]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/acpi/osl.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56 acpi_osd_exec_callback function;
57 void *context;
58 struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84 * This list of permanent mappings is for memory that may be accessed from
85 * interrupt context, where we can't do the ioremap().
86 */
87 struct acpi_ioremap {
88 struct list_head list;
89 void __iomem *virt;
90 acpi_physical_address phys;
91 acpi_size size;
92 unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 unsigned int length, char *desc)
100 {
101 u64 addr;
102
103 /* Handle possible alignment issues */
104 memcpy(&addr, &gas->address, sizeof(addr));
105 if (!addr || !length)
106 return;
107
108 /* Resources are never freed */
109 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 request_region(addr, length, desc);
111 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1a_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 "ACPI PM1b_EVT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1a_CNT_BLK");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 "ACPI PM1b_CNT_BLK");
128
129 if (acpi_gbl_FADT.pm_timer_length == 4)
130 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 "ACPI PM2_CNT_BLK");
134
135 /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145 return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151 va_list args;
152 va_start(args, fmt);
153 acpi_os_vprintf(fmt, args);
154 va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 static char buffer[512];
161
162 vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165 if (acpi_in_debugger) {
166 kdb_printf("%s", buffer);
167 } else {
168 if (printk_get_level(buffer))
169 printk("%s", buffer);
170 else
171 printk(KERN_CONT "%s", buffer);
172 }
173 #else
174 if (acpi_debugger_write_log(buffer) < 0) {
175 if (printk_get_level(buffer))
176 printk("%s", buffer);
177 else
178 printk(KERN_CONT "%s", buffer);
179 }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 acpi_physical_address pa = 0;
195
196 #ifdef CONFIG_KEXEC
197 if (acpi_rsdp && !kernel_is_locked_down("ACPI RSDP specification"))
198 return acpi_rsdp;
199 #endif
200
201 if (efi_enabled(EFI_CONFIG_TABLES)) {
202 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
203 return efi.acpi20;
204 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
205 return efi.acpi;
206 pr_err(PREFIX "System description tables not found\n");
207 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
208 acpi_find_root_pointer(&pa);
209 }
210
211 return pa;
212 }
213
214 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
215 static struct acpi_ioremap *
216 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
217 {
218 struct acpi_ioremap *map;
219
220 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
221 if (map->phys <= phys &&
222 phys + size <= map->phys + map->size)
223 return map;
224
225 return NULL;
226 }
227
228 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
229 static void __iomem *
230 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
231 {
232 struct acpi_ioremap *map;
233
234 map = acpi_map_lookup(phys, size);
235 if (map)
236 return map->virt + (phys - map->phys);
237
238 return NULL;
239 }
240
241 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
242 {
243 struct acpi_ioremap *map;
244 void __iomem *virt = NULL;
245
246 mutex_lock(&acpi_ioremap_lock);
247 map = acpi_map_lookup(phys, size);
248 if (map) {
249 virt = map->virt + (phys - map->phys);
250 map->refcount++;
251 }
252 mutex_unlock(&acpi_ioremap_lock);
253 return virt;
254 }
255 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
256
257 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
258 static struct acpi_ioremap *
259 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
260 {
261 struct acpi_ioremap *map;
262
263 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
264 if (map->virt <= virt &&
265 virt + size <= map->virt + map->size)
266 return map;
267
268 return NULL;
269 }
270
271 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
272 /* ioremap will take care of cache attributes */
273 #define should_use_kmap(pfn) 0
274 #else
275 #define should_use_kmap(pfn) page_is_ram(pfn)
276 #endif
277
278 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
279 {
280 unsigned long pfn;
281
282 pfn = pg_off >> PAGE_SHIFT;
283 if (should_use_kmap(pfn)) {
284 if (pg_sz > PAGE_SIZE)
285 return NULL;
286 return (void __iomem __force *)kmap(pfn_to_page(pfn));
287 } else
288 return acpi_os_ioremap(pg_off, pg_sz);
289 }
290
291 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
292 {
293 unsigned long pfn;
294
295 pfn = pg_off >> PAGE_SHIFT;
296 if (should_use_kmap(pfn))
297 kunmap(pfn_to_page(pfn));
298 else
299 iounmap(vaddr);
300 }
301
302 /**
303 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
304 * @phys: Start of the physical address range to map.
305 * @size: Size of the physical address range to map.
306 *
307 * Look up the given physical address range in the list of existing ACPI memory
308 * mappings. If found, get a reference to it and return a pointer to it (its
309 * virtual address). If not found, map it, add it to that list and return a
310 * pointer to it.
311 *
312 * During early init (when acpi_permanent_mmap has not been set yet) this
313 * routine simply calls __acpi_map_table() to get the job done.
314 */
315 void __iomem *__ref
316 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
317 {
318 struct acpi_ioremap *map;
319 void __iomem *virt;
320 acpi_physical_address pg_off;
321 acpi_size pg_sz;
322
323 if (phys > ULONG_MAX) {
324 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
325 return NULL;
326 }
327
328 if (!acpi_permanent_mmap)
329 return __acpi_map_table((unsigned long)phys, size);
330
331 mutex_lock(&acpi_ioremap_lock);
332 /* Check if there's a suitable mapping already. */
333 map = acpi_map_lookup(phys, size);
334 if (map) {
335 map->refcount++;
336 goto out;
337 }
338
339 map = kzalloc(sizeof(*map), GFP_KERNEL);
340 if (!map) {
341 mutex_unlock(&acpi_ioremap_lock);
342 return NULL;
343 }
344
345 pg_off = round_down(phys, PAGE_SIZE);
346 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
347 virt = acpi_map(pg_off, pg_sz);
348 if (!virt) {
349 mutex_unlock(&acpi_ioremap_lock);
350 kfree(map);
351 return NULL;
352 }
353
354 INIT_LIST_HEAD(&map->list);
355 map->virt = virt;
356 map->phys = pg_off;
357 map->size = pg_sz;
358 map->refcount = 1;
359
360 list_add_tail_rcu(&map->list, &acpi_ioremaps);
361
362 out:
363 mutex_unlock(&acpi_ioremap_lock);
364 return map->virt + (phys - map->phys);
365 }
366 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
367
368 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
369 {
370 return (void *)acpi_os_map_iomem(phys, size);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
373
374 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
375 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
376 {
377 unsigned long refcount = --map->refcount;
378
379 if (!refcount)
380 list_del_rcu(&map->list);
381 return refcount;
382 }
383
384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390
391 /**
392 * acpi_os_unmap_iomem - Drop a memory mapping reference.
393 * @virt: Start of the address range to drop a reference to.
394 * @size: Size of the address range to drop a reference to.
395 *
396 * Look up the given virtual address range in the list of existing ACPI memory
397 * mappings, drop a reference to it and unmap it if there are no more active
398 * references to it.
399 *
400 * During early init (when acpi_permanent_mmap has not been set yet) this
401 * routine simply calls __acpi_unmap_table() to get the job done. Since
402 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
403 * here.
404 */
405 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
406 {
407 struct acpi_ioremap *map;
408 unsigned long refcount;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 refcount = acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 if (!refcount)
426 acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429
430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432 return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435
436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438 u64 addr;
439 void __iomem *virt;
440
441 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442 return 0;
443
444 /* Handle possible alignment issues */
445 memcpy(&addr, &gas->address, sizeof(addr));
446 if (!addr || !gas->bit_width)
447 return -EINVAL;
448
449 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450 if (!virt)
451 return -EIO;
452
453 return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456
457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459 u64 addr;
460 struct acpi_ioremap *map;
461 unsigned long refcount;
462
463 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
464 return;
465
466 /* Handle possible alignment issues */
467 memcpy(&addr, &gas->address, sizeof(addr));
468 if (!addr || !gas->bit_width)
469 return;
470
471 mutex_lock(&acpi_ioremap_lock);
472 map = acpi_map_lookup(addr, gas->bit_width / 8);
473 if (!map) {
474 mutex_unlock(&acpi_ioremap_lock);
475 return;
476 }
477 refcount = acpi_os_drop_map_ref(map);
478 mutex_unlock(&acpi_ioremap_lock);
479
480 if (!refcount)
481 acpi_os_map_cleanup(map);
482 }
483 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
484
485 #ifdef ACPI_FUTURE_USAGE
486 acpi_status
487 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
488 {
489 if (!phys || !virt)
490 return AE_BAD_PARAMETER;
491
492 *phys = virt_to_phys(virt);
493
494 return AE_OK;
495 }
496 #endif
497
498 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
499 static bool acpi_rev_override;
500
501 int __init acpi_rev_override_setup(char *str)
502 {
503 acpi_rev_override = true;
504 return 1;
505 }
506 __setup("acpi_rev_override", acpi_rev_override_setup);
507 #else
508 #define acpi_rev_override false
509 #endif
510
511 #define ACPI_MAX_OVERRIDE_LEN 100
512
513 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
514
515 acpi_status
516 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
517 acpi_string *new_val)
518 {
519 if (!init_val || !new_val)
520 return AE_BAD_PARAMETER;
521
522 *new_val = NULL;
523 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
524 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
525 acpi_os_name);
526 *new_val = acpi_os_name;
527 }
528
529 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
530 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
531 *new_val = (char *)5;
532 }
533
534 return AE_OK;
535 }
536
537 static irqreturn_t acpi_irq(int irq, void *dev_id)
538 {
539 u32 handled;
540
541 handled = (*acpi_irq_handler) (acpi_irq_context);
542
543 if (handled) {
544 acpi_irq_handled++;
545 return IRQ_HANDLED;
546 } else {
547 acpi_irq_not_handled++;
548 return IRQ_NONE;
549 }
550 }
551
552 acpi_status
553 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
554 void *context)
555 {
556 unsigned int irq;
557
558 acpi_irq_stats_init();
559
560 /*
561 * ACPI interrupts different from the SCI in our copy of the FADT are
562 * not supported.
563 */
564 if (gsi != acpi_gbl_FADT.sci_interrupt)
565 return AE_BAD_PARAMETER;
566
567 if (acpi_irq_handler)
568 return AE_ALREADY_ACQUIRED;
569
570 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
571 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
572 gsi);
573 return AE_OK;
574 }
575
576 acpi_irq_handler = handler;
577 acpi_irq_context = context;
578 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
579 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
580 acpi_irq_handler = NULL;
581 return AE_NOT_ACQUIRED;
582 }
583 acpi_sci_irq = irq;
584
585 return AE_OK;
586 }
587
588 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
589 {
590 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
591 return AE_BAD_PARAMETER;
592
593 free_irq(acpi_sci_irq, acpi_irq);
594 acpi_irq_handler = NULL;
595 acpi_sci_irq = INVALID_ACPI_IRQ;
596
597 return AE_OK;
598 }
599
600 /*
601 * Running in interpreter thread context, safe to sleep
602 */
603
604 void acpi_os_sleep(u64 ms)
605 {
606 msleep(ms);
607 }
608
609 void acpi_os_stall(u32 us)
610 {
611 while (us) {
612 u32 delay = 1000;
613
614 if (delay > us)
615 delay = us;
616 udelay(delay);
617 touch_nmi_watchdog();
618 us -= delay;
619 }
620 }
621
622 /*
623 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
624 * monotonically increasing timer with 100ns granularity. Do not use
625 * ktime_get() to implement this function because this function may get
626 * called after timekeeping has been suspended. Note: calling this function
627 * after timekeeping has been suspended may lead to unexpected results
628 * because when timekeeping is suspended the jiffies counter is not
629 * incremented. See also timekeeping_suspend().
630 */
631 u64 acpi_os_get_timer(void)
632 {
633 return (get_jiffies_64() - INITIAL_JIFFIES) *
634 (ACPI_100NSEC_PER_SEC / HZ);
635 }
636
637 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
638 {
639 u32 dummy;
640
641 if (!value)
642 value = &dummy;
643
644 *value = 0;
645 if (width <= 8) {
646 *(u8 *) value = inb(port);
647 } else if (width <= 16) {
648 *(u16 *) value = inw(port);
649 } else if (width <= 32) {
650 *(u32 *) value = inl(port);
651 } else {
652 BUG();
653 }
654
655 return AE_OK;
656 }
657
658 EXPORT_SYMBOL(acpi_os_read_port);
659
660 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
661 {
662 if (width <= 8) {
663 outb(value, port);
664 } else if (width <= 16) {
665 outw(value, port);
666 } else if (width <= 32) {
667 outl(value, port);
668 } else {
669 BUG();
670 }
671
672 return AE_OK;
673 }
674
675 EXPORT_SYMBOL(acpi_os_write_port);
676
677 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
678 {
679
680 switch (width) {
681 case 8:
682 *(u8 *) value = readb(virt_addr);
683 break;
684 case 16:
685 *(u16 *) value = readw(virt_addr);
686 break;
687 case 32:
688 *(u32 *) value = readl(virt_addr);
689 break;
690 case 64:
691 *(u64 *) value = readq(virt_addr);
692 break;
693 default:
694 return -EINVAL;
695 }
696
697 return 0;
698 }
699
700 acpi_status
701 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
702 {
703 void __iomem *virt_addr;
704 unsigned int size = width / 8;
705 bool unmap = false;
706 u64 dummy;
707 int error;
708
709 rcu_read_lock();
710 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
711 if (!virt_addr) {
712 rcu_read_unlock();
713 virt_addr = acpi_os_ioremap(phys_addr, size);
714 if (!virt_addr)
715 return AE_BAD_ADDRESS;
716 unmap = true;
717 }
718
719 if (!value)
720 value = &dummy;
721
722 error = acpi_os_read_iomem(virt_addr, value, width);
723 BUG_ON(error);
724
725 if (unmap)
726 iounmap(virt_addr);
727 else
728 rcu_read_unlock();
729
730 return AE_OK;
731 }
732
733 acpi_status
734 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
735 {
736 void __iomem *virt_addr;
737 unsigned int size = width / 8;
738 bool unmap = false;
739
740 rcu_read_lock();
741 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
742 if (!virt_addr) {
743 rcu_read_unlock();
744 virt_addr = acpi_os_ioremap(phys_addr, size);
745 if (!virt_addr)
746 return AE_BAD_ADDRESS;
747 unmap = true;
748 }
749
750 switch (width) {
751 case 8:
752 writeb(value, virt_addr);
753 break;
754 case 16:
755 writew(value, virt_addr);
756 break;
757 case 32:
758 writel(value, virt_addr);
759 break;
760 case 64:
761 writeq(value, virt_addr);
762 break;
763 default:
764 BUG();
765 }
766
767 if (unmap)
768 iounmap(virt_addr);
769 else
770 rcu_read_unlock();
771
772 return AE_OK;
773 }
774
775 acpi_status
776 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
777 u64 *value, u32 width)
778 {
779 int result, size;
780 u32 value32;
781
782 if (!value)
783 return AE_BAD_PARAMETER;
784
785 switch (width) {
786 case 8:
787 size = 1;
788 break;
789 case 16:
790 size = 2;
791 break;
792 case 32:
793 size = 4;
794 break;
795 default:
796 return AE_ERROR;
797 }
798
799 result = raw_pci_read(pci_id->segment, pci_id->bus,
800 PCI_DEVFN(pci_id->device, pci_id->function),
801 reg, size, &value32);
802 *value = value32;
803
804 return (result ? AE_ERROR : AE_OK);
805 }
806
807 acpi_status
808 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
809 u64 value, u32 width)
810 {
811 int result, size;
812
813 switch (width) {
814 case 8:
815 size = 1;
816 break;
817 case 16:
818 size = 2;
819 break;
820 case 32:
821 size = 4;
822 break;
823 default:
824 return AE_ERROR;
825 }
826
827 result = raw_pci_write(pci_id->segment, pci_id->bus,
828 PCI_DEVFN(pci_id->device, pci_id->function),
829 reg, size, value);
830
831 return (result ? AE_ERROR : AE_OK);
832 }
833
834 static void acpi_os_execute_deferred(struct work_struct *work)
835 {
836 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
837
838 dpc->function(dpc->context);
839 kfree(dpc);
840 }
841
842 #ifdef CONFIG_ACPI_DEBUGGER
843 static struct acpi_debugger acpi_debugger;
844 static bool acpi_debugger_initialized;
845
846 int acpi_register_debugger(struct module *owner,
847 const struct acpi_debugger_ops *ops)
848 {
849 int ret = 0;
850
851 mutex_lock(&acpi_debugger.lock);
852 if (acpi_debugger.ops) {
853 ret = -EBUSY;
854 goto err_lock;
855 }
856
857 acpi_debugger.owner = owner;
858 acpi_debugger.ops = ops;
859
860 err_lock:
861 mutex_unlock(&acpi_debugger.lock);
862 return ret;
863 }
864 EXPORT_SYMBOL(acpi_register_debugger);
865
866 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
867 {
868 mutex_lock(&acpi_debugger.lock);
869 if (ops == acpi_debugger.ops) {
870 acpi_debugger.ops = NULL;
871 acpi_debugger.owner = NULL;
872 }
873 mutex_unlock(&acpi_debugger.lock);
874 }
875 EXPORT_SYMBOL(acpi_unregister_debugger);
876
877 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
878 {
879 int ret;
880 int (*func)(acpi_osd_exec_callback, void *);
881 struct module *owner;
882
883 if (!acpi_debugger_initialized)
884 return -ENODEV;
885 mutex_lock(&acpi_debugger.lock);
886 if (!acpi_debugger.ops) {
887 ret = -ENODEV;
888 goto err_lock;
889 }
890 if (!try_module_get(acpi_debugger.owner)) {
891 ret = -ENODEV;
892 goto err_lock;
893 }
894 func = acpi_debugger.ops->create_thread;
895 owner = acpi_debugger.owner;
896 mutex_unlock(&acpi_debugger.lock);
897
898 ret = func(function, context);
899
900 mutex_lock(&acpi_debugger.lock);
901 module_put(owner);
902 err_lock:
903 mutex_unlock(&acpi_debugger.lock);
904 return ret;
905 }
906
907 ssize_t acpi_debugger_write_log(const char *msg)
908 {
909 ssize_t ret;
910 ssize_t (*func)(const char *);
911 struct module *owner;
912
913 if (!acpi_debugger_initialized)
914 return -ENODEV;
915 mutex_lock(&acpi_debugger.lock);
916 if (!acpi_debugger.ops) {
917 ret = -ENODEV;
918 goto err_lock;
919 }
920 if (!try_module_get(acpi_debugger.owner)) {
921 ret = -ENODEV;
922 goto err_lock;
923 }
924 func = acpi_debugger.ops->write_log;
925 owner = acpi_debugger.owner;
926 mutex_unlock(&acpi_debugger.lock);
927
928 ret = func(msg);
929
930 mutex_lock(&acpi_debugger.lock);
931 module_put(owner);
932 err_lock:
933 mutex_unlock(&acpi_debugger.lock);
934 return ret;
935 }
936
937 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
938 {
939 ssize_t ret;
940 ssize_t (*func)(char *, size_t);
941 struct module *owner;
942
943 if (!acpi_debugger_initialized)
944 return -ENODEV;
945 mutex_lock(&acpi_debugger.lock);
946 if (!acpi_debugger.ops) {
947 ret = -ENODEV;
948 goto err_lock;
949 }
950 if (!try_module_get(acpi_debugger.owner)) {
951 ret = -ENODEV;
952 goto err_lock;
953 }
954 func = acpi_debugger.ops->read_cmd;
955 owner = acpi_debugger.owner;
956 mutex_unlock(&acpi_debugger.lock);
957
958 ret = func(buffer, buffer_length);
959
960 mutex_lock(&acpi_debugger.lock);
961 module_put(owner);
962 err_lock:
963 mutex_unlock(&acpi_debugger.lock);
964 return ret;
965 }
966
967 int acpi_debugger_wait_command_ready(void)
968 {
969 int ret;
970 int (*func)(bool, char *, size_t);
971 struct module *owner;
972
973 if (!acpi_debugger_initialized)
974 return -ENODEV;
975 mutex_lock(&acpi_debugger.lock);
976 if (!acpi_debugger.ops) {
977 ret = -ENODEV;
978 goto err_lock;
979 }
980 if (!try_module_get(acpi_debugger.owner)) {
981 ret = -ENODEV;
982 goto err_lock;
983 }
984 func = acpi_debugger.ops->wait_command_ready;
985 owner = acpi_debugger.owner;
986 mutex_unlock(&acpi_debugger.lock);
987
988 ret = func(acpi_gbl_method_executing,
989 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
990
991 mutex_lock(&acpi_debugger.lock);
992 module_put(owner);
993 err_lock:
994 mutex_unlock(&acpi_debugger.lock);
995 return ret;
996 }
997
998 int acpi_debugger_notify_command_complete(void)
999 {
1000 int ret;
1001 int (*func)(void);
1002 struct module *owner;
1003
1004 if (!acpi_debugger_initialized)
1005 return -ENODEV;
1006 mutex_lock(&acpi_debugger.lock);
1007 if (!acpi_debugger.ops) {
1008 ret = -ENODEV;
1009 goto err_lock;
1010 }
1011 if (!try_module_get(acpi_debugger.owner)) {
1012 ret = -ENODEV;
1013 goto err_lock;
1014 }
1015 func = acpi_debugger.ops->notify_command_complete;
1016 owner = acpi_debugger.owner;
1017 mutex_unlock(&acpi_debugger.lock);
1018
1019 ret = func();
1020
1021 mutex_lock(&acpi_debugger.lock);
1022 module_put(owner);
1023 err_lock:
1024 mutex_unlock(&acpi_debugger.lock);
1025 return ret;
1026 }
1027
1028 int __init acpi_debugger_init(void)
1029 {
1030 mutex_init(&acpi_debugger.lock);
1031 acpi_debugger_initialized = true;
1032 return 0;
1033 }
1034 #endif
1035
1036 /*******************************************************************************
1037 *
1038 * FUNCTION: acpi_os_execute
1039 *
1040 * PARAMETERS: Type - Type of the callback
1041 * Function - Function to be executed
1042 * Context - Function parameters
1043 *
1044 * RETURN: Status
1045 *
1046 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1047 * immediately executes function on a separate thread.
1048 *
1049 ******************************************************************************/
1050
1051 acpi_status acpi_os_execute(acpi_execute_type type,
1052 acpi_osd_exec_callback function, void *context)
1053 {
1054 acpi_status status = AE_OK;
1055 struct acpi_os_dpc *dpc;
1056 struct workqueue_struct *queue;
1057 int ret;
1058 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1059 "Scheduling function [%p(%p)] for deferred execution.\n",
1060 function, context));
1061
1062 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1063 ret = acpi_debugger_create_thread(function, context);
1064 if (ret) {
1065 pr_err("Call to kthread_create() failed.\n");
1066 status = AE_ERROR;
1067 }
1068 goto out_thread;
1069 }
1070
1071 /*
1072 * Allocate/initialize DPC structure. Note that this memory will be
1073 * freed by the callee. The kernel handles the work_struct list in a
1074 * way that allows us to also free its memory inside the callee.
1075 * Because we may want to schedule several tasks with different
1076 * parameters we can't use the approach some kernel code uses of
1077 * having a static work_struct.
1078 */
1079
1080 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1081 if (!dpc)
1082 return AE_NO_MEMORY;
1083
1084 dpc->function = function;
1085 dpc->context = context;
1086
1087 /*
1088 * To prevent lockdep from complaining unnecessarily, make sure that
1089 * there is a different static lockdep key for each workqueue by using
1090 * INIT_WORK() for each of them separately.
1091 */
1092 if (type == OSL_NOTIFY_HANDLER) {
1093 queue = kacpi_notify_wq;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095 } else if (type == OSL_GPE_HANDLER) {
1096 queue = kacpid_wq;
1097 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1098 } else {
1099 pr_err("Unsupported os_execute type %d.\n", type);
1100 status = AE_ERROR;
1101 }
1102
1103 if (ACPI_FAILURE(status))
1104 goto err_workqueue;
1105
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption unless
1108 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1109 * typically it's done in GPE-related methods that are run via
1110 * workqueues, so we can avoid the known corruption cases by always
1111 * queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, queue, &dpc->work);
1114 if (!ret) {
1115 printk(KERN_ERR PREFIX
1116 "Call to queue_work() failed.\n");
1117 status = AE_ERROR;
1118 }
1119 err_workqueue:
1120 if (ACPI_FAILURE(status))
1121 kfree(dpc);
1122 out_thread:
1123 return status;
1124 }
1125 EXPORT_SYMBOL(acpi_os_execute);
1126
1127 void acpi_os_wait_events_complete(void)
1128 {
1129 /*
1130 * Make sure the GPE handler or the fixed event handler is not used
1131 * on another CPU after removal.
1132 */
1133 if (acpi_sci_irq_valid())
1134 synchronize_hardirq(acpi_sci_irq);
1135 flush_workqueue(kacpid_wq);
1136 flush_workqueue(kacpi_notify_wq);
1137 }
1138 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1139
1140 struct acpi_hp_work {
1141 struct work_struct work;
1142 struct acpi_device *adev;
1143 u32 src;
1144 };
1145
1146 static void acpi_hotplug_work_fn(struct work_struct *work)
1147 {
1148 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1149
1150 acpi_os_wait_events_complete();
1151 acpi_device_hotplug(hpw->adev, hpw->src);
1152 kfree(hpw);
1153 }
1154
1155 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1156 {
1157 struct acpi_hp_work *hpw;
1158
1159 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1160 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1161 adev, src));
1162
1163 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1164 if (!hpw)
1165 return AE_NO_MEMORY;
1166
1167 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1168 hpw->adev = adev;
1169 hpw->src = src;
1170 /*
1171 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1172 * the hotplug code may call driver .remove() functions, which may
1173 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1174 * these workqueues.
1175 */
1176 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1177 kfree(hpw);
1178 return AE_ERROR;
1179 }
1180 return AE_OK;
1181 }
1182
1183 bool acpi_queue_hotplug_work(struct work_struct *work)
1184 {
1185 return queue_work(kacpi_hotplug_wq, work);
1186 }
1187
1188 acpi_status
1189 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1190 {
1191 struct semaphore *sem = NULL;
1192
1193 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1194 if (!sem)
1195 return AE_NO_MEMORY;
1196
1197 sema_init(sem, initial_units);
1198
1199 *handle = (acpi_handle *) sem;
1200
1201 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1202 *handle, initial_units));
1203
1204 return AE_OK;
1205 }
1206
1207 /*
1208 * TODO: A better way to delete semaphores? Linux doesn't have a
1209 * 'delete_semaphore()' function -- may result in an invalid
1210 * pointer dereference for non-synchronized consumers. Should
1211 * we at least check for blocked threads and signal/cancel them?
1212 */
1213
1214 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1215 {
1216 struct semaphore *sem = (struct semaphore *)handle;
1217
1218 if (!sem)
1219 return AE_BAD_PARAMETER;
1220
1221 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1222
1223 BUG_ON(!list_empty(&sem->wait_list));
1224 kfree(sem);
1225 sem = NULL;
1226
1227 return AE_OK;
1228 }
1229
1230 /*
1231 * TODO: Support for units > 1?
1232 */
1233 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1234 {
1235 acpi_status status = AE_OK;
1236 struct semaphore *sem = (struct semaphore *)handle;
1237 long jiffies;
1238 int ret = 0;
1239
1240 if (!acpi_os_initialized)
1241 return AE_OK;
1242
1243 if (!sem || (units < 1))
1244 return AE_BAD_PARAMETER;
1245
1246 if (units > 1)
1247 return AE_SUPPORT;
1248
1249 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1250 handle, units, timeout));
1251
1252 if (timeout == ACPI_WAIT_FOREVER)
1253 jiffies = MAX_SCHEDULE_TIMEOUT;
1254 else
1255 jiffies = msecs_to_jiffies(timeout);
1256
1257 ret = down_timeout(sem, jiffies);
1258 if (ret)
1259 status = AE_TIME;
1260
1261 if (ACPI_FAILURE(status)) {
1262 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1263 "Failed to acquire semaphore[%p|%d|%d], %s",
1264 handle, units, timeout,
1265 acpi_format_exception(status)));
1266 } else {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Acquired semaphore[%p|%d|%d]", handle,
1269 units, timeout));
1270 }
1271
1272 return status;
1273 }
1274
1275 /*
1276 * TODO: Support for units > 1?
1277 */
1278 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1279 {
1280 struct semaphore *sem = (struct semaphore *)handle;
1281
1282 if (!acpi_os_initialized)
1283 return AE_OK;
1284
1285 if (!sem || (units < 1))
1286 return AE_BAD_PARAMETER;
1287
1288 if (units > 1)
1289 return AE_SUPPORT;
1290
1291 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1292 units));
1293
1294 up(sem);
1295
1296 return AE_OK;
1297 }
1298
1299 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1300 {
1301 #ifdef ENABLE_DEBUGGER
1302 if (acpi_in_debugger) {
1303 u32 chars;
1304
1305 kdb_read(buffer, buffer_length);
1306
1307 /* remove the CR kdb includes */
1308 chars = strlen(buffer) - 1;
1309 buffer[chars] = '\0';
1310 }
1311 #else
1312 int ret;
1313
1314 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1315 if (ret < 0)
1316 return AE_ERROR;
1317 if (bytes_read)
1318 *bytes_read = ret;
1319 #endif
1320
1321 return AE_OK;
1322 }
1323 EXPORT_SYMBOL(acpi_os_get_line);
1324
1325 acpi_status acpi_os_wait_command_ready(void)
1326 {
1327 int ret;
1328
1329 ret = acpi_debugger_wait_command_ready();
1330 if (ret < 0)
1331 return AE_ERROR;
1332 return AE_OK;
1333 }
1334
1335 acpi_status acpi_os_notify_command_complete(void)
1336 {
1337 int ret;
1338
1339 ret = acpi_debugger_notify_command_complete();
1340 if (ret < 0)
1341 return AE_ERROR;
1342 return AE_OK;
1343 }
1344
1345 acpi_status acpi_os_signal(u32 function, void *info)
1346 {
1347 switch (function) {
1348 case ACPI_SIGNAL_FATAL:
1349 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1350 break;
1351 case ACPI_SIGNAL_BREAKPOINT:
1352 /*
1353 * AML Breakpoint
1354 * ACPI spec. says to treat it as a NOP unless
1355 * you are debugging. So if/when we integrate
1356 * AML debugger into the kernel debugger its
1357 * hook will go here. But until then it is
1358 * not useful to print anything on breakpoints.
1359 */
1360 break;
1361 default:
1362 break;
1363 }
1364
1365 return AE_OK;
1366 }
1367
1368 static int __init acpi_os_name_setup(char *str)
1369 {
1370 char *p = acpi_os_name;
1371 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1372
1373 if (!str || !*str)
1374 return 0;
1375
1376 for (; count-- && *str; str++) {
1377 if (isalnum(*str) || *str == ' ' || *str == ':')
1378 *p++ = *str;
1379 else if (*str == '\'' || *str == '"')
1380 continue;
1381 else
1382 break;
1383 }
1384 *p = 0;
1385
1386 return 1;
1387
1388 }
1389
1390 __setup("acpi_os_name=", acpi_os_name_setup);
1391
1392 /*
1393 * Disable the auto-serialization of named objects creation methods.
1394 *
1395 * This feature is enabled by default. It marks the AML control methods
1396 * that contain the opcodes to create named objects as "Serialized".
1397 */
1398 static int __init acpi_no_auto_serialize_setup(char *str)
1399 {
1400 acpi_gbl_auto_serialize_methods = FALSE;
1401 pr_info("ACPI: auto-serialization disabled\n");
1402
1403 return 1;
1404 }
1405
1406 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1407
1408 /* Check of resource interference between native drivers and ACPI
1409 * OperationRegions (SystemIO and System Memory only).
1410 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1411 * in arbitrary AML code and can interfere with legacy drivers.
1412 * acpi_enforce_resources= can be set to:
1413 *
1414 * - strict (default) (2)
1415 * -> further driver trying to access the resources will not load
1416 * - lax (1)
1417 * -> further driver trying to access the resources will load, but you
1418 * get a system message that something might go wrong...
1419 *
1420 * - no (0)
1421 * -> ACPI Operation Region resources will not be registered
1422 *
1423 */
1424 #define ENFORCE_RESOURCES_STRICT 2
1425 #define ENFORCE_RESOURCES_LAX 1
1426 #define ENFORCE_RESOURCES_NO 0
1427
1428 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1429
1430 static int __init acpi_enforce_resources_setup(char *str)
1431 {
1432 if (str == NULL || *str == '\0')
1433 return 0;
1434
1435 if (!strcmp("strict", str))
1436 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1437 else if (!strcmp("lax", str))
1438 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1439 else if (!strcmp("no", str))
1440 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1441
1442 return 1;
1443 }
1444
1445 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1446
1447 /* Check for resource conflicts between ACPI OperationRegions and native
1448 * drivers */
1449 int acpi_check_resource_conflict(const struct resource *res)
1450 {
1451 acpi_adr_space_type space_id;
1452 acpi_size length;
1453 u8 warn = 0;
1454 int clash = 0;
1455
1456 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1457 return 0;
1458 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465
1466 length = resource_size(res);
1467 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1468 warn = 1;
1469 clash = acpi_check_address_range(space_id, res->start, length, warn);
1470
1471 if (clash) {
1472 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1474 printk(KERN_NOTICE "ACPI: This conflict may"
1475 " cause random problems and system"
1476 " instability\n");
1477 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1478 " for this device, you should use it instead of"
1479 " the native driver\n");
1480 }
1481 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1482 return -EBUSY;
1483 }
1484 return 0;
1485 }
1486 EXPORT_SYMBOL(acpi_check_resource_conflict);
1487
1488 int acpi_check_region(resource_size_t start, resource_size_t n,
1489 const char *name)
1490 {
1491 struct resource res = {
1492 .start = start,
1493 .end = start + n - 1,
1494 .name = name,
1495 .flags = IORESOURCE_IO,
1496 };
1497
1498 return acpi_check_resource_conflict(&res);
1499 }
1500 EXPORT_SYMBOL(acpi_check_region);
1501
1502 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1503 void *_res, void **return_value)
1504 {
1505 struct acpi_mem_space_context **mem_ctx;
1506 union acpi_operand_object *handler_obj;
1507 union acpi_operand_object *region_obj2;
1508 union acpi_operand_object *region_obj;
1509 struct resource *res = _res;
1510 acpi_status status;
1511
1512 region_obj = acpi_ns_get_attached_object(handle);
1513 if (!region_obj)
1514 return AE_OK;
1515
1516 handler_obj = region_obj->region.handler;
1517 if (!handler_obj)
1518 return AE_OK;
1519
1520 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1521 return AE_OK;
1522
1523 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1524 return AE_OK;
1525
1526 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1527 if (!region_obj2)
1528 return AE_OK;
1529
1530 mem_ctx = (void *)&region_obj2->extra.region_context;
1531
1532 if (!(mem_ctx[0]->address >= res->start &&
1533 mem_ctx[0]->address < res->end))
1534 return AE_OK;
1535
1536 status = handler_obj->address_space.setup(region_obj,
1537 ACPI_REGION_DEACTIVATE,
1538 NULL, (void **)mem_ctx);
1539 if (ACPI_SUCCESS(status))
1540 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1541
1542 return status;
1543 }
1544
1545 /**
1546 * acpi_release_memory - Release any mappings done to a memory region
1547 * @handle: Handle to namespace node
1548 * @res: Memory resource
1549 * @level: A level that terminates the search
1550 *
1551 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1552 * overlap with @res and that have already been activated (mapped).
1553 *
1554 * This is a helper that allows drivers to place special requirements on memory
1555 * region that may overlap with operation regions, primarily allowing them to
1556 * safely map the region as non-cached memory.
1557 *
1558 * The unmapped Operation Regions will be automatically remapped next time they
1559 * are called, so the drivers do not need to do anything else.
1560 */
1561 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1562 u32 level)
1563 {
1564 if (!(res->flags & IORESOURCE_MEM))
1565 return AE_TYPE;
1566
1567 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1568 acpi_deactivate_mem_region, NULL, res, NULL);
1569 }
1570 EXPORT_SYMBOL_GPL(acpi_release_memory);
1571
1572 /*
1573 * Let drivers know whether the resource checks are effective
1574 */
1575 int acpi_resources_are_enforced(void)
1576 {
1577 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1578 }
1579 EXPORT_SYMBOL(acpi_resources_are_enforced);
1580
1581 /*
1582 * Deallocate the memory for a spinlock.
1583 */
1584 void acpi_os_delete_lock(acpi_spinlock handle)
1585 {
1586 ACPI_FREE(handle);
1587 }
1588
1589 /*
1590 * Acquire a spinlock.
1591 *
1592 * handle is a pointer to the spinlock_t.
1593 */
1594
1595 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1596 {
1597 acpi_cpu_flags flags;
1598 spin_lock_irqsave(lockp, flags);
1599 return flags;
1600 }
1601
1602 /*
1603 * Release a spinlock. See above.
1604 */
1605
1606 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1607 {
1608 spin_unlock_irqrestore(lockp, flags);
1609 }
1610
1611 #ifndef ACPI_USE_LOCAL_CACHE
1612
1613 /*******************************************************************************
1614 *
1615 * FUNCTION: acpi_os_create_cache
1616 *
1617 * PARAMETERS: name - Ascii name for the cache
1618 * size - Size of each cached object
1619 * depth - Maximum depth of the cache (in objects) <ignored>
1620 * cache - Where the new cache object is returned
1621 *
1622 * RETURN: status
1623 *
1624 * DESCRIPTION: Create a cache object
1625 *
1626 ******************************************************************************/
1627
1628 acpi_status
1629 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1630 {
1631 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1632 if (*cache == NULL)
1633 return AE_ERROR;
1634 else
1635 return AE_OK;
1636 }
1637
1638 /*******************************************************************************
1639 *
1640 * FUNCTION: acpi_os_purge_cache
1641 *
1642 * PARAMETERS: Cache - Handle to cache object
1643 *
1644 * RETURN: Status
1645 *
1646 * DESCRIPTION: Free all objects within the requested cache.
1647 *
1648 ******************************************************************************/
1649
1650 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1651 {
1652 kmem_cache_shrink(cache);
1653 return (AE_OK);
1654 }
1655
1656 /*******************************************************************************
1657 *
1658 * FUNCTION: acpi_os_delete_cache
1659 *
1660 * PARAMETERS: Cache - Handle to cache object
1661 *
1662 * RETURN: Status
1663 *
1664 * DESCRIPTION: Free all objects within the requested cache and delete the
1665 * cache object.
1666 *
1667 ******************************************************************************/
1668
1669 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1670 {
1671 kmem_cache_destroy(cache);
1672 return (AE_OK);
1673 }
1674
1675 /*******************************************************************************
1676 *
1677 * FUNCTION: acpi_os_release_object
1678 *
1679 * PARAMETERS: Cache - Handle to cache object
1680 * Object - The object to be released
1681 *
1682 * RETURN: None
1683 *
1684 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1685 * the object is deleted.
1686 *
1687 ******************************************************************************/
1688
1689 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1690 {
1691 kmem_cache_free(cache, object);
1692 return (AE_OK);
1693 }
1694 #endif
1695
1696 static int __init acpi_no_static_ssdt_setup(char *s)
1697 {
1698 acpi_gbl_disable_ssdt_table_install = TRUE;
1699 pr_info("ACPI: static SSDT installation disabled\n");
1700
1701 return 0;
1702 }
1703
1704 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1705
1706 static int __init acpi_disable_return_repair(char *s)
1707 {
1708 printk(KERN_NOTICE PREFIX
1709 "ACPI: Predefined validation mechanism disabled\n");
1710 acpi_gbl_disable_auto_repair = TRUE;
1711
1712 return 1;
1713 }
1714
1715 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1716
1717 acpi_status __init acpi_os_initialize(void)
1718 {
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1722 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1723 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1724 /*
1725 * Use acpi_os_map_generic_address to pre-map the reset
1726 * register if it's in system memory.
1727 */
1728 int rv;
1729
1730 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1731 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1732 }
1733 acpi_os_initialized = true;
1734
1735 return AE_OK;
1736 }
1737
1738 acpi_status __init acpi_os_initialize1(void)
1739 {
1740 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1741 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1742 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1743 BUG_ON(!kacpid_wq);
1744 BUG_ON(!kacpi_notify_wq);
1745 BUG_ON(!kacpi_hotplug_wq);
1746 acpi_osi_init();
1747 return AE_OK;
1748 }
1749
1750 acpi_status acpi_os_terminate(void)
1751 {
1752 if (acpi_irq_handler) {
1753 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1754 acpi_irq_handler);
1755 }
1756
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1760 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1761 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1762 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1763
1764 destroy_workqueue(kacpid_wq);
1765 destroy_workqueue(kacpi_notify_wq);
1766 destroy_workqueue(kacpi_hotplug_wq);
1767
1768 return AE_OK;
1769 }
1770
1771 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1772 u32 pm1b_control)
1773 {
1774 int rc = 0;
1775 if (__acpi_os_prepare_sleep)
1776 rc = __acpi_os_prepare_sleep(sleep_state,
1777 pm1a_control, pm1b_control);
1778 if (rc < 0)
1779 return AE_ERROR;
1780 else if (rc > 0)
1781 return AE_CTRL_TERMINATE;
1782
1783 return AE_OK;
1784 }
1785
1786 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1787 u32 pm1a_ctrl, u32 pm1b_ctrl))
1788 {
1789 __acpi_os_prepare_sleep = func;
1790 }
1791
1792 #if (ACPI_REDUCED_HARDWARE)
1793 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1794 u32 val_b)
1795 {
1796 int rc = 0;
1797 if (__acpi_os_prepare_extended_sleep)
1798 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1799 val_a, val_b);
1800 if (rc < 0)
1801 return AE_ERROR;
1802 else if (rc > 0)
1803 return AE_CTRL_TERMINATE;
1804
1805 return AE_OK;
1806 }
1807 #else
1808 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1809 u32 val_b)
1810 {
1811 return AE_OK;
1812 }
1813 #endif
1814
1815 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1816 u32 val_a, u32 val_b))
1817 {
1818 __acpi_os_prepare_extended_sleep = func;
1819 }
1820
1821 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1822 u32 reg_a_value, u32 reg_b_value)
1823 {
1824 acpi_status status;
1825
1826 if (acpi_gbl_reduced_hardware)
1827 status = acpi_os_prepare_extended_sleep(sleep_state,
1828 reg_a_value,
1829 reg_b_value);
1830 else
1831 status = acpi_os_prepare_sleep(sleep_state,
1832 reg_a_value, reg_b_value);
1833 return status;
1834 }