATTR_RO(serial);
1210
1211 static ssize_t family_show(struct device *dev,
1212 struct device_attribute *attr, char *buf)
1213 {
1214 struct nvdimm *nvdimm = to_nvdimm(dev);
1215 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1216
1217 if (nfit_mem->family < 0)
1218 return -ENXIO;
1219 return sprintf(buf, "%d\n", nfit_mem->family);
1220 }
1221 static DEVICE_ATTR_RO(family);
1222
1223 static ssize_t dsm_mask_show(struct device *dev,
1224 struct device_attribute *attr, char *buf)
1225 {
1226 struct nvdimm *nvdimm = to_nvdimm(dev);
1227 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1228
1229 if (nfit_mem->family < 0)
1230 return -ENXIO;
1231 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1232 }
1233 static DEVICE_ATTR_RO(dsm_mask);
1234
1235 static ssize_t flags_show(struct device *dev,
1236 struct device_attribute *attr, char *buf)
1237 {
1238 u16 flags = to_nfit_memdev(dev)->flags;
1239
1240 return sprintf(buf, "%s%s%s%s%s\n",
1241 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1242 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1243 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1244 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1245 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "");
1246 }
1247 static DEVICE_ATTR_RO(flags);
1248
1249 static ssize_t id_show(struct device *dev,
1250 struct device_attribute *attr, char *buf)
1251 {
1252 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1253
1254 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1255 return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1256 be16_to_cpu(dcr->vendor_id),
1257 dcr->manufacturing_location,
1258 be16_to_cpu(dcr->manufacturing_date),
1259 be32_to_cpu(dcr->serial_number));
1260 else
1261 return sprintf(buf, "%04x-%08x\n",
1262 be16_to_cpu(dcr->vendor_id),
1263 be32_to_cpu(dcr->serial_number));
1264 }
1265 static DEVICE_ATTR_RO(id);
1266
1267 static struct attribute *acpi_nfit_dimm_attributes[] = {
1268 &dev_attr_handle.attr,
1269 &dev_attr_phys_id.attr,
1270 &dev_attr_vendor.attr,
1271 &dev_attr_device.attr,
1272 &dev_attr_rev_id.attr,
1273 &dev_attr_subsystem_vendor.attr,
1274 &dev_attr_subsystem_device.attr,
1275 &dev_attr_subsystem_rev_id.attr,
1276 &dev_attr_format.attr,
1277 &dev_attr_formats.attr,
1278 &dev_attr_format1.attr,
1279 &dev_attr_serial.attr,
1280 &dev_attr_flags.attr,
1281 &dev_attr_id.attr,
1282 &dev_attr_family.attr,
1283 &dev_attr_dsm_mask.attr,
1284 NULL,
1285 };
1286
1287 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1288 struct attribute *a, int n)
1289 {
1290 struct device *dev = container_of(kobj, struct device, kobj);
1291 struct nvdimm *nvdimm = to_nvdimm(dev);
1292
1293 if (!to_nfit_dcr(dev))
1294 return 0;
1295 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1296 return 0;
1297 return a->mode;
1298 }
1299
1300 static struct attribute_group acpi_nfit_dimm_attribute_group = {
1301 .name = "nfit",
1302 .attrs = acpi_nfit_dimm_attributes,
1303 .is_visible = acpi_nfit_dimm_attr_visible,
1304 };
1305
1306 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1307 &nvdimm_attribute_group,
1308 &nd_device_attribute_group,
1309 &acpi_nfit_dimm_attribute_group,
1310 NULL,
1311 };
1312
1313 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1314 u32 device_handle)
1315 {
1316 struct nfit_mem *nfit_mem;
1317
1318 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1319 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1320 return nfit_mem->nvdimm;
1321
1322 return NULL;
1323 }
1324
1325 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1326 {
1327 struct nfit_mem *nfit_mem;
1328 struct acpi_nfit_desc *acpi_desc;
1329
1330 dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1331 event);
1332
1333 if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1334 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1335 event);
1336 return;
1337 }
1338
1339 acpi_desc = dev_get_drvdata(dev->parent);
1340 if (!acpi_desc)
1341 return;
1342
1343 /*
1344 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1345 * is still valid.
1346 */
1347 nfit_mem = dev_get_drvdata(dev);
1348 if (nfit_mem && nfit_mem->flags_attr)
1349 sysfs_notify_dirent(nfit_mem->flags_attr);
1350 }
1351 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1352
1353 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1354 {
1355 struct acpi_device *adev = data;
1356 struct device *dev = &adev->dev;
1357
1358 device_lock(dev->parent);
1359 __acpi_nvdimm_notify(dev, event);
1360 device_unlock(dev->parent);
1361 }
1362
1363 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1364 struct nfit_mem *nfit_mem, u32 device_handle)
1365 {
1366 struct acpi_device *adev, *adev_dimm;
1367 struct device *dev = acpi_desc->dev;
1368 unsigned long dsm_mask;
1369 const u8 *uuid;
1370 int i;
1371
1372 /* nfit test assumes 1:1 relationship between commands and dsms */
1373 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1374 nfit_mem->family = NVDIMM_FAMILY_INTEL;
1375 adev = to_acpi_dev(acpi_desc);
1376 if (!adev)
1377 return 0;
1378
1379 adev_dimm = acpi_find_child_device(adev, device_handle, false);
1380 nfit_mem->adev = adev_dimm;
1381 if (!adev_dimm) {
1382 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1383 device_handle);
1384 return force_enable_dimms ? 0 : -ENODEV;
1385 }
1386
1387 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1388 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1389 dev_err(dev, "%s: notification registration failed\n",
1390 dev_name(&adev_dimm->dev));
1391 return -ENXIO;
1392 }
1393
1394 /*
1395 * Until standardization materializes we need to consider 4
1396 * different command sets. Note, that checking for function0 (bit0)
1397 * tells us if any commands are reachable through this uuid.
1398 */
1399 for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1400 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1401 break;
1402
1403 /* limit the supported commands to those that are publicly documented */
1404 nfit_mem->family = i;
1405 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1406 dsm_mask = 0x3fe;
1407 if (disable_vendor_specific)
1408 dsm_mask &= ~(1 << ND_CMD_VENDOR);
1409 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1410 dsm_mask = 0x1c3c76;
1411 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1412 dsm_mask = 0x1fe;
1413 if (disable_vendor_specific)
1414 dsm_mask &= ~(1 << 8);
1415 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1416 dsm_mask = 0xffffffff;
1417 } else {
1418 dev_dbg(dev, "unknown dimm command family\n");
1419 nfit_mem->family = -1;
1420 /* DSMs are optional, continue loading the driver... */
1421 return 0;
1422 }
1423
1424 uuid = to_nfit_uuid(nfit_mem->family);
1425 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1426 if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i))
1427 set_bit(i, &nfit_mem->dsm_mask);
1428
1429 return 0;
1430 }
1431
1432 static void shutdown_dimm_notify(void *data)
1433 {
1434 struct acpi_nfit_desc *acpi_desc = data;
1435 struct nfit_mem *nfit_mem;
1436
1437 mutex_lock(&acpi_desc->init_mutex);
1438 /*
1439 * Clear out the nfit_mem->flags_attr and shut down dimm event
1440 * notifications.
1441 */
1442 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1443 struct acpi_device *adev_dimm = nfit_mem->adev;
1444
1445 if (nfit_mem->flags_attr) {
1446 sysfs_put(nfit_mem->flags_attr);
1447 nfit_mem->flags_attr = NULL;
1448 }
1449 if (adev_dimm)
1450 acpi_remove_notify_handler(adev_dimm->handle,
1451 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1452 }
1453 mutex_unlock(&acpi_desc->init_mutex);
1454 }
1455
1456 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1457 {
1458 struct nfit_mem *nfit_mem;
1459 int dimm_count = 0, rc;
1460 struct nvdimm *nvdimm;
1461
1462 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1463 struct acpi_nfit_flush_address *flush;
1464 unsigned long flags = 0, cmd_mask;
1465 u32 device_handle;
1466 u16 mem_flags;
1467
1468 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1469 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1470 if (nvdimm) {
1471 dimm_count++;
1472 continue;
1473 }
1474
1475 if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1476 flags |= NDD_ALIASING;
1477
1478 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1479 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1480 flags |= NDD_UNARMED;
1481
1482 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1483 if (rc)
1484 continue;
1485
1486 /*
1487 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1488 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1489 * userspace interface.
1490 */
1491 cmd_mask = 1UL << ND_CMD_CALL;
1492 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1493 cmd_mask |= nfit_mem->dsm_mask;
1494
1495 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1496 : NULL;
1497 nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1498 acpi_nfit_dimm_attribute_groups,
1499 flags, cmd_mask, flush ? flush->hint_count : 0,
1500 nfit_mem->flush_wpq);
1501 if (!nvdimm)
1502 return -ENOMEM;
1503
1504 nfit_mem->nvdimm = nvdimm;
1505 dimm_count++;
1506
1507 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1508 continue;
1509
1510 dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n",
1511 nvdimm_name(nvdimm),
1512 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1513 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1514 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1515 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "");
1516
1517 }
1518
1519 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1520 if (rc)
1521 return rc;
1522
1523 /*
1524 * Now that dimms are successfully registered, and async registration
1525 * is flushed, attempt to enable event notification.
1526 */
1527 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1528 struct kernfs_node *nfit_kernfs;
1529
1530 nvdimm = nfit_mem->nvdimm;
1531 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1532 if (nfit_kernfs)
1533 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1534 "flags");
1535 sysfs_put(nfit_kernfs);
1536 if (!nfit_mem->flags_attr)
1537 dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1538 nvdimm_name(nvdimm));
1539 }
1540
1541 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1542 acpi_desc);
1543 }
1544
1545 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1546 {
1547 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1548 const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS);
1549 struct acpi_device *adev;
1550 int i;
1551
1552 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1553 adev = to_acpi_dev(acpi_desc);
1554 if (!adev)
1555 return;
1556
1557 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1558 if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i))
1559 set_bit(i, &nd_desc->cmd_mask);
1560 }
1561
1562 static ssize_t range_index_show(struct device *dev,
1563 struct device_attribute *attr, char *buf)
1564 {
1565 struct nd_region *nd_region = to_nd_region(dev);
1566 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1567
1568 return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1569 }
1570 static DEVICE_ATTR_RO(range_index);
1571
1572 static struct attribute *acpi_nfit_region_attributes[] = {
1573 &dev_attr_range_index.attr,
1574 NULL,
1575 };
1576
1577 static struct attribute_group acpi_nfit_region_attribute_group = {
1578 .name = "nfit",
1579 .attrs = acpi_nfit_region_attributes,
1580 };
1581
1582 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1583 &nd_region_attribute_group,
1584 &nd_mapping_attribute_group,
1585 &nd_device_attribute_group,
1586 &nd_numa_attribute_group,
1587 &acpi_nfit_region_attribute_group,
1588 NULL,
1589 };
1590
1591 /* enough info to uniquely specify an interleave set */
1592 struct nfit_set_info {
1593 struct nfit_set_info_map {
1594 u64 region_offset;
1595 u32 serial_number;
1596 u32 pad;
1597 } mapping[0];
1598 };
1599
1600 static size_t sizeof_nfit_set_info(int num_mappings)
1601 {
1602 return sizeof(struct nfit_set_info)
1603 + num_mappings * sizeof(struct nfit_set_info_map);
1604 }
1605
1606 static int cmp_map_compat(const void *m0, const void *m1)
1607 {
1608 const struct nfit_set_info_map *map0 = m0;
1609 const struct nfit_set_info_map *map1 = m1;
1610
1611 return memcmp(&map0->region_offset, &map1->region_offset,
1612 sizeof(u64));
1613 }
1614
1615 static int cmp_map(const void *m0, const void *m1)
1616 {
1617 const struct nfit_set_info_map *map0 = m0;
1618 const struct nfit_set_info_map *map1 = m1;
1619
1620 if (map0->region_offset < map1->region_offset)
1621 return -1;
1622 else if (map0->region_offset > map1->region_offset)
1623 return 1;
1624 return 0;
1625 }
1626
1627 /* Retrieve the nth entry referencing this spa */
1628 static struct acpi_nfit_memory_map *memdev_from_spa(
1629 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1630 {
1631 struct nfit_memdev *nfit_memdev;
1632
1633 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1634 if (nfit_memdev->memdev->range_index == range_index)
1635 if (n-- == 0)
1636 return nfit_memdev->memdev;
1637 return NULL;
1638 }
1639
1640 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1641 struct nd_region_desc *ndr_desc,
1642 struct acpi_nfit_system_address *spa)
1643 {
1644 int i, spa_type = nfit_spa_type(spa);
1645 struct device *dev = acpi_desc->dev;
1646 struct nd_interleave_set *nd_set;
1647 u16 nr = ndr_desc->num_mappings;
1648 struct nfit_set_info *info;
1649
1650 if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE)
1651 /* pass */;
1652 else
1653 return 0;
1654
1655 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1656 if (!nd_set)
1657 return -ENOMEM;
1658
1659 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1660 if (!info)
1661 return -ENOMEM;
1662 for (i = 0; i < nr; i++) {
1663 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1664 struct nfit_set_info_map *map = &info->mapping[i];
1665 struct nvdimm *nvdimm = mapping->nvdimm;
1666 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1667 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1668 spa->range_index, i);
1669
1670 if (!memdev || !nfit_mem->dcr) {
1671 dev_err(dev, "%s: failed to find DCR\n", __func__);
1672 return -ENODEV;
1673 }
1674
1675 map->region_offset = memdev->region_offset;
1676 map->serial_number = nfit_mem->dcr->serial_number;
1677 }
1678
1679 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1680 cmp_map, NULL);
1681 nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1682
1683 /* support namespaces created with the wrong sort order */
1684 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1685 cmp_map_compat, NULL);
1686 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1687
1688 ndr_desc->nd_set = nd_set;
1689 devm_kfree(dev, info);
1690
1691 return 0;
1692 }
1693
1694 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1695 {
1696 struct acpi_nfit_interleave *idt = mmio->idt;
1697 u32 sub_line_offset, line_index, line_offset;
1698 u64 line_no, table_skip_count, table_offset;
1699
1700 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1701 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1702 line_offset = idt->line_offset[line_index]
1703 * mmio->line_size;
1704 table_offset = table_skip_count * mmio->table_size;
1705
1706 return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1707 }
1708
1709 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1710 {
1711 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1712 u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1713 const u32 STATUS_MASK = 0x80000037;
1714
1715 if (mmio->num_lines)
1716 offset = to_interleave_offset(offset, mmio);
1717
1718 return readl(mmio->addr.base + offset) & STATUS_MASK;
1719 }
1720
1721 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1722 resource_size_t dpa, unsigned int len, unsigned int write)
1723 {
1724 u64 cmd, offset;
1725 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1726
1727 enum {
1728 BCW_OFFSET_MASK = (1ULL << 48)-1,
1729 BCW_LEN_SHIFT = 48,
1730 BCW_LEN_MASK = (1ULL << 8) - 1,
1731 BCW_CMD_SHIFT = 56,
1732 };
1733
1734 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1735 len = len >> L1_CACHE_SHIFT;
1736 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1737 cmd |= ((u64) write) << BCW_CMD_SHIFT;
1738
1739 offset = nfit_blk->cmd_offset + mmio->size * bw;
1740 if (mmio->num_lines)
1741 offset = to_interleave_offset(offset, mmio);
1742
1743 writeq(cmd, mmio->addr.base + offset);
1744 nvdimm_flush(nfit_blk->nd_region);
1745
1746 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1747 readq(mmio->addr.base + offset);
1748 }
1749
1750 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1751 resource_size_t dpa, void *iobuf, size_t len, int rw,
1752 unsigned int lane)
1753 {
1754 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1755 unsigned int copied = 0;
1756 u64 base_offset;
1757 int rc;
1758
1759 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1760 + lane * mmio->size;
1761 write_blk_ctl(nfit_blk, lane, dpa, len, rw);
1762 while (len) {
1763 unsigned int c;
1764 u64 offset;
1765
1766 if (mmio->num_lines) {
1767 u32 line_offset;
1768
1769 offset = to_interleave_offset(base_offset + copied,
1770 mmio);
1771 div_u64_rem(offset, mmio->line_size, &line_offset);
1772 c = min_t(size_t, len, mmio->line_size - line_offset);
1773 } else {
1774 offset = base_offset + nfit_blk->bdw_offset;
1775 c = len;
1776 }
1777
1778 if (rw)
1779 memcpy_to_pmem(mmio->addr.aperture + offset,
1780 iobuf + copied, c);
1781 else {
1782 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
1783 mmio_flush_range((void __force *)
1784 mmio->addr.aperture + offset, c);
1785
1786 memcpy_from_pmem(iobuf + copied,
1787 mmio->addr.aperture + offset, c);
1788 }
1789
1790 copied += c;
1791 len -= c;
1792 }
1793
1794 if (rw)
1795 nvdimm_flush(nfit_blk->nd_region);
1796
1797 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
1798 return rc;
1799 }
1800
1801 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
1802 resource_size_t dpa, void *iobuf, u64 len, int rw)
1803 {
1804 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
1805 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1806 struct nd_region *nd_region = nfit_blk->nd_region;
1807 unsigned int lane, copied = 0;
1808 int rc = 0;
1809
1810 lane = nd_region_acquire_lane(nd_region);
1811 while (len) {
1812 u64 c = min(len, mmio->size);
1813
1814 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
1815 iobuf + copied, c, rw, lane);
1816 if (rc)
1817 break;
1818
1819 copied += c;
1820 len -= c;
1821 }
1822 nd_region_release_lane(nd_region, lane);
1823
1824 return rc;
1825 }
1826
1827 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
1828 struct acpi_nfit_interleave *idt, u16 interleave_ways)
1829 {
1830 if (idt) {
1831 mmio->num_lines = idt->line_count;
1832 mmio->line_size = idt->line_size;
1833 if (interleave_ways == 0)
1834 return -ENXIO;
1835 mmio->table_size = mmio->num_lines * interleave_ways
1836 * mmio->line_size;
1837 }
1838
1839 return 0;
1840 }
1841
1842 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
1843 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
1844 {
1845 struct nd_cmd_dimm_flags flags;
1846 int rc;
1847
1848 memset(&flags, 0, sizeof(flags));
1849 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
1850 sizeof(flags), NULL);
1851
1852 if (rc >= 0 && flags.status == 0)
1853 nfit_blk->dimm_flags = flags.flags;
1854 else if (rc == -ENOTTY) {
1855 /* fall back to a conservative default */
1856 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
1857 rc = 0;
1858 } else
1859 rc = -ENXIO;
1860
1861 return rc;
1862 }
1863
1864 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
1865 struct device *dev)
1866 {
1867 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1868 struct nd_blk_region *ndbr = to_nd_blk_region(dev);
1869 struct nfit_blk_mmio *mmio;
1870 struct nfit_blk *nfit_blk;
1871 struct nfit_mem *nfit_mem;
1872 struct nvdimm *nvdimm;
1873 int rc;
1874
1875 nvdimm = nd_blk_region_to_dimm(ndbr);
1876 nfit_mem = nvdimm_provider_data(nvdimm);
1877 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
1878 dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
1879 nfit_mem ? "" : " nfit_mem",
1880 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
1881 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
1882 return -ENXIO;
1883 }
1884
1885 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
1886 if (!nfit_blk)
1887 return -ENOMEM;
1888 nd_blk_region_set_provider_data(ndbr, nfit_blk);
1889 nfit_blk->nd_region = to_nd_region(dev);
1890
1891 /* map block aperture memory */
1892 nfit_blk->bdw_offset = nfit_mem->bdw->offset;
1893 mmio = &nfit_blk->mmio[BDW];
1894 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
1895 nfit_mem->spa_bdw->length, ARCH_MEMREMAP_PMEM);
1896 if (!mmio->addr.base) {
1897 dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
1898 nvdimm_name(nvdimm));
1899 return -ENOMEM;
1900 }
1901 mmio->size = nfit_mem->bdw->size;
1902 mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
1903 mmio->idt = nfit_mem->idt_bdw;
1904 mmio->spa = nfit_mem->spa_bdw;
1905 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
1906 nfit_mem->memdev_bdw->interleave_ways);
1907 if (rc) {
1908 dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
1909 __func__, nvdimm_name(nvdimm));
1910 return rc;
1911 }
1912
1913 /* map block control memory */
1914 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
1915 nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
1916 mmio = &nfit_blk->mmio[DCR];
1917 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
1918 nfit_mem->spa_dcr->length);
1919 if (!mmio->addr.base) {
1920 dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
1921 nvdimm_name(nvdimm));
1922 return -ENOMEM;
1923 }
1924 mmio->size = nfit_mem->dcr->window_size;
1925 mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
1926 mmio->idt = nfit_mem->idt_dcr;
1927 mmio->spa = nfit_mem->spa_dcr;
1928 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
1929 nfit_mem->memdev_dcr->interleave_ways);
1930 if (rc) {
1931 dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
1932 __func__, nvdimm_name(nvdimm));
1933 return rc;
1934 }
1935
1936 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
1937 if (rc < 0) {
1938 dev_dbg(dev, "%s: %s failed get DIMM flags\n",
1939 __func__, nvdimm_name(nvdimm));
1940 return rc;
1941 }
1942
1943 if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
1944 dev_warn(dev, "unable to guarantee persistence of writes\n");
1945
1946 if (mmio->line_size == 0)
1947 return 0;
1948
1949 if ((u32) nfit_blk->cmd_offset % mmio->line_size
1950 + 8 > mmio->line_size) {
1951 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
1952 return -ENXIO;
1953 } else if ((u32) nfit_blk->stat_offset % mmio->line_size
1954 + 8 > mmio->line_size) {
1955 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
1956 return -ENXIO;
1957 }
1958
1959 return 0;
1960 }
1961
1962 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
1963 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
1964 {
1965 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1966 struct acpi_nfit_system_address *spa = nfit_spa->spa;
1967 int cmd_rc, rc;
1968
1969 cmd->address = spa->address;
1970 cmd->length = spa->length;
1971 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
1972 sizeof(*cmd), &cmd_rc);
1973 if (rc < 0)
1974 return rc;
1975 return cmd_rc;
1976 }
1977
1978 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
1979 {
1980 int rc;
1981 int cmd_rc;
1982 struct nd_cmd_ars_start ars_start;
1983 struct acpi_nfit_system_address *spa = nfit_spa->spa;
1984 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1985
1986 memset(&ars_start, 0, sizeof(ars_start));
1987 ars_start.address = spa->address;
1988 ars_start.length = spa->length;
1989 if (nfit_spa_type(spa) == NFIT_SPA_PM)
1990 ars_start.type = ND_ARS_PERSISTENT;
1991 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
1992 ars_start.type = ND_ARS_VOLATILE;
1993 else
1994 return -ENOTTY;
1995
1996 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1997 sizeof(ars_start), &cmd_rc);
1998
1999 if (rc < 0)
2000 return rc;
2001 return cmd_rc;
2002 }
2003
2004 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2005 {
2006 int rc, cmd_rc;
2007 struct nd_cmd_ars_start ars_start;
2008 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2009 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2010
2011 memset(&ars_start, 0, sizeof(ars_start));
2012 ars_start.address = ars_status->restart_address;
2013 ars_start.length = ars_status->restart_length;
2014 ars_start.type = ars_status->type;
2015 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2016 sizeof(ars_start), &cmd_rc);
2017 if (rc < 0)
2018 return rc;
2019 return cmd_rc;
2020 }
2021
2022 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2023 {
2024 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2025 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2026 int rc, cmd_rc;
2027
2028 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2029 acpi_desc->ars_status_size, &cmd_rc);
2030 if (rc < 0)
2031 return rc;
2032 return cmd_rc;
2033 }
2034
2035 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2036 struct nd_cmd_ars_status *ars_status)
2037 {
2038 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2039 int rc;
2040 u32 i;
2041
2042 /*
2043 * First record starts at 44 byte offset from the start of the
2044 * payload.
2045 */
2046 if (ars_status->out_length < 44)
2047 return 0;
2048 for (i = 0; i < ars_status->num_records; i++) {
2049 /* only process full records */
2050 if (ars_status->out_length
2051 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2052 break;
2053 rc = nvdimm_bus_add_poison(nvdimm_bus,
2054 ars_status->records[i].err_address,
2055 ars_status->records[i].length);
2056 if (rc)
2057 return rc;
2058 }
2059 if (i < ars_status->num_records)
2060 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2061
2062 return 0;
2063 }
2064
2065 static void acpi_nfit_remove_resource(void *data)
2066 {
2067 struct resource *res = data;
2068
2069 remove_resource(res);
2070 }
2071
2072 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2073 struct nd_region_desc *ndr_desc)
2074 {
2075 struct resource *res, *nd_res = ndr_desc->res;
2076 int is_pmem, ret;
2077
2078 /* No operation if the region is already registered as PMEM */
2079 is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2080 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2081 if (is_pmem == REGION_INTERSECTS)
2082 return 0;
2083
2084 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2085 if (!res)
2086 return -ENOMEM;
2087
2088 res->name = "Persistent Memory";
2089 res->start = nd_res->start;
2090 res->end = nd_res->end;
2091 res->flags = IORESOURCE_MEM;
2092 res->desc = IORES_DESC_PERSISTENT_MEMORY;
2093
2094 ret = insert_resource(&iomem_resource, res);
2095 if (ret)
2096 return ret;
2097
2098 ret = devm_add_action_or_reset(acpi_desc->dev,
2099 acpi_nfit_remove_resource,
2100 res);
2101 if (ret)
2102 return ret;
2103
2104 return 0;
2105 }
2106
2107 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2108 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2109 struct acpi_nfit_memory_map *memdev,
2110 struct nfit_spa *nfit_spa)
2111 {
2112 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2113 memdev->device_handle);
2114 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2115 struct nd_blk_region_desc *ndbr_desc;
2116 struct nfit_mem *nfit_mem;
2117 int blk_valid = 0;
2118
2119 if (!nvdimm) {
2120 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2121 spa->range_index, memdev->device_handle);
2122 return -ENODEV;
2123 }
2124
2125 mapping->nvdimm = nvdimm;
2126 switch (nfit_spa_type(spa)) {
2127 case NFIT_SPA_PM:
2128 case NFIT_SPA_VOLATILE:
2129 mapping->start = memdev->address;
2130 mapping->size = memdev->region_size;
2131 break;
2132 case NFIT_SPA_DCR:
2133 nfit_mem = nvdimm_provider_data(nvdimm);
2134 if (!nfit_mem || !nfit_mem->bdw) {
2135 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2136 spa->range_index, nvdimm_name(nvdimm));
2137 } else {
2138 mapping->size = nfit_mem->bdw->capacity;
2139 mapping->start = nfit_mem->bdw->start_address;
2140 ndr_desc->num_lanes = nfit_mem->bdw->windows;
2141 blk_valid = 1;
2142 }
2143
2144 ndr_desc->mapping = mapping;
2145 ndr_desc->num_mappings = blk_valid;
2146 ndbr_desc = to_blk_region_desc(ndr_desc);
2147 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2148 ndbr_desc->do_io = acpi_desc->blk_do_io;
2149 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2150 ndr_desc);
2151 if (!nfit_spa->nd_region)
2152 return -ENOMEM;
2153 break;
2154 }
2155
2156 return 0;
2157 }
2158
2159 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2160 {
2161 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2162 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2163 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2164 nfit_spa_type(spa) == NFIT_SPA_PCD);
2165 }
2166
2167 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2168 struct nfit_spa *nfit_spa)
2169 {
2170 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2171 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2172 struct nd_blk_region_desc ndbr_desc;
2173 struct nd_region_desc *ndr_desc;
2174 struct nfit_memdev *nfit_memdev;
2175 struct nvdimm_bus *nvdimm_bus;
2176 struct resource res;
2177 int count = 0, rc;
2178
2179 if (nfit_spa->nd_region)
2180 return 0;
2181
2182 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2183 dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2184 __func__);
2185 return 0;
2186 }
2187
2188 memset(&res, 0, sizeof(res));
2189 memset(&mappings, 0, sizeof(mappings));
2190 memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2191 res.start = spa->address;
2192 res.end = res.start + spa->length - 1;
2193 ndr_desc = &ndbr_desc.ndr_desc;
2194 ndr_desc->res = &res;
2195 ndr_desc->provider_data = nfit_spa;
2196 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2197 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2198 ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2199 spa->proximity_domain);
2200 else
2201 ndr_desc->numa_node = NUMA_NO_NODE;
2202
2203 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2204 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2205 struct nd_mapping_desc *mapping;
2206
2207 if (memdev->range_index != spa->range_index)
2208 continue;
2209 if (count >= ND_MAX_MAPPINGS) {
2210 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2211 spa->range_index, ND_MAX_MAPPINGS);
2212 return -ENXIO;
2213 }
2214 mapping = &mappings[count++];
2215 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2216 memdev, nfit_spa);
2217 if (rc)
2218 goto out;
2219 }
2220
2221 ndr_desc->mapping = mappings;
2222 ndr_desc->num_mappings = count;
2223 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2224 if (rc)
2225 goto out;
2226
2227 nvdimm_bus = acpi_desc->nvdimm_bus;
2228 if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2229 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2230 if (rc) {
2231 dev_warn(acpi_desc->dev,
2232 "failed to insert pmem resource to iomem: %d\n",
2233 rc);
2234 goto out;
2235 }
2236
2237 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2238 ndr_desc);
2239 if (!nfit_spa->nd_region)
2240 rc = -ENOMEM;
2241 } else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) {
2242 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2243 ndr_desc);
2244 if (!nfit_spa->nd_region)
2245 rc = -ENOMEM;
2246 } else if (nfit_spa_is_virtual(spa)) {
2247 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2248 ndr_desc);
2249 if (!nfit_spa->nd_region)
2250 rc = -ENOMEM;
2251 }
2252
2253 out:
2254 if (rc)
2255 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2256 nfit_spa->spa->range_index);
2257 return rc;
2258 }
2259
2260 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2261 u32 max_ars)
2262 {
2263 struct device *dev = acpi_desc->dev;
2264 struct nd_cmd_ars_status *ars_status;
2265
2266 if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2267 memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2268 return 0;
2269 }
2270
2271 if (acpi_desc->ars_status)
2272 devm_kfree(dev, acpi_desc->ars_status);
2273 acpi_desc->ars_status = NULL;
2274 ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2275 if (!ars_status)
2276 return -ENOMEM;
2277 acpi_desc->ars_status = ars_status;
2278 acpi_desc->ars_status_size = max_ars;
2279 return 0;
2280 }
2281
2282 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2283 struct nfit_spa *nfit_spa)
2284 {
2285 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2286 int rc;
2287
2288 if (!nfit_spa->max_ars) {
2289 struct nd_cmd_ars_cap ars_cap;
2290
2291 memset(&ars_cap, 0, sizeof(ars_cap));
2292 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2293 if (rc < 0)
2294 return rc;
2295 nfit_spa->max_ars = ars_cap.max_ars_out;
2296 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2297 /* check that the supported scrub types match the spa type */
2298 if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2299 ((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2300 return -ENOTTY;
2301 else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2302 ((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2303 return -ENOTTY;
2304 }
2305
2306 if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2307 return -ENOMEM;
2308
2309 rc = ars_get_status(acpi_desc);
2310 if (rc < 0 && rc != -ENOSPC)
2311 return rc;
2312
2313 if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2314 return -ENOMEM;
2315
2316 return 0;
2317 }
2318
2319 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2320 struct nfit_spa *nfit_spa)
2321 {
2322 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2323 unsigned int overflow_retry = scrub_overflow_abort;
2324 u64 init_ars_start = 0, init_ars_len = 0;
2325 struct device *dev = acpi_desc->dev;
2326 unsigned int tmo = scrub_timeout;
2327 int rc;
2328
2329 if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2330 return;
2331
2332 rc = ars_start(acpi_desc, nfit_spa);
2333 /*
2334 * If we timed out the initial scan we'll still be busy here,
2335 * and will wait another timeout before giving up permanently.
2336 */
2337 if (rc < 0 && rc != -EBUSY)
2338 return;
2339
2340 do {
2341 u64 ars_start, ars_len;
2342
2343 if (acpi_desc->cancel)
2344 break;
2345 rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2346 if (rc == -ENOTTY)
2347 break;
2348 if (rc == -EBUSY && !tmo) {
2349 dev_warn(dev, "range %d ars timeout, aborting\n",
2350 spa->range_index);
2351 break;
2352 }
2353
2354 if (rc == -EBUSY) {
2355 /*
2356 * Note, entries may be appended to the list
2357 * while the lock is dropped, but the workqueue
2358 * being active prevents entries being deleted /
2359 * freed.
2360 */
2361 mutex_unlock(&acpi_desc->init_mutex);
2362 ssleep(1);
2363 tmo--;
2364 mutex_lock(&acpi_desc->init_mutex);
2365 continue;
2366 }
2367
2368 /* we got some results, but there are more pending... */
2369 if (rc == -ENOSPC && overflow_retry--) {
2370 if (!init_ars_len) {
2371 init_ars_len = acpi_desc->ars_status->length;
2372 init_ars_start = acpi_desc->ars_status->address;
2373 }
2374 rc = ars_continue(acpi_desc);
2375 }
2376
2377 if (rc < 0) {
2378 dev_warn(dev, "range %d ars continuation failed\n",
2379 spa->range_index);
2380 break;
2381 }
2382
2383 if (init_ars_len) {
2384 ars_start = init_ars_start;
2385 ars_len = init_ars_len;
2386 } else {
2387 ars_start = acpi_desc->ars_status->address;
2388 ars_len = acpi_desc->ars_status->length;
2389 }
2390 dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2391 spa->range_index, ars_start, ars_len);
2392 /* notify the region about new poison entries */
2393 nvdimm_region_notify(nfit_spa->nd_region,
2394 NVDIMM_REVALIDATE_POISON);
2395 break;
2396 } while (1);
2397 }
2398
2399 static void acpi_nfit_scrub(struct work_struct *work)
2400 {
2401 struct device *dev;
2402 u64 init_scrub_length = 0;
2403 struct nfit_spa *nfit_spa;
2404 u64 init_scrub_address = 0;
2405 bool init_ars_done = false;
2406 struct acpi_nfit_desc *acpi_desc;
2407 unsigned int tmo = scrub_timeout;
2408 unsigned int overflow_retry = scrub_overflow_abort;
2409
2410 acpi_desc = container_of(work, typeof(*acpi_desc), work);
2411 dev = acpi_desc->dev;
2412
2413 /*
2414 * We scrub in 2 phases. The first phase waits for any platform
2415 * firmware initiated scrubs to complete and then we go search for the
2416 * affected spa regions to mark them scanned. In the second phase we
2417 * initiate a directed scrub for every range that was not scrubbed in
2418 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2419 * the first phase, but really only care about running phase 2, where
2420 * regions can be notified of new poison.
2421 */
2422
2423 /* process platform firmware initiated scrubs */
2424 retry:
2425 mutex_lock(&acpi_desc->init_mutex);
2426 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2427 struct nd_cmd_ars_status *ars_status;
2428 struct acpi_nfit_system_address *spa;
2429 u64 ars_start, ars_len;
2430 int rc;
2431
2432 if (acpi_desc->cancel)
2433 break;
2434
2435 if (nfit_spa->nd_region)
2436 continue;
2437
2438 if (init_ars_done) {
2439 /*
2440 * No need to re-query, we're now just
2441 * reconciling all the ranges covered by the
2442 * initial scrub
2443 */
2444 rc = 0;
2445 } else
2446 rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2447
2448 if (rc == -ENOTTY) {
2449 /* no ars capability, just register spa and move on */
2450 acpi_nfit_register_region(acpi_desc, nfit_spa);
2451 continue;
2452 }
2453
2454 if (rc == -EBUSY && !tmo) {
2455 /* fallthrough to directed scrub in phase 2 */
2456 dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2457 break;
2458 } else if (rc == -EBUSY) {
2459 mutex_unlock(&acpi_desc->init_mutex);
2460 ssleep(1);
2461 tmo--;
2462 goto retry;
2463 }
2464
2465 /* we got some results, but there are more pending... */
2466 if (rc == -ENOSPC && overflow_retry--) {
2467 ars_status = acpi_desc->ars_status;
2468 /*
2469 * Record the original scrub range, so that we
2470 * can recall all the ranges impacted by the
2471 * initial scrub.
2472 */
2473 if (!init_scrub_length) {
2474 init_scrub_length = ars_status->length;
2475 init_scrub_address = ars_status->address;
2476 }
2477 rc = ars_continue(acpi_desc);
2478 if (rc == 0) {
2479 mutex_unlock(&acpi_desc->init_mutex);
2480 goto retry;
2481 }
2482 }
2483
2484 if (rc < 0) {
2485 /*
2486 * Initial scrub failed, we'll give it one more
2487 * try below...
2488 */
2489 break;
2490 }
2491
2492 /* We got some final results, record completed ranges */
2493 ars_status = acpi_desc->ars_status;
2494 if (init_scrub_length) {
2495 ars_start = init_scrub_address;
2496 ars_len = ars_start + init_scrub_length;
2497 } else {
2498 ars_start = ars_status->address;
2499 ars_len = ars_status->length;
2500 }
2501 spa = nfit_spa->spa;
2502
2503 if (!init_ars_done) {
2504 init_ars_done = true;
2505 dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2506 ars_start, ars_len);
2507 }
2508 if (ars_start <= spa->address && ars_start + ars_len
2509 >= spa->address + spa->length)
2510 acpi_nfit_register_region(acpi_desc, nfit_spa);
2511 }
2512
2513 /*
2514 * For all the ranges not covered by an initial scrub we still
2515 * want to see if there are errors, but it's ok to discover them
2516 * asynchronously.
2517 */
2518 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2519 /*
2520 * Flag all the ranges that still need scrubbing, but
2521 * register them now to make data available.
2522 */
2523 if (!nfit_spa->nd_region) {
2524 nfit_spa->ars_required = 1;
2525 acpi_nfit_register_region(acpi_desc, nfit_spa);
2526 }
2527 }
2528
2529 list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2530 acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2531 acpi_desc->scrub_count++;
2532 if (acpi_desc->scrub_count_state)
2533 sysfs_notify_dirent(acpi_desc->scrub_count_state);
2534 mutex_unlock(&acpi_desc->init_mutex);
2535 }
2536
2537 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2538 {
2539 struct nfit_spa *nfit_spa;
2540 int rc;
2541
2542 list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2543 if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
2544 /* BLK regions don't need to wait for ars results */
2545 rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2546 if (rc)
2547 return rc;
2548 }
2549
2550 queue_work(nfit_wq, &acpi_desc->work);
2551 return 0;
2552 }
2553
2554 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2555 struct nfit_table_prev *prev)
2556 {
2557 struct device *dev = acpi_desc->dev;
2558
2559 if (!list_empty(&prev->spas) ||
2560 !list_empty(&prev->memdevs) ||
2561 !list_empty(&prev->dcrs) ||
2562 !list_empty(&prev->bdws) ||
2563 !list_empty(&prev->idts) ||
2564 !list_empty(&prev->flushes)) {
2565 dev_err(dev, "new nfit deletes entries (unsupported)\n");
2566 return -ENXIO;
2567 }
2568 return 0;
2569 }
2570
2571 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2572 {
2573 struct device *dev = acpi_desc->dev;
2574 struct kernfs_node *nfit;
2575 struct device *bus_dev;
2576
2577 if (!ars_supported(acpi_desc->nvdimm_bus))
2578 return 0;
2579
2580 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2581 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2582 if (!nfit) {
2583 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2584 return -ENODEV;
2585 }
2586 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2587 sysfs_put(nfit);
2588 if (!acpi_desc->scrub_count_state) {
2589 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2590 return -ENODEV;
2591 }
2592
2593 return 0;
2594 }
2595
2596 static void acpi_nfit_destruct(void *data)
2597 {
2598 struct acpi_nfit_desc *acpi_desc = data;
2599 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2600
2601 /*
2602 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
2603 * race teardown
2604 */
2605 mutex_lock(&acpi_desc_lock);
2606 acpi_desc->cancel = 1;
2607 /*
2608 * Bounce the nvdimm bus lock to make sure any in-flight
2609 * acpi_nfit_ars_rescan() submissions have had a chance to
2610 * either submit or see ->cancel set.
2611 */
2612 device_lock(bus_dev);
2613 device_unlock(bus_dev);
2614
2615 flush_workqueue(nfit_wq);
2616 if (acpi_desc->scrub_count_state)
2617 sysfs_put(acpi_desc->scrub_count_state);
2618 nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2619 acpi_desc->nvdimm_bus = NULL;
2620 list_del(&acpi_desc->list);
2621 mutex_unlock(&acpi_desc_lock);
2622 }
2623
2624 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2625 {
2626 struct device *dev = acpi_desc->dev;
2627 struct nfit_table_prev prev;
2628 const void *end;
2629 int rc;
2630
2631 if (!acpi_desc->nvdimm_bus) {
2632 acpi_nfit_init_dsms(acpi_desc);
2633
2634 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2635 &acpi_desc->nd_desc);
2636 if (!acpi_desc->nvdimm_bus)
2637 return -ENOMEM;
2638
2639 rc = devm_add_action_or_reset(dev, acpi_nfit_destruct,
2640 acpi_desc);
2641 if (rc)
2642 return rc;
2643
2644 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2645 if (rc)
2646 return rc;
2647
2648 /* register this acpi_desc for mce notifications */
2649 mutex_lock(&acpi_desc_lock);
2650 list_add_tail(&acpi_desc->list, &acpi_descs);
2651 mutex_unlock(&acpi_desc_lock);
2652 }
2653
2654 mutex_lock(&acpi_desc->init_mutex);
2655
2656 INIT_LIST_HEAD(&prev.spas);
2657 INIT_LIST_HEAD(&prev.memdevs);
2658 INIT_LIST_HEAD(&prev.dcrs);
2659 INIT_LIST_HEAD(&prev.bdws);
2660 INIT_LIST_HEAD(&prev.idts);
2661 INIT_LIST_HEAD(&prev.flushes);
2662
2663 list_cut_position(&prev.spas, &acpi_desc->spas,
2664 acpi_desc->spas.prev);
2665 list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2666 acpi_desc->memdevs.prev);
2667 list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2668 acpi_desc->dcrs.prev);
2669 list_cut_position(&prev.bdws, &acpi_desc->bdws,
2670 acpi_desc->bdws.prev);
2671 list_cut_position(&prev.idts, &acpi_desc->idts,
2672 acpi_desc->idts.prev);
2673 list_cut_position(&prev.flushes, &acpi_desc->flushes,
2674 acpi_desc->flushes.prev);
2675
2676 end = data + sz;
2677 while (!IS_ERR_OR_NULL(data))
2678 data = add_table(acpi_desc, &prev, data, end);
2679
2680 if (IS_ERR(data)) {
2681 dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2682 PTR_ERR(data));
2683 rc = PTR_ERR(data);
2684 goto out_unlock;
2685 }
2686
2687 rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2688 if (rc)
2689 goto out_unlock;
2690
2691 rc = nfit_mem_init(acpi_desc);
2692 if (rc)
2693 goto out_unlock;
2694
2695 rc = acpi_nfit_register_dimms(acpi_desc);
2696 if (rc)
2697 goto out_unlock;
2698
2699 rc = acpi_nfit_register_regions(acpi_desc);
2700
2701 out_unlock:
2702 mutex_unlock(&acpi_desc->init_mutex);
2703 return rc;
2704 }
2705 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2706
2707 struct acpi_nfit_flush_work {
2708 struct work_struct work;
2709 struct completion cmp;
2710 };
2711
2712 static void flush_probe(struct work_struct *work)
2713 {
2714 struct acpi_nfit_flush_work *flush;
2715
2716 flush = container_of(work, typeof(*flush), work);
2717 complete(&flush->cmp);
2718 }
2719
2720 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2721 {
2722 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2723 struct device *dev = acpi_desc->dev;
2724 struct acpi_nfit_flush_work flush;
2725 int rc;
2726
2727 /* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2728 device_lock(dev);
2729 device_unlock(dev);
2730
2731 /*
2732 * Scrub work could take 10s of seconds, userspace may give up so we
2733 * need to be interruptible while waiting.
2734 */
2735 INIT_WORK_ONSTACK(&flush.work, flush_probe);
2736 COMPLETION_INITIALIZER_ONSTACK(flush.cmp);
2737 queue_work(nfit_wq, &flush.work);
2738
2739 rc = wait_for_completion_interruptible(&flush.cmp);
2740 cancel_work_sync(&flush.work);
2741 return rc;
2742 }
2743
2744 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2745 struct nvdimm *nvdimm, unsigned int cmd)
2746 {
2747 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2748
2749 if (nvdimm)
2750 return 0;
2751 if (cmd != ND_CMD_ARS_START)
2752 return 0;
2753
2754 /*
2755 * The kernel and userspace may race to initiate a scrub, but
2756 * the scrub thread is prepared to lose that initial race. It
2757 * just needs guarantees that any ars it initiates are not
2758 * interrupted by any intervening start reqeusts from userspace.
2759 */
2760 if (work_busy(&acpi_desc->work))
2761 return -EBUSY;
2762
2763 return 0;
2764 }
2765
2766 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc)
2767 {
2768 struct device *dev = acpi_desc->dev;
2769 struct nfit_spa *nfit_spa;
2770
2771 if (work_busy(&acpi_desc->work))
2772 return -EBUSY;
2773
2774 if (acpi_desc->cancel)
2775 return 0;
2776
2777 mutex_lock(&acpi_desc->init_mutex);
2778 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2779 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2780
2781 if (nfit_spa_type(spa) != NFIT_SPA_PM)
2782 continue;
2783
2784 nfit_spa->ars_required = 1;
2785 }
2786 queue_work(nfit_wq, &acpi_desc->work);
2787 dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
2788 mutex_unlock(&acpi_desc->init_mutex);
2789
2790 return 0;
2791 }
2792
2793 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
2794 {
2795 struct nvdimm_bus_descriptor *nd_desc;
2796
2797 dev_set_drvdata(dev, acpi_desc);
2798 acpi_desc->dev = dev;
2799 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
2800 nd_desc = &acpi_desc->nd_desc;
2801 nd_desc->provider_name = "ACPI.NFIT";
2802 nd_desc->module = THIS_MODULE;
2803 nd_desc->ndctl = acpi_nfit_ctl;
2804 nd_desc->flush_probe = acpi_nfit_flush_probe;
2805 nd_desc->clear_to_send = acpi_nfit_clear_to_send;
2806 nd_desc->attr_groups = acpi_nfit_attribute_groups;
2807
2808 INIT_LIST_HEAD(&acpi_desc->spas);
2809 INIT_LIST_HEAD(&acpi_desc->dcrs);
2810 INIT_LIST_HEAD(&acpi_desc->bdws);
2811 INIT_LIST_HEAD(&acpi_desc->idts);
2812 INIT_LIST_HEAD(&acpi_desc->flushes);
2813 INIT_LIST_HEAD(&acpi_desc->memdevs);
2814 INIT_LIST_HEAD(&acpi_desc->dimms);
2815 INIT_LIST_HEAD(&acpi_desc->list);
2816 mutex_init(&acpi_desc->init_mutex);
2817 INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
2818 }
2819 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
2820
2821 static int acpi_nfit_add(struct acpi_device *adev)
2822 {
2823 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2824 struct acpi_nfit_desc *acpi_desc;
2825 struct device *dev = &adev->dev;
2826 struct acpi_table_header *tbl;
2827 acpi_status status = AE_OK;
2828 acpi_size sz;
2829 int rc = 0;
2830
2831 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
2832 if (ACPI_FAILURE(status)) {
2833 /* This is ok, we could have an nvdimm hotplugged later */
2834 dev_dbg(dev, "failed to find NFIT at startup\n");
2835 return 0;
2836 }
2837 sz = tbl->length;
2838
2839 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2840 if (!acpi_desc)
2841 return -ENOMEM;
2842 acpi_nfit_desc_init(acpi_desc, &adev->dev);
2843
2844 /* Save the acpi header for exporting the revision via sysfs */
2845 acpi_desc->acpi_header = *tbl;
2846
2847 /* Evaluate _FIT and override with that if present */
2848 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
2849 if (ACPI_SUCCESS(status) && buf.length > 0) {
2850 union acpi_object *obj = buf.pointer;
2851
2852 if (obj->type == ACPI_TYPE_BUFFER)
2853 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2854 obj->buffer.length);
2855 else
2856 dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
2857 __func__, (int) obj->type);
2858 kfree(buf.pointer);
2859 } else
2860 /* skip over the lead-in header table */
2861 rc = acpi_nfit_init(acpi_desc, (void *) tbl
2862 + sizeof(struct acpi_table_nfit),
2863 sz - sizeof(struct acpi_table_nfit));
2864 return rc;
2865 }
2866
2867 static int acpi_nfit_remove(struct acpi_device *adev)
2868 {
2869 /* see acpi_nfit_destruct */
2870 return 0;
2871 }
2872
2873 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
2874 {
2875 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
2876 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2877 union acpi_object *obj;
2878 acpi_status status;
2879 int ret;
2880
2881 dev_dbg(dev, "%s: event: %d\n", __func__, event);
2882
2883 if (event != NFIT_NOTIFY_UPDATE)
2884 return;
2885
2886 if (!dev->driver) {
2887 /* dev->driver may be null if we're being removed */
2888 dev_dbg(dev, "%s: no driver found for dev\n", __func__);
2889 return;
2890 }
2891
2892 if (!acpi_desc) {
2893 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2894 if (!acpi_desc)
2895 return;
2896 acpi_nfit_desc_init(acpi_desc, dev);
2897 } else {
2898 /*
2899 * Finish previous registration before considering new
2900 * regions.
2901 */
2902 flush_workqueue(nfit_wq);
2903 }
2904
2905 /* Evaluate _FIT */
2906 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
2907 if (ACPI_FAILURE(status)) {
2908 dev_err(dev, "failed to evaluate _FIT\n");
2909 return;
2910 }
2911
2912 obj = buf.pointer;
2913 if (obj->type == ACPI_TYPE_BUFFER) {
2914 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2915 obj->buffer.length);
2916 if (ret)
2917 dev_err(dev, "failed to merge updated NFIT\n");
2918 } else
2919 dev_err(dev, "Invalid _FIT\n");
2920 kfree(buf.pointer);
2921 }
2922 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
2923
2924 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
2925 {
2926 device_lock(&adev->dev);
2927 __acpi_nfit_notify(&adev->dev, adev->handle, event);
2928 device_unlock(&adev->dev);
2929 }
2930
2931 static const struct acpi_device_id acpi_nfit_ids[] = {
2932 { "ACPI0012", 0 },
2933 { "", 0 },
2934 };
2935 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
2936
2937 static struct acpi_driver acpi_nfit_driver = {
2938 .name = KBUILD_MODNAME,
2939 .ids = acpi_nfit_ids,
2940 .ops = {
2941 .add = acpi_nfit_add,
2942 .remove = acpi_nfit_remove,
2943 .notify = acpi_nfit_notify,
2944 },
2945 };
2946
2947 static __init int nfit_init(void)
2948 {
2949 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
2950 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
2951 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
2952 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
2953 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
2954 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
2955 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
2956
2957 acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]);
2958 acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]);
2959 acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]);
2960 acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]);
2961 acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]);
2962 acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]);
2963 acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]);
2964 acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]);
2965 acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]);
2966 acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]);
2967 acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE1, nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
2968 acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE2, nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
2969 acpi_str_to_uuid(UUID_NFIT_DIMM_N_MSFT, nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
2970
2971 nfit_wq = create_singlethread_workqueue("nfit");
2972 if (!nfit_wq)
2973 return -ENOMEM;
2974
2975 nfit_mce_register();
2976
2977 return acpi_bus_register_driver(&acpi_nfit_driver);
2978 }
2979
2980 static __exit void nfit_exit(void)
2981 {
2982 nfit_mce_unregister();
2983 acpi_bus_unregister_driver(&acpi_nfit_driver);
2984 destroy_workqueue(nfit_wq);
2985 WARN_ON(!list_empty(&acpi_descs));
2986 }
2987
2988 module_init(nfit_init);
2989 module_exit(nfit_exit);
2990 MODULE_LICENSE("GPL v2");
2991 MODULE_AUTHOR("Intel Corporation");