]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/acpi/osl.c
iommu/amd: Reserve exclusion range in iova-domain
[mirror_ubuntu-bionic-kernel.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56 acpi_osd_exec_callback function;
57 void *context;
58 struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84 * This list of permanent mappings is for memory that may be accessed from
85 * interrupt context, where we can't do the ioremap().
86 */
87 struct acpi_ioremap {
88 struct list_head list;
89 void __iomem *virt;
90 acpi_physical_address phys;
91 acpi_size size;
92 unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 unsigned int length, char *desc)
100 {
101 u64 addr;
102
103 /* Handle possible alignment issues */
104 memcpy(&addr, &gas->address, sizeof(addr));
105 if (!addr || !length)
106 return;
107
108 /* Resources are never freed */
109 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 request_region(addr, length, desc);
111 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1a_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 "ACPI PM1b_EVT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1a_CNT_BLK");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 "ACPI PM1b_CNT_BLK");
128
129 if (acpi_gbl_FADT.pm_timer_length == 4)
130 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 "ACPI PM2_CNT_BLK");
134
135 /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145 return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151 va_list args;
152 va_start(args, fmt);
153 acpi_os_vprintf(fmt, args);
154 va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 static char buffer[512];
161
162 vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165 if (acpi_in_debugger) {
166 kdb_printf("%s", buffer);
167 } else {
168 if (printk_get_level(buffer))
169 printk("%s", buffer);
170 else
171 printk(KERN_CONT "%s", buffer);
172 }
173 #else
174 if (acpi_debugger_write_log(buffer) < 0) {
175 if (printk_get_level(buffer))
176 printk("%s", buffer);
177 else
178 printk(KERN_CONT "%s", buffer);
179 }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 acpi_physical_address pa = 0;
195
196 #ifdef CONFIG_KEXEC
197 if (acpi_rsdp && !kernel_is_locked_down("ACPI RSDP specification"))
198 return acpi_rsdp;
199 #endif
200
201 if (efi_enabled(EFI_CONFIG_TABLES)) {
202 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
203 return efi.acpi20;
204 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
205 return efi.acpi;
206 pr_err(PREFIX "System description tables not found\n");
207 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
208 acpi_find_root_pointer(&pa);
209 }
210
211 return pa;
212 }
213
214 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
215 static struct acpi_ioremap *
216 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
217 {
218 struct acpi_ioremap *map;
219
220 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
221 if (map->phys <= phys &&
222 phys + size <= map->phys + map->size)
223 return map;
224
225 return NULL;
226 }
227
228 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
229 static void __iomem *
230 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
231 {
232 struct acpi_ioremap *map;
233
234 map = acpi_map_lookup(phys, size);
235 if (map)
236 return map->virt + (phys - map->phys);
237
238 return NULL;
239 }
240
241 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
242 {
243 struct acpi_ioremap *map;
244 void __iomem *virt = NULL;
245
246 mutex_lock(&acpi_ioremap_lock);
247 map = acpi_map_lookup(phys, size);
248 if (map) {
249 virt = map->virt + (phys - map->phys);
250 map->refcount++;
251 }
252 mutex_unlock(&acpi_ioremap_lock);
253 return virt;
254 }
255 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
256
257 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
258 static struct acpi_ioremap *
259 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
260 {
261 struct acpi_ioremap *map;
262
263 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
264 if (map->virt <= virt &&
265 virt + size <= map->virt + map->size)
266 return map;
267
268 return NULL;
269 }
270
271 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
272 /* ioremap will take care of cache attributes */
273 #define should_use_kmap(pfn) 0
274 #else
275 #define should_use_kmap(pfn) page_is_ram(pfn)
276 #endif
277
278 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
279 {
280 unsigned long pfn;
281
282 pfn = pg_off >> PAGE_SHIFT;
283 if (should_use_kmap(pfn)) {
284 if (pg_sz > PAGE_SIZE)
285 return NULL;
286 return (void __iomem __force *)kmap(pfn_to_page(pfn));
287 } else
288 return acpi_os_ioremap(pg_off, pg_sz);
289 }
290
291 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
292 {
293 unsigned long pfn;
294
295 pfn = pg_off >> PAGE_SHIFT;
296 if (should_use_kmap(pfn))
297 kunmap(pfn_to_page(pfn));
298 else
299 iounmap(vaddr);
300 }
301
302 /**
303 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
304 * @phys: Start of the physical address range to map.
305 * @size: Size of the physical address range to map.
306 *
307 * Look up the given physical address range in the list of existing ACPI memory
308 * mappings. If found, get a reference to it and return a pointer to it (its
309 * virtual address). If not found, map it, add it to that list and return a
310 * pointer to it.
311 *
312 * During early init (when acpi_permanent_mmap has not been set yet) this
313 * routine simply calls __acpi_map_table() to get the job done.
314 */
315 void __iomem *__ref
316 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
317 {
318 struct acpi_ioremap *map;
319 void __iomem *virt;
320 acpi_physical_address pg_off;
321 acpi_size pg_sz;
322
323 if (phys > ULONG_MAX) {
324 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
325 return NULL;
326 }
327
328 if (!acpi_permanent_mmap)
329 return __acpi_map_table((unsigned long)phys, size);
330
331 mutex_lock(&acpi_ioremap_lock);
332 /* Check if there's a suitable mapping already. */
333 map = acpi_map_lookup(phys, size);
334 if (map) {
335 map->refcount++;
336 goto out;
337 }
338
339 map = kzalloc(sizeof(*map), GFP_KERNEL);
340 if (!map) {
341 mutex_unlock(&acpi_ioremap_lock);
342 return NULL;
343 }
344
345 pg_off = round_down(phys, PAGE_SIZE);
346 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
347 virt = acpi_map(pg_off, pg_sz);
348 if (!virt) {
349 mutex_unlock(&acpi_ioremap_lock);
350 kfree(map);
351 return NULL;
352 }
353
354 INIT_LIST_HEAD(&map->list);
355 map->virt = virt;
356 map->phys = pg_off;
357 map->size = pg_sz;
358 map->refcount = 1;
359
360 list_add_tail_rcu(&map->list, &acpi_ioremaps);
361
362 out:
363 mutex_unlock(&acpi_ioremap_lock);
364 return map->virt + (phys - map->phys);
365 }
366 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
367
368 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
369 {
370 return (void *)acpi_os_map_iomem(phys, size);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
373
374 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
375 {
376 if (!--map->refcount)
377 list_del_rcu(&map->list);
378 }
379
380 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
381 {
382 if (!map->refcount) {
383 synchronize_rcu_expedited();
384 acpi_unmap(map->phys, map->virt);
385 kfree(map);
386 }
387 }
388
389 /**
390 * acpi_os_unmap_iomem - Drop a memory mapping reference.
391 * @virt: Start of the address range to drop a reference to.
392 * @size: Size of the address range to drop a reference to.
393 *
394 * Look up the given virtual address range in the list of existing ACPI memory
395 * mappings, drop a reference to it and unmap it if there are no more active
396 * references to it.
397 *
398 * During early init (when acpi_permanent_mmap has not been set yet) this
399 * routine simply calls __acpi_unmap_table() to get the job done. Since
400 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
401 * here.
402 */
403 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
404 {
405 struct acpi_ioremap *map;
406
407 if (!acpi_permanent_mmap) {
408 __acpi_unmap_table(virt, size);
409 return;
410 }
411
412 mutex_lock(&acpi_ioremap_lock);
413 map = acpi_map_lookup_virt(virt, size);
414 if (!map) {
415 mutex_unlock(&acpi_ioremap_lock);
416 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
417 return;
418 }
419 acpi_os_drop_map_ref(map);
420 mutex_unlock(&acpi_ioremap_lock);
421
422 acpi_os_map_cleanup(map);
423 }
424 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
425
426 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
427 {
428 return acpi_os_unmap_iomem((void __iomem *)virt, size);
429 }
430 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
431
432 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
433 {
434 u64 addr;
435 void __iomem *virt;
436
437 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
438 return 0;
439
440 /* Handle possible alignment issues */
441 memcpy(&addr, &gas->address, sizeof(addr));
442 if (!addr || !gas->bit_width)
443 return -EINVAL;
444
445 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
446 if (!virt)
447 return -EIO;
448
449 return 0;
450 }
451 EXPORT_SYMBOL(acpi_os_map_generic_address);
452
453 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
454 {
455 u64 addr;
456 struct acpi_ioremap *map;
457
458 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
459 return;
460
461 /* Handle possible alignment issues */
462 memcpy(&addr, &gas->address, sizeof(addr));
463 if (!addr || !gas->bit_width)
464 return;
465
466 mutex_lock(&acpi_ioremap_lock);
467 map = acpi_map_lookup(addr, gas->bit_width / 8);
468 if (!map) {
469 mutex_unlock(&acpi_ioremap_lock);
470 return;
471 }
472 acpi_os_drop_map_ref(map);
473 mutex_unlock(&acpi_ioremap_lock);
474
475 acpi_os_map_cleanup(map);
476 }
477 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
478
479 #ifdef ACPI_FUTURE_USAGE
480 acpi_status
481 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
482 {
483 if (!phys || !virt)
484 return AE_BAD_PARAMETER;
485
486 *phys = virt_to_phys(virt);
487
488 return AE_OK;
489 }
490 #endif
491
492 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
493 static bool acpi_rev_override;
494
495 int __init acpi_rev_override_setup(char *str)
496 {
497 acpi_rev_override = true;
498 return 1;
499 }
500 __setup("acpi_rev_override", acpi_rev_override_setup);
501 #else
502 #define acpi_rev_override false
503 #endif
504
505 #define ACPI_MAX_OVERRIDE_LEN 100
506
507 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
508
509 acpi_status
510 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
511 acpi_string *new_val)
512 {
513 if (!init_val || !new_val)
514 return AE_BAD_PARAMETER;
515
516 *new_val = NULL;
517 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
518 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
519 acpi_os_name);
520 *new_val = acpi_os_name;
521 }
522
523 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
524 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
525 *new_val = (char *)5;
526 }
527
528 return AE_OK;
529 }
530
531 static irqreturn_t acpi_irq(int irq, void *dev_id)
532 {
533 u32 handled;
534
535 handled = (*acpi_irq_handler) (acpi_irq_context);
536
537 if (handled) {
538 acpi_irq_handled++;
539 return IRQ_HANDLED;
540 } else {
541 acpi_irq_not_handled++;
542 return IRQ_NONE;
543 }
544 }
545
546 acpi_status
547 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
548 void *context)
549 {
550 unsigned int irq;
551
552 acpi_irq_stats_init();
553
554 /*
555 * ACPI interrupts different from the SCI in our copy of the FADT are
556 * not supported.
557 */
558 if (gsi != acpi_gbl_FADT.sci_interrupt)
559 return AE_BAD_PARAMETER;
560
561 if (acpi_irq_handler)
562 return AE_ALREADY_ACQUIRED;
563
564 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
565 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
566 gsi);
567 return AE_OK;
568 }
569
570 acpi_irq_handler = handler;
571 acpi_irq_context = context;
572 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
573 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
574 acpi_irq_handler = NULL;
575 return AE_NOT_ACQUIRED;
576 }
577 acpi_sci_irq = irq;
578
579 return AE_OK;
580 }
581
582 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
583 {
584 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
585 return AE_BAD_PARAMETER;
586
587 free_irq(acpi_sci_irq, acpi_irq);
588 acpi_irq_handler = NULL;
589 acpi_sci_irq = INVALID_ACPI_IRQ;
590
591 return AE_OK;
592 }
593
594 /*
595 * Running in interpreter thread context, safe to sleep
596 */
597
598 void acpi_os_sleep(u64 ms)
599 {
600 msleep(ms);
601 }
602
603 void acpi_os_stall(u32 us)
604 {
605 while (us) {
606 u32 delay = 1000;
607
608 if (delay > us)
609 delay = us;
610 udelay(delay);
611 touch_nmi_watchdog();
612 us -= delay;
613 }
614 }
615
616 /*
617 * Support ACPI 3.0 AML Timer operand
618 * Returns 64-bit free-running, monotonically increasing timer
619 * with 100ns granularity
620 */
621 u64 acpi_os_get_timer(void)
622 {
623 u64 time_ns = ktime_to_ns(ktime_get());
624 do_div(time_ns, 100);
625 return time_ns;
626 }
627
628 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
629 {
630 u32 dummy;
631
632 if (!value)
633 value = &dummy;
634
635 *value = 0;
636 if (width <= 8) {
637 *(u8 *) value = inb(port);
638 } else if (width <= 16) {
639 *(u16 *) value = inw(port);
640 } else if (width <= 32) {
641 *(u32 *) value = inl(port);
642 } else {
643 BUG();
644 }
645
646 return AE_OK;
647 }
648
649 EXPORT_SYMBOL(acpi_os_read_port);
650
651 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
652 {
653 if (width <= 8) {
654 outb(value, port);
655 } else if (width <= 16) {
656 outw(value, port);
657 } else if (width <= 32) {
658 outl(value, port);
659 } else {
660 BUG();
661 }
662
663 return AE_OK;
664 }
665
666 EXPORT_SYMBOL(acpi_os_write_port);
667
668 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
669 {
670
671 switch (width) {
672 case 8:
673 *(u8 *) value = readb(virt_addr);
674 break;
675 case 16:
676 *(u16 *) value = readw(virt_addr);
677 break;
678 case 32:
679 *(u32 *) value = readl(virt_addr);
680 break;
681 case 64:
682 *(u64 *) value = readq(virt_addr);
683 break;
684 default:
685 return -EINVAL;
686 }
687
688 return 0;
689 }
690
691 acpi_status
692 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
693 {
694 void __iomem *virt_addr;
695 unsigned int size = width / 8;
696 bool unmap = false;
697 u64 dummy;
698 int error;
699
700 rcu_read_lock();
701 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
702 if (!virt_addr) {
703 rcu_read_unlock();
704 virt_addr = acpi_os_ioremap(phys_addr, size);
705 if (!virt_addr)
706 return AE_BAD_ADDRESS;
707 unmap = true;
708 }
709
710 if (!value)
711 value = &dummy;
712
713 error = acpi_os_read_iomem(virt_addr, value, width);
714 BUG_ON(error);
715
716 if (unmap)
717 iounmap(virt_addr);
718 else
719 rcu_read_unlock();
720
721 return AE_OK;
722 }
723
724 acpi_status
725 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
726 {
727 void __iomem *virt_addr;
728 unsigned int size = width / 8;
729 bool unmap = false;
730
731 rcu_read_lock();
732 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
733 if (!virt_addr) {
734 rcu_read_unlock();
735 virt_addr = acpi_os_ioremap(phys_addr, size);
736 if (!virt_addr)
737 return AE_BAD_ADDRESS;
738 unmap = true;
739 }
740
741 switch (width) {
742 case 8:
743 writeb(value, virt_addr);
744 break;
745 case 16:
746 writew(value, virt_addr);
747 break;
748 case 32:
749 writel(value, virt_addr);
750 break;
751 case 64:
752 writeq(value, virt_addr);
753 break;
754 default:
755 BUG();
756 }
757
758 if (unmap)
759 iounmap(virt_addr);
760 else
761 rcu_read_unlock();
762
763 return AE_OK;
764 }
765
766 acpi_status
767 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
768 u64 *value, u32 width)
769 {
770 int result, size;
771 u32 value32;
772
773 if (!value)
774 return AE_BAD_PARAMETER;
775
776 switch (width) {
777 case 8:
778 size = 1;
779 break;
780 case 16:
781 size = 2;
782 break;
783 case 32:
784 size = 4;
785 break;
786 default:
787 return AE_ERROR;
788 }
789
790 result = raw_pci_read(pci_id->segment, pci_id->bus,
791 PCI_DEVFN(pci_id->device, pci_id->function),
792 reg, size, &value32);
793 *value = value32;
794
795 return (result ? AE_ERROR : AE_OK);
796 }
797
798 acpi_status
799 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
800 u64 value, u32 width)
801 {
802 int result, size;
803
804 switch (width) {
805 case 8:
806 size = 1;
807 break;
808 case 16:
809 size = 2;
810 break;
811 case 32:
812 size = 4;
813 break;
814 default:
815 return AE_ERROR;
816 }
817
818 result = raw_pci_write(pci_id->segment, pci_id->bus,
819 PCI_DEVFN(pci_id->device, pci_id->function),
820 reg, size, value);
821
822 return (result ? AE_ERROR : AE_OK);
823 }
824
825 static void acpi_os_execute_deferred(struct work_struct *work)
826 {
827 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
828
829 dpc->function(dpc->context);
830 kfree(dpc);
831 }
832
833 #ifdef CONFIG_ACPI_DEBUGGER
834 static struct acpi_debugger acpi_debugger;
835 static bool acpi_debugger_initialized;
836
837 int acpi_register_debugger(struct module *owner,
838 const struct acpi_debugger_ops *ops)
839 {
840 int ret = 0;
841
842 mutex_lock(&acpi_debugger.lock);
843 if (acpi_debugger.ops) {
844 ret = -EBUSY;
845 goto err_lock;
846 }
847
848 acpi_debugger.owner = owner;
849 acpi_debugger.ops = ops;
850
851 err_lock:
852 mutex_unlock(&acpi_debugger.lock);
853 return ret;
854 }
855 EXPORT_SYMBOL(acpi_register_debugger);
856
857 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
858 {
859 mutex_lock(&acpi_debugger.lock);
860 if (ops == acpi_debugger.ops) {
861 acpi_debugger.ops = NULL;
862 acpi_debugger.owner = NULL;
863 }
864 mutex_unlock(&acpi_debugger.lock);
865 }
866 EXPORT_SYMBOL(acpi_unregister_debugger);
867
868 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
869 {
870 int ret;
871 int (*func)(acpi_osd_exec_callback, void *);
872 struct module *owner;
873
874 if (!acpi_debugger_initialized)
875 return -ENODEV;
876 mutex_lock(&acpi_debugger.lock);
877 if (!acpi_debugger.ops) {
878 ret = -ENODEV;
879 goto err_lock;
880 }
881 if (!try_module_get(acpi_debugger.owner)) {
882 ret = -ENODEV;
883 goto err_lock;
884 }
885 func = acpi_debugger.ops->create_thread;
886 owner = acpi_debugger.owner;
887 mutex_unlock(&acpi_debugger.lock);
888
889 ret = func(function, context);
890
891 mutex_lock(&acpi_debugger.lock);
892 module_put(owner);
893 err_lock:
894 mutex_unlock(&acpi_debugger.lock);
895 return ret;
896 }
897
898 ssize_t acpi_debugger_write_log(const char *msg)
899 {
900 ssize_t ret;
901 ssize_t (*func)(const char *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->write_log;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(msg);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923 err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926 }
927
928 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
929 {
930 ssize_t ret;
931 ssize_t (*func)(char *, size_t);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->read_cmd;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(buffer, buffer_length);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953 err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956 }
957
958 int acpi_debugger_wait_command_ready(void)
959 {
960 int ret;
961 int (*func)(bool, char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->wait_command_ready;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(acpi_gbl_method_executing,
980 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
981
982 mutex_lock(&acpi_debugger.lock);
983 module_put(owner);
984 err_lock:
985 mutex_unlock(&acpi_debugger.lock);
986 return ret;
987 }
988
989 int acpi_debugger_notify_command_complete(void)
990 {
991 int ret;
992 int (*func)(void);
993 struct module *owner;
994
995 if (!acpi_debugger_initialized)
996 return -ENODEV;
997 mutex_lock(&acpi_debugger.lock);
998 if (!acpi_debugger.ops) {
999 ret = -ENODEV;
1000 goto err_lock;
1001 }
1002 if (!try_module_get(acpi_debugger.owner)) {
1003 ret = -ENODEV;
1004 goto err_lock;
1005 }
1006 func = acpi_debugger.ops->notify_command_complete;
1007 owner = acpi_debugger.owner;
1008 mutex_unlock(&acpi_debugger.lock);
1009
1010 ret = func();
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014 err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017 }
1018
1019 int __init acpi_debugger_init(void)
1020 {
1021 mutex_init(&acpi_debugger.lock);
1022 acpi_debugger_initialized = true;
1023 return 0;
1024 }
1025 #endif
1026
1027 /*******************************************************************************
1028 *
1029 * FUNCTION: acpi_os_execute
1030 *
1031 * PARAMETERS: Type - Type of the callback
1032 * Function - Function to be executed
1033 * Context - Function parameters
1034 *
1035 * RETURN: Status
1036 *
1037 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1038 * immediately executes function on a separate thread.
1039 *
1040 ******************************************************************************/
1041
1042 acpi_status acpi_os_execute(acpi_execute_type type,
1043 acpi_osd_exec_callback function, void *context)
1044 {
1045 acpi_status status = AE_OK;
1046 struct acpi_os_dpc *dpc;
1047 struct workqueue_struct *queue;
1048 int ret;
1049 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1050 "Scheduling function [%p(%p)] for deferred execution.\n",
1051 function, context));
1052
1053 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1054 ret = acpi_debugger_create_thread(function, context);
1055 if (ret) {
1056 pr_err("Call to kthread_create() failed.\n");
1057 status = AE_ERROR;
1058 }
1059 goto out_thread;
1060 }
1061
1062 /*
1063 * Allocate/initialize DPC structure. Note that this memory will be
1064 * freed by the callee. The kernel handles the work_struct list in a
1065 * way that allows us to also free its memory inside the callee.
1066 * Because we may want to schedule several tasks with different
1067 * parameters we can't use the approach some kernel code uses of
1068 * having a static work_struct.
1069 */
1070
1071 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1072 if (!dpc)
1073 return AE_NO_MEMORY;
1074
1075 dpc->function = function;
1076 dpc->context = context;
1077
1078 /*
1079 * To prevent lockdep from complaining unnecessarily, make sure that
1080 * there is a different static lockdep key for each workqueue by using
1081 * INIT_WORK() for each of them separately.
1082 */
1083 if (type == OSL_NOTIFY_HANDLER) {
1084 queue = kacpi_notify_wq;
1085 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1086 } else if (type == OSL_GPE_HANDLER) {
1087 queue = kacpid_wq;
1088 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089 } else {
1090 pr_err("Unsupported os_execute type %d.\n", type);
1091 status = AE_ERROR;
1092 }
1093
1094 if (ACPI_FAILURE(status))
1095 goto err_workqueue;
1096
1097 /*
1098 * On some machines, a software-initiated SMI causes corruption unless
1099 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1100 * typically it's done in GPE-related methods that are run via
1101 * workqueues, so we can avoid the known corruption cases by always
1102 * queueing on CPU 0.
1103 */
1104 ret = queue_work_on(0, queue, &dpc->work);
1105 if (!ret) {
1106 printk(KERN_ERR PREFIX
1107 "Call to queue_work() failed.\n");
1108 status = AE_ERROR;
1109 }
1110 err_workqueue:
1111 if (ACPI_FAILURE(status))
1112 kfree(dpc);
1113 out_thread:
1114 return status;
1115 }
1116 EXPORT_SYMBOL(acpi_os_execute);
1117
1118 void acpi_os_wait_events_complete(void)
1119 {
1120 /*
1121 * Make sure the GPE handler or the fixed event handler is not used
1122 * on another CPU after removal.
1123 */
1124 if (acpi_sci_irq_valid())
1125 synchronize_hardirq(acpi_sci_irq);
1126 flush_workqueue(kacpid_wq);
1127 flush_workqueue(kacpi_notify_wq);
1128 }
1129
1130 struct acpi_hp_work {
1131 struct work_struct work;
1132 struct acpi_device *adev;
1133 u32 src;
1134 };
1135
1136 static void acpi_hotplug_work_fn(struct work_struct *work)
1137 {
1138 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1139
1140 acpi_os_wait_events_complete();
1141 acpi_device_hotplug(hpw->adev, hpw->src);
1142 kfree(hpw);
1143 }
1144
1145 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1146 {
1147 struct acpi_hp_work *hpw;
1148
1149 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1150 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1151 adev, src));
1152
1153 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1154 if (!hpw)
1155 return AE_NO_MEMORY;
1156
1157 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1158 hpw->adev = adev;
1159 hpw->src = src;
1160 /*
1161 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1162 * the hotplug code may call driver .remove() functions, which may
1163 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1164 * these workqueues.
1165 */
1166 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1167 kfree(hpw);
1168 return AE_ERROR;
1169 }
1170 return AE_OK;
1171 }
1172
1173 bool acpi_queue_hotplug_work(struct work_struct *work)
1174 {
1175 return queue_work(kacpi_hotplug_wq, work);
1176 }
1177
1178 acpi_status
1179 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1180 {
1181 struct semaphore *sem = NULL;
1182
1183 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1184 if (!sem)
1185 return AE_NO_MEMORY;
1186
1187 sema_init(sem, initial_units);
1188
1189 *handle = (acpi_handle *) sem;
1190
1191 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1192 *handle, initial_units));
1193
1194 return AE_OK;
1195 }
1196
1197 /*
1198 * TODO: A better way to delete semaphores? Linux doesn't have a
1199 * 'delete_semaphore()' function -- may result in an invalid
1200 * pointer dereference for non-synchronized consumers. Should
1201 * we at least check for blocked threads and signal/cancel them?
1202 */
1203
1204 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1205 {
1206 struct semaphore *sem = (struct semaphore *)handle;
1207
1208 if (!sem)
1209 return AE_BAD_PARAMETER;
1210
1211 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1212
1213 BUG_ON(!list_empty(&sem->wait_list));
1214 kfree(sem);
1215 sem = NULL;
1216
1217 return AE_OK;
1218 }
1219
1220 /*
1221 * TODO: Support for units > 1?
1222 */
1223 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1224 {
1225 acpi_status status = AE_OK;
1226 struct semaphore *sem = (struct semaphore *)handle;
1227 long jiffies;
1228 int ret = 0;
1229
1230 if (!acpi_os_initialized)
1231 return AE_OK;
1232
1233 if (!sem || (units < 1))
1234 return AE_BAD_PARAMETER;
1235
1236 if (units > 1)
1237 return AE_SUPPORT;
1238
1239 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1240 handle, units, timeout));
1241
1242 if (timeout == ACPI_WAIT_FOREVER)
1243 jiffies = MAX_SCHEDULE_TIMEOUT;
1244 else
1245 jiffies = msecs_to_jiffies(timeout);
1246
1247 ret = down_timeout(sem, jiffies);
1248 if (ret)
1249 status = AE_TIME;
1250
1251 if (ACPI_FAILURE(status)) {
1252 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253 "Failed to acquire semaphore[%p|%d|%d], %s",
1254 handle, units, timeout,
1255 acpi_format_exception(status)));
1256 } else {
1257 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1258 "Acquired semaphore[%p|%d|%d]", handle,
1259 units, timeout));
1260 }
1261
1262 return status;
1263 }
1264
1265 /*
1266 * TODO: Support for units > 1?
1267 */
1268 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1269 {
1270 struct semaphore *sem = (struct semaphore *)handle;
1271
1272 if (!acpi_os_initialized)
1273 return AE_OK;
1274
1275 if (!sem || (units < 1))
1276 return AE_BAD_PARAMETER;
1277
1278 if (units > 1)
1279 return AE_SUPPORT;
1280
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1282 units));
1283
1284 up(sem);
1285
1286 return AE_OK;
1287 }
1288
1289 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1290 {
1291 #ifdef ENABLE_DEBUGGER
1292 if (acpi_in_debugger) {
1293 u32 chars;
1294
1295 kdb_read(buffer, buffer_length);
1296
1297 /* remove the CR kdb includes */
1298 chars = strlen(buffer) - 1;
1299 buffer[chars] = '\0';
1300 }
1301 #else
1302 int ret;
1303
1304 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1305 if (ret < 0)
1306 return AE_ERROR;
1307 if (bytes_read)
1308 *bytes_read = ret;
1309 #endif
1310
1311 return AE_OK;
1312 }
1313 EXPORT_SYMBOL(acpi_os_get_line);
1314
1315 acpi_status acpi_os_wait_command_ready(void)
1316 {
1317 int ret;
1318
1319 ret = acpi_debugger_wait_command_ready();
1320 if (ret < 0)
1321 return AE_ERROR;
1322 return AE_OK;
1323 }
1324
1325 acpi_status acpi_os_notify_command_complete(void)
1326 {
1327 int ret;
1328
1329 ret = acpi_debugger_notify_command_complete();
1330 if (ret < 0)
1331 return AE_ERROR;
1332 return AE_OK;
1333 }
1334
1335 acpi_status acpi_os_signal(u32 function, void *info)
1336 {
1337 switch (function) {
1338 case ACPI_SIGNAL_FATAL:
1339 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1340 break;
1341 case ACPI_SIGNAL_BREAKPOINT:
1342 /*
1343 * AML Breakpoint
1344 * ACPI spec. says to treat it as a NOP unless
1345 * you are debugging. So if/when we integrate
1346 * AML debugger into the kernel debugger its
1347 * hook will go here. But until then it is
1348 * not useful to print anything on breakpoints.
1349 */
1350 break;
1351 default:
1352 break;
1353 }
1354
1355 return AE_OK;
1356 }
1357
1358 static int __init acpi_os_name_setup(char *str)
1359 {
1360 char *p = acpi_os_name;
1361 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1362
1363 if (!str || !*str)
1364 return 0;
1365
1366 for (; count-- && *str; str++) {
1367 if (isalnum(*str) || *str == ' ' || *str == ':')
1368 *p++ = *str;
1369 else if (*str == '\'' || *str == '"')
1370 continue;
1371 else
1372 break;
1373 }
1374 *p = 0;
1375
1376 return 1;
1377
1378 }
1379
1380 __setup("acpi_os_name=", acpi_os_name_setup);
1381
1382 /*
1383 * Disable the auto-serialization of named objects creation methods.
1384 *
1385 * This feature is enabled by default. It marks the AML control methods
1386 * that contain the opcodes to create named objects as "Serialized".
1387 */
1388 static int __init acpi_no_auto_serialize_setup(char *str)
1389 {
1390 acpi_gbl_auto_serialize_methods = FALSE;
1391 pr_info("ACPI: auto-serialization disabled\n");
1392
1393 return 1;
1394 }
1395
1396 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1397
1398 /* Check of resource interference between native drivers and ACPI
1399 * OperationRegions (SystemIO and System Memory only).
1400 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1401 * in arbitrary AML code and can interfere with legacy drivers.
1402 * acpi_enforce_resources= can be set to:
1403 *
1404 * - strict (default) (2)
1405 * -> further driver trying to access the resources will not load
1406 * - lax (1)
1407 * -> further driver trying to access the resources will load, but you
1408 * get a system message that something might go wrong...
1409 *
1410 * - no (0)
1411 * -> ACPI Operation Region resources will not be registered
1412 *
1413 */
1414 #define ENFORCE_RESOURCES_STRICT 2
1415 #define ENFORCE_RESOURCES_LAX 1
1416 #define ENFORCE_RESOURCES_NO 0
1417
1418 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1419
1420 static int __init acpi_enforce_resources_setup(char *str)
1421 {
1422 if (str == NULL || *str == '\0')
1423 return 0;
1424
1425 if (!strcmp("strict", str))
1426 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1427 else if (!strcmp("lax", str))
1428 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1429 else if (!strcmp("no", str))
1430 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1431
1432 return 1;
1433 }
1434
1435 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1436
1437 /* Check for resource conflicts between ACPI OperationRegions and native
1438 * drivers */
1439 int acpi_check_resource_conflict(const struct resource *res)
1440 {
1441 acpi_adr_space_type space_id;
1442 acpi_size length;
1443 u8 warn = 0;
1444 int clash = 0;
1445
1446 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1447 return 0;
1448 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1449 return 0;
1450
1451 if (res->flags & IORESOURCE_IO)
1452 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1453 else
1454 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1455
1456 length = resource_size(res);
1457 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1458 warn = 1;
1459 clash = acpi_check_address_range(space_id, res->start, length, warn);
1460
1461 if (clash) {
1462 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1463 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1464 printk(KERN_NOTICE "ACPI: This conflict may"
1465 " cause random problems and system"
1466 " instability\n");
1467 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1468 " for this device, you should use it instead of"
1469 " the native driver\n");
1470 }
1471 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1472 return -EBUSY;
1473 }
1474 return 0;
1475 }
1476 EXPORT_SYMBOL(acpi_check_resource_conflict);
1477
1478 int acpi_check_region(resource_size_t start, resource_size_t n,
1479 const char *name)
1480 {
1481 struct resource res = {
1482 .start = start,
1483 .end = start + n - 1,
1484 .name = name,
1485 .flags = IORESOURCE_IO,
1486 };
1487
1488 return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491
1492 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1493 void *_res, void **return_value)
1494 {
1495 struct acpi_mem_space_context **mem_ctx;
1496 union acpi_operand_object *handler_obj;
1497 union acpi_operand_object *region_obj2;
1498 union acpi_operand_object *region_obj;
1499 struct resource *res = _res;
1500 acpi_status status;
1501
1502 region_obj = acpi_ns_get_attached_object(handle);
1503 if (!region_obj)
1504 return AE_OK;
1505
1506 handler_obj = region_obj->region.handler;
1507 if (!handler_obj)
1508 return AE_OK;
1509
1510 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1511 return AE_OK;
1512
1513 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1514 return AE_OK;
1515
1516 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1517 if (!region_obj2)
1518 return AE_OK;
1519
1520 mem_ctx = (void *)&region_obj2->extra.region_context;
1521
1522 if (!(mem_ctx[0]->address >= res->start &&
1523 mem_ctx[0]->address < res->end))
1524 return AE_OK;
1525
1526 status = handler_obj->address_space.setup(region_obj,
1527 ACPI_REGION_DEACTIVATE,
1528 NULL, (void **)mem_ctx);
1529 if (ACPI_SUCCESS(status))
1530 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1531
1532 return status;
1533 }
1534
1535 /**
1536 * acpi_release_memory - Release any mappings done to a memory region
1537 * @handle: Handle to namespace node
1538 * @res: Memory resource
1539 * @level: A level that terminates the search
1540 *
1541 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1542 * overlap with @res and that have already been activated (mapped).
1543 *
1544 * This is a helper that allows drivers to place special requirements on memory
1545 * region that may overlap with operation regions, primarily allowing them to
1546 * safely map the region as non-cached memory.
1547 *
1548 * The unmapped Operation Regions will be automatically remapped next time they
1549 * are called, so the drivers do not need to do anything else.
1550 */
1551 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1552 u32 level)
1553 {
1554 if (!(res->flags & IORESOURCE_MEM))
1555 return AE_TYPE;
1556
1557 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1558 acpi_deactivate_mem_region, NULL, res, NULL);
1559 }
1560 EXPORT_SYMBOL_GPL(acpi_release_memory);
1561
1562 /*
1563 * Let drivers know whether the resource checks are effective
1564 */
1565 int acpi_resources_are_enforced(void)
1566 {
1567 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1568 }
1569 EXPORT_SYMBOL(acpi_resources_are_enforced);
1570
1571 /*
1572 * Deallocate the memory for a spinlock.
1573 */
1574 void acpi_os_delete_lock(acpi_spinlock handle)
1575 {
1576 ACPI_FREE(handle);
1577 }
1578
1579 /*
1580 * Acquire a spinlock.
1581 *
1582 * handle is a pointer to the spinlock_t.
1583 */
1584
1585 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1586 {
1587 acpi_cpu_flags flags;
1588 spin_lock_irqsave(lockp, flags);
1589 return flags;
1590 }
1591
1592 /*
1593 * Release a spinlock. See above.
1594 */
1595
1596 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1597 {
1598 spin_unlock_irqrestore(lockp, flags);
1599 }
1600
1601 #ifndef ACPI_USE_LOCAL_CACHE
1602
1603 /*******************************************************************************
1604 *
1605 * FUNCTION: acpi_os_create_cache
1606 *
1607 * PARAMETERS: name - Ascii name for the cache
1608 * size - Size of each cached object
1609 * depth - Maximum depth of the cache (in objects) <ignored>
1610 * cache - Where the new cache object is returned
1611 *
1612 * RETURN: status
1613 *
1614 * DESCRIPTION: Create a cache object
1615 *
1616 ******************************************************************************/
1617
1618 acpi_status
1619 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1620 {
1621 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1622 if (*cache == NULL)
1623 return AE_ERROR;
1624 else
1625 return AE_OK;
1626 }
1627
1628 /*******************************************************************************
1629 *
1630 * FUNCTION: acpi_os_purge_cache
1631 *
1632 * PARAMETERS: Cache - Handle to cache object
1633 *
1634 * RETURN: Status
1635 *
1636 * DESCRIPTION: Free all objects within the requested cache.
1637 *
1638 ******************************************************************************/
1639
1640 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1641 {
1642 kmem_cache_shrink(cache);
1643 return (AE_OK);
1644 }
1645
1646 /*******************************************************************************
1647 *
1648 * FUNCTION: acpi_os_delete_cache
1649 *
1650 * PARAMETERS: Cache - Handle to cache object
1651 *
1652 * RETURN: Status
1653 *
1654 * DESCRIPTION: Free all objects within the requested cache and delete the
1655 * cache object.
1656 *
1657 ******************************************************************************/
1658
1659 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1660 {
1661 kmem_cache_destroy(cache);
1662 return (AE_OK);
1663 }
1664
1665 /*******************************************************************************
1666 *
1667 * FUNCTION: acpi_os_release_object
1668 *
1669 * PARAMETERS: Cache - Handle to cache object
1670 * Object - The object to be released
1671 *
1672 * RETURN: None
1673 *
1674 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1675 * the object is deleted.
1676 *
1677 ******************************************************************************/
1678
1679 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1680 {
1681 kmem_cache_free(cache, object);
1682 return (AE_OK);
1683 }
1684 #endif
1685
1686 static int __init acpi_no_static_ssdt_setup(char *s)
1687 {
1688 acpi_gbl_disable_ssdt_table_install = TRUE;
1689 pr_info("ACPI: static SSDT installation disabled\n");
1690
1691 return 0;
1692 }
1693
1694 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1695
1696 static int __init acpi_disable_return_repair(char *s)
1697 {
1698 printk(KERN_NOTICE PREFIX
1699 "ACPI: Predefined validation mechanism disabled\n");
1700 acpi_gbl_disable_auto_repair = TRUE;
1701
1702 return 1;
1703 }
1704
1705 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1706
1707 acpi_status __init acpi_os_initialize(void)
1708 {
1709 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1710 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1711 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1712 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1713 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1714 /*
1715 * Use acpi_os_map_generic_address to pre-map the reset
1716 * register if it's in system memory.
1717 */
1718 int rv;
1719
1720 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1721 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1722 }
1723 acpi_os_initialized = true;
1724
1725 return AE_OK;
1726 }
1727
1728 acpi_status __init acpi_os_initialize1(void)
1729 {
1730 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1731 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1732 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1733 BUG_ON(!kacpid_wq);
1734 BUG_ON(!kacpi_notify_wq);
1735 BUG_ON(!kacpi_hotplug_wq);
1736 acpi_osi_init();
1737 return AE_OK;
1738 }
1739
1740 acpi_status acpi_os_terminate(void)
1741 {
1742 if (acpi_irq_handler) {
1743 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1744 acpi_irq_handler);
1745 }
1746
1747 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1748 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1749 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1750 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1752 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1753
1754 destroy_workqueue(kacpid_wq);
1755 destroy_workqueue(kacpi_notify_wq);
1756 destroy_workqueue(kacpi_hotplug_wq);
1757
1758 return AE_OK;
1759 }
1760
1761 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1762 u32 pm1b_control)
1763 {
1764 int rc = 0;
1765 if (__acpi_os_prepare_sleep)
1766 rc = __acpi_os_prepare_sleep(sleep_state,
1767 pm1a_control, pm1b_control);
1768 if (rc < 0)
1769 return AE_ERROR;
1770 else if (rc > 0)
1771 return AE_CTRL_TERMINATE;
1772
1773 return AE_OK;
1774 }
1775
1776 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1777 u32 pm1a_ctrl, u32 pm1b_ctrl))
1778 {
1779 __acpi_os_prepare_sleep = func;
1780 }
1781
1782 #if (ACPI_REDUCED_HARDWARE)
1783 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1784 u32 val_b)
1785 {
1786 int rc = 0;
1787 if (__acpi_os_prepare_extended_sleep)
1788 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1789 val_a, val_b);
1790 if (rc < 0)
1791 return AE_ERROR;
1792 else if (rc > 0)
1793 return AE_CTRL_TERMINATE;
1794
1795 return AE_OK;
1796 }
1797 #else
1798 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1799 u32 val_b)
1800 {
1801 return AE_OK;
1802 }
1803 #endif
1804
1805 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1806 u32 val_a, u32 val_b))
1807 {
1808 __acpi_os_prepare_extended_sleep = func;
1809 }
1810
1811 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1812 u32 reg_a_value, u32 reg_b_value)
1813 {
1814 acpi_status status;
1815
1816 if (acpi_gbl_reduced_hardware)
1817 status = acpi_os_prepare_extended_sleep(sleep_state,
1818 reg_a_value,
1819 reg_b_value);
1820 else
1821 status = acpi_os_prepare_sleep(sleep_state,
1822 reg_a_value, reg_b_value);
1823 return status;
1824 }