]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/osl.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80
81 /*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85 struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91 };
92
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98 {
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111 }
112
113 static int __init acpi_reserve_resources(void)
114 {
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146
147 void acpi_os_printf(const char *fmt, ...)
148 {
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162 #ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171 #else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178 #endif
179 }
180
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185 return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192 acpi_physical_address pa = 0;
193
194 #ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197 #endif
198
199 if (efi_enabled(EFI_CONFIG_TABLES)) {
200 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
201 return efi.acpi20;
202 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
203 return efi.acpi;
204 pr_err(PREFIX "System description tables not found\n");
205 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
206 acpi_find_root_pointer(&pa);
207 }
208
209 return pa;
210 }
211
212 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
213 static struct acpi_ioremap *
214 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
215 {
216 struct acpi_ioremap *map;
217
218 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
219 if (map->phys <= phys &&
220 phys + size <= map->phys + map->size)
221 return map;
222
223 return NULL;
224 }
225
226 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
227 static void __iomem *
228 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
229 {
230 struct acpi_ioremap *map;
231
232 map = acpi_map_lookup(phys, size);
233 if (map)
234 return map->virt + (phys - map->phys);
235
236 return NULL;
237 }
238
239 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
240 {
241 struct acpi_ioremap *map;
242 void __iomem *virt = NULL;
243
244 mutex_lock(&acpi_ioremap_lock);
245 map = acpi_map_lookup(phys, size);
246 if (map) {
247 virt = map->virt + (phys - map->phys);
248 map->refcount++;
249 }
250 mutex_unlock(&acpi_ioremap_lock);
251 return virt;
252 }
253 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
254
255 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
256 static struct acpi_ioremap *
257 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
258 {
259 struct acpi_ioremap *map;
260
261 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
262 if (map->virt <= virt &&
263 virt + size <= map->virt + map->size)
264 return map;
265
266 return NULL;
267 }
268
269 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
270 /* ioremap will take care of cache attributes */
271 #define should_use_kmap(pfn) 0
272 #else
273 #define should_use_kmap(pfn) page_is_ram(pfn)
274 #endif
275
276 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
277 {
278 unsigned long pfn;
279
280 pfn = pg_off >> PAGE_SHIFT;
281 if (should_use_kmap(pfn)) {
282 if (pg_sz > PAGE_SIZE)
283 return NULL;
284 return (void __iomem __force *)kmap(pfn_to_page(pfn));
285 } else
286 return acpi_os_ioremap(pg_off, pg_sz);
287 }
288
289 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
290 {
291 unsigned long pfn;
292
293 pfn = pg_off >> PAGE_SHIFT;
294 if (should_use_kmap(pfn))
295 kunmap(pfn_to_page(pfn));
296 else
297 iounmap(vaddr);
298 }
299
300 /**
301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
302 * @phys: Start of the physical address range to map.
303 * @size: Size of the physical address range to map.
304 *
305 * Look up the given physical address range in the list of existing ACPI memory
306 * mappings. If found, get a reference to it and return a pointer to it (its
307 * virtual address). If not found, map it, add it to that list and return a
308 * pointer to it.
309 *
310 * During early init (when acpi_permanent_mmap has not been set yet) this
311 * routine simply calls __acpi_map_table() to get the job done.
312 */
313 void __iomem *__ref
314 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
315 {
316 struct acpi_ioremap *map;
317 void __iomem *virt;
318 acpi_physical_address pg_off;
319 acpi_size pg_sz;
320
321 if (phys > ULONG_MAX) {
322 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
323 return NULL;
324 }
325
326 if (!acpi_permanent_mmap)
327 return __acpi_map_table((unsigned long)phys, size);
328
329 mutex_lock(&acpi_ioremap_lock);
330 /* Check if there's a suitable mapping already. */
331 map = acpi_map_lookup(phys, size);
332 if (map) {
333 map->refcount++;
334 goto out;
335 }
336
337 map = kzalloc(sizeof(*map), GFP_KERNEL);
338 if (!map) {
339 mutex_unlock(&acpi_ioremap_lock);
340 return NULL;
341 }
342
343 pg_off = round_down(phys, PAGE_SIZE);
344 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
345 virt = acpi_map(pg_off, pg_sz);
346 if (!virt) {
347 mutex_unlock(&acpi_ioremap_lock);
348 kfree(map);
349 return NULL;
350 }
351
352 INIT_LIST_HEAD(&map->list);
353 map->virt = virt;
354 map->phys = pg_off;
355 map->size = pg_sz;
356 map->refcount = 1;
357
358 list_add_tail_rcu(&map->list, &acpi_ioremaps);
359
360 out:
361 mutex_unlock(&acpi_ioremap_lock);
362 return map->virt + (phys - map->phys);
363 }
364 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
365
366 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368 return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374 if (!--map->refcount)
375 list_del_rcu(&map->list);
376 }
377
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380 if (!map->refcount) {
381 synchronize_rcu_expedited();
382 acpi_unmap(map->phys, map->virt);
383 kfree(map);
384 }
385 }
386
387 /**
388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
389 * @virt: Start of the address range to drop a reference to.
390 * @size: Size of the address range to drop a reference to.
391 *
392 * Look up the given virtual address range in the list of existing ACPI memory
393 * mappings, drop a reference to it and unmap it if there are no more active
394 * references to it.
395 *
396 * During early init (when acpi_permanent_mmap has not been set yet) this
397 * routine simply calls __acpi_unmap_table() to get the job done. Since
398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399 * here.
400 */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403 struct acpi_ioremap *map;
404
405 if (!acpi_permanent_mmap) {
406 __acpi_unmap_table(virt, size);
407 return;
408 }
409
410 mutex_lock(&acpi_ioremap_lock);
411 map = acpi_map_lookup_virt(virt, size);
412 if (!map) {
413 mutex_unlock(&acpi_ioremap_lock);
414 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 return;
416 }
417 acpi_os_drop_map_ref(map);
418 mutex_unlock(&acpi_ioremap_lock);
419
420 acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426 return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429
430 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
431 {
432 u64 addr;
433 void __iomem *virt;
434
435 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 return 0;
437
438 /* Handle possible alignment issues */
439 memcpy(&addr, &gas->address, sizeof(addr));
440 if (!addr || !gas->bit_width)
441 return -EINVAL;
442
443 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
444 if (!virt)
445 return -EIO;
446
447 return 0;
448 }
449 EXPORT_SYMBOL(acpi_os_map_generic_address);
450
451 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
452 {
453 u64 addr;
454 struct acpi_ioremap *map;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return;
463
464 mutex_lock(&acpi_ioremap_lock);
465 map = acpi_map_lookup(addr, gas->bit_width / 8);
466 if (!map) {
467 mutex_unlock(&acpi_ioremap_lock);
468 return;
469 }
470 acpi_os_drop_map_ref(map);
471 mutex_unlock(&acpi_ioremap_lock);
472
473 acpi_os_map_cleanup(map);
474 }
475 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
476
477 #ifdef ACPI_FUTURE_USAGE
478 acpi_status
479 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
480 {
481 if (!phys || !virt)
482 return AE_BAD_PARAMETER;
483
484 *phys = virt_to_phys(virt);
485
486 return AE_OK;
487 }
488 #endif
489
490 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
491 static bool acpi_rev_override;
492
493 int __init acpi_rev_override_setup(char *str)
494 {
495 acpi_rev_override = true;
496 return 1;
497 }
498 __setup("acpi_rev_override", acpi_rev_override_setup);
499 #else
500 #define acpi_rev_override false
501 #endif
502
503 #define ACPI_MAX_OVERRIDE_LEN 100
504
505 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
506
507 acpi_status
508 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
509 acpi_string *new_val)
510 {
511 if (!init_val || !new_val)
512 return AE_BAD_PARAMETER;
513
514 *new_val = NULL;
515 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
516 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
517 acpi_os_name);
518 *new_val = acpi_os_name;
519 }
520
521 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
522 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
523 *new_val = (char *)5;
524 }
525
526 return AE_OK;
527 }
528
529 static irqreturn_t acpi_irq(int irq, void *dev_id)
530 {
531 u32 handled;
532
533 handled = (*acpi_irq_handler) (acpi_irq_context);
534
535 if (handled) {
536 acpi_irq_handled++;
537 return IRQ_HANDLED;
538 } else {
539 acpi_irq_not_handled++;
540 return IRQ_NONE;
541 }
542 }
543
544 acpi_status
545 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
546 void *context)
547 {
548 unsigned int irq;
549
550 acpi_irq_stats_init();
551
552 /*
553 * ACPI interrupts different from the SCI in our copy of the FADT are
554 * not supported.
555 */
556 if (gsi != acpi_gbl_FADT.sci_interrupt)
557 return AE_BAD_PARAMETER;
558
559 if (acpi_irq_handler)
560 return AE_ALREADY_ACQUIRED;
561
562 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
563 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
564 gsi);
565 return AE_OK;
566 }
567
568 acpi_irq_handler = handler;
569 acpi_irq_context = context;
570 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
571 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
572 acpi_irq_handler = NULL;
573 return AE_NOT_ACQUIRED;
574 }
575 acpi_sci_irq = irq;
576
577 return AE_OK;
578 }
579
580 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
581 {
582 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
583 return AE_BAD_PARAMETER;
584
585 free_irq(acpi_sci_irq, acpi_irq);
586 acpi_irq_handler = NULL;
587 acpi_sci_irq = INVALID_ACPI_IRQ;
588
589 return AE_OK;
590 }
591
592 /*
593 * Running in interpreter thread context, safe to sleep
594 */
595
596 void acpi_os_sleep(u64 ms)
597 {
598 msleep(ms);
599 }
600
601 void acpi_os_stall(u32 us)
602 {
603 while (us) {
604 u32 delay = 1000;
605
606 if (delay > us)
607 delay = us;
608 udelay(delay);
609 touch_nmi_watchdog();
610 us -= delay;
611 }
612 }
613
614 /*
615 * Support ACPI 3.0 AML Timer operand
616 * Returns 64-bit free-running, monotonically increasing timer
617 * with 100ns granularity
618 */
619 u64 acpi_os_get_timer(void)
620 {
621 u64 time_ns = ktime_to_ns(ktime_get());
622 do_div(time_ns, 100);
623 return time_ns;
624 }
625
626 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
627 {
628 u32 dummy;
629
630 if (!value)
631 value = &dummy;
632
633 *value = 0;
634 if (width <= 8) {
635 *(u8 *) value = inb(port);
636 } else if (width <= 16) {
637 *(u16 *) value = inw(port);
638 } else if (width <= 32) {
639 *(u32 *) value = inl(port);
640 } else {
641 BUG();
642 }
643
644 return AE_OK;
645 }
646
647 EXPORT_SYMBOL(acpi_os_read_port);
648
649 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
650 {
651 if (width <= 8) {
652 outb(value, port);
653 } else if (width <= 16) {
654 outw(value, port);
655 } else if (width <= 32) {
656 outl(value, port);
657 } else {
658 BUG();
659 }
660
661 return AE_OK;
662 }
663
664 EXPORT_SYMBOL(acpi_os_write_port);
665
666 acpi_status
667 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
668 {
669 void __iomem *virt_addr;
670 unsigned int size = width / 8;
671 bool unmap = false;
672 u64 dummy;
673
674 rcu_read_lock();
675 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
676 if (!virt_addr) {
677 rcu_read_unlock();
678 virt_addr = acpi_os_ioremap(phys_addr, size);
679 if (!virt_addr)
680 return AE_BAD_ADDRESS;
681 unmap = true;
682 }
683
684 if (!value)
685 value = &dummy;
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 BUG();
702 }
703
704 if (unmap)
705 iounmap(virt_addr);
706 else
707 rcu_read_unlock();
708
709 return AE_OK;
710 }
711
712 acpi_status
713 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
714 {
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718
719 rcu_read_lock();
720 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 if (!virt_addr) {
722 rcu_read_unlock();
723 virt_addr = acpi_os_ioremap(phys_addr, size);
724 if (!virt_addr)
725 return AE_BAD_ADDRESS;
726 unmap = true;
727 }
728
729 switch (width) {
730 case 8:
731 writeb(value, virt_addr);
732 break;
733 case 16:
734 writew(value, virt_addr);
735 break;
736 case 32:
737 writel(value, virt_addr);
738 break;
739 case 64:
740 writeq(value, virt_addr);
741 break;
742 default:
743 BUG();
744 }
745
746 if (unmap)
747 iounmap(virt_addr);
748 else
749 rcu_read_unlock();
750
751 return AE_OK;
752 }
753
754 acpi_status
755 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
756 u64 *value, u32 width)
757 {
758 int result, size;
759 u32 value32;
760
761 if (!value)
762 return AE_BAD_PARAMETER;
763
764 switch (width) {
765 case 8:
766 size = 1;
767 break;
768 case 16:
769 size = 2;
770 break;
771 case 32:
772 size = 4;
773 break;
774 default:
775 return AE_ERROR;
776 }
777
778 result = raw_pci_read(pci_id->segment, pci_id->bus,
779 PCI_DEVFN(pci_id->device, pci_id->function),
780 reg, size, &value32);
781 *value = value32;
782
783 return (result ? AE_ERROR : AE_OK);
784 }
785
786 acpi_status
787 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788 u64 value, u32 width)
789 {
790 int result, size;
791
792 switch (width) {
793 case 8:
794 size = 1;
795 break;
796 case 16:
797 size = 2;
798 break;
799 case 32:
800 size = 4;
801 break;
802 default:
803 return AE_ERROR;
804 }
805
806 result = raw_pci_write(pci_id->segment, pci_id->bus,
807 PCI_DEVFN(pci_id->device, pci_id->function),
808 reg, size, value);
809
810 return (result ? AE_ERROR : AE_OK);
811 }
812
813 static void acpi_os_execute_deferred(struct work_struct *work)
814 {
815 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
816
817 dpc->function(dpc->context);
818 kfree(dpc);
819 }
820
821 #ifdef CONFIG_ACPI_DEBUGGER
822 static struct acpi_debugger acpi_debugger;
823 static bool acpi_debugger_initialized;
824
825 int acpi_register_debugger(struct module *owner,
826 const struct acpi_debugger_ops *ops)
827 {
828 int ret = 0;
829
830 mutex_lock(&acpi_debugger.lock);
831 if (acpi_debugger.ops) {
832 ret = -EBUSY;
833 goto err_lock;
834 }
835
836 acpi_debugger.owner = owner;
837 acpi_debugger.ops = ops;
838
839 err_lock:
840 mutex_unlock(&acpi_debugger.lock);
841 return ret;
842 }
843 EXPORT_SYMBOL(acpi_register_debugger);
844
845 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
846 {
847 mutex_lock(&acpi_debugger.lock);
848 if (ops == acpi_debugger.ops) {
849 acpi_debugger.ops = NULL;
850 acpi_debugger.owner = NULL;
851 }
852 mutex_unlock(&acpi_debugger.lock);
853 }
854 EXPORT_SYMBOL(acpi_unregister_debugger);
855
856 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
857 {
858 int ret;
859 int (*func)(acpi_osd_exec_callback, void *);
860 struct module *owner;
861
862 if (!acpi_debugger_initialized)
863 return -ENODEV;
864 mutex_lock(&acpi_debugger.lock);
865 if (!acpi_debugger.ops) {
866 ret = -ENODEV;
867 goto err_lock;
868 }
869 if (!try_module_get(acpi_debugger.owner)) {
870 ret = -ENODEV;
871 goto err_lock;
872 }
873 func = acpi_debugger.ops->create_thread;
874 owner = acpi_debugger.owner;
875 mutex_unlock(&acpi_debugger.lock);
876
877 ret = func(function, context);
878
879 mutex_lock(&acpi_debugger.lock);
880 module_put(owner);
881 err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884 }
885
886 ssize_t acpi_debugger_write_log(const char *msg)
887 {
888 ssize_t ret;
889 ssize_t (*func)(const char *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->write_log;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(msg);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911 err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914 }
915
916 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
917 {
918 ssize_t ret;
919 ssize_t (*func)(char *, size_t);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->read_cmd;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(buffer, buffer_length);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941 err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944 }
945
946 int acpi_debugger_wait_command_ready(void)
947 {
948 int ret;
949 int (*func)(bool, char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->wait_command_ready;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(acpi_gbl_method_executing,
968 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
969
970 mutex_lock(&acpi_debugger.lock);
971 module_put(owner);
972 err_lock:
973 mutex_unlock(&acpi_debugger.lock);
974 return ret;
975 }
976
977 int acpi_debugger_notify_command_complete(void)
978 {
979 int ret;
980 int (*func)(void);
981 struct module *owner;
982
983 if (!acpi_debugger_initialized)
984 return -ENODEV;
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
987 ret = -ENODEV;
988 goto err_lock;
989 }
990 if (!try_module_get(acpi_debugger.owner)) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 func = acpi_debugger.ops->notify_command_complete;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
997
998 ret = func();
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002 err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005 }
1006
1007 int __init acpi_debugger_init(void)
1008 {
1009 mutex_init(&acpi_debugger.lock);
1010 acpi_debugger_initialized = true;
1011 return 0;
1012 }
1013 #endif
1014
1015 /*******************************************************************************
1016 *
1017 * FUNCTION: acpi_os_execute
1018 *
1019 * PARAMETERS: Type - Type of the callback
1020 * Function - Function to be executed
1021 * Context - Function parameters
1022 *
1023 * RETURN: Status
1024 *
1025 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026 * immediately executes function on a separate thread.
1027 *
1028 ******************************************************************************/
1029
1030 acpi_status acpi_os_execute(acpi_execute_type type,
1031 acpi_osd_exec_callback function, void *context)
1032 {
1033 acpi_status status = AE_OK;
1034 struct acpi_os_dpc *dpc;
1035 struct workqueue_struct *queue;
1036 int ret;
1037 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038 "Scheduling function [%p(%p)] for deferred execution.\n",
1039 function, context));
1040
1041 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042 ret = acpi_debugger_create_thread(function, context);
1043 if (ret) {
1044 pr_err("Call to kthread_create() failed.\n");
1045 status = AE_ERROR;
1046 }
1047 goto out_thread;
1048 }
1049
1050 /*
1051 * Allocate/initialize DPC structure. Note that this memory will be
1052 * freed by the callee. The kernel handles the work_struct list in a
1053 * way that allows us to also free its memory inside the callee.
1054 * Because we may want to schedule several tasks with different
1055 * parameters we can't use the approach some kernel code uses of
1056 * having a static work_struct.
1057 */
1058
1059 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060 if (!dpc)
1061 return AE_NO_MEMORY;
1062
1063 dpc->function = function;
1064 dpc->context = context;
1065
1066 /*
1067 * To prevent lockdep from complaining unnecessarily, make sure that
1068 * there is a different static lockdep key for each workqueue by using
1069 * INIT_WORK() for each of them separately.
1070 */
1071 if (type == OSL_NOTIFY_HANDLER) {
1072 queue = kacpi_notify_wq;
1073 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074 } else if (type == OSL_GPE_HANDLER) {
1075 queue = kacpid_wq;
1076 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077 } else {
1078 pr_err("Unsupported os_execute type %d.\n", type);
1079 status = AE_ERROR;
1080 }
1081
1082 if (ACPI_FAILURE(status))
1083 goto err_workqueue;
1084
1085 /*
1086 * On some machines, a software-initiated SMI causes corruption unless
1087 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1088 * typically it's done in GPE-related methods that are run via
1089 * workqueues, so we can avoid the known corruption cases by always
1090 * queueing on CPU 0.
1091 */
1092 ret = queue_work_on(0, queue, &dpc->work);
1093 if (!ret) {
1094 printk(KERN_ERR PREFIX
1095 "Call to queue_work() failed.\n");
1096 status = AE_ERROR;
1097 }
1098 err_workqueue:
1099 if (ACPI_FAILURE(status))
1100 kfree(dpc);
1101 out_thread:
1102 return status;
1103 }
1104 EXPORT_SYMBOL(acpi_os_execute);
1105
1106 void acpi_os_wait_events_complete(void)
1107 {
1108 /*
1109 * Make sure the GPE handler or the fixed event handler is not used
1110 * on another CPU after removal.
1111 */
1112 if (acpi_sci_irq_valid())
1113 synchronize_hardirq(acpi_sci_irq);
1114 flush_workqueue(kacpid_wq);
1115 flush_workqueue(kacpi_notify_wq);
1116 }
1117
1118 struct acpi_hp_work {
1119 struct work_struct work;
1120 struct acpi_device *adev;
1121 u32 src;
1122 };
1123
1124 static void acpi_hotplug_work_fn(struct work_struct *work)
1125 {
1126 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128 acpi_os_wait_events_complete();
1129 acpi_device_hotplug(hpw->adev, hpw->src);
1130 kfree(hpw);
1131 }
1132
1133 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134 {
1135 struct acpi_hp_work *hpw;
1136
1137 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139 adev, src));
1140
1141 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142 if (!hpw)
1143 return AE_NO_MEMORY;
1144
1145 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146 hpw->adev = adev;
1147 hpw->src = src;
1148 /*
1149 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150 * the hotplug code may call driver .remove() functions, which may
1151 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152 * these workqueues.
1153 */
1154 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155 kfree(hpw);
1156 return AE_ERROR;
1157 }
1158 return AE_OK;
1159 }
1160
1161 bool acpi_queue_hotplug_work(struct work_struct *work)
1162 {
1163 return queue_work(kacpi_hotplug_wq, work);
1164 }
1165
1166 acpi_status
1167 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168 {
1169 struct semaphore *sem = NULL;
1170
1171 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172 if (!sem)
1173 return AE_NO_MEMORY;
1174
1175 sema_init(sem, initial_units);
1176
1177 *handle = (acpi_handle *) sem;
1178
1179 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180 *handle, initial_units));
1181
1182 return AE_OK;
1183 }
1184
1185 /*
1186 * TODO: A better way to delete semaphores? Linux doesn't have a
1187 * 'delete_semaphore()' function -- may result in an invalid
1188 * pointer dereference for non-synchronized consumers. Should
1189 * we at least check for blocked threads and signal/cancel them?
1190 */
1191
1192 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193 {
1194 struct semaphore *sem = (struct semaphore *)handle;
1195
1196 if (!sem)
1197 return AE_BAD_PARAMETER;
1198
1199 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201 BUG_ON(!list_empty(&sem->wait_list));
1202 kfree(sem);
1203 sem = NULL;
1204
1205 return AE_OK;
1206 }
1207
1208 /*
1209 * TODO: Support for units > 1?
1210 */
1211 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212 {
1213 acpi_status status = AE_OK;
1214 struct semaphore *sem = (struct semaphore *)handle;
1215 long jiffies;
1216 int ret = 0;
1217
1218 if (!acpi_os_initialized)
1219 return AE_OK;
1220
1221 if (!sem || (units < 1))
1222 return AE_BAD_PARAMETER;
1223
1224 if (units > 1)
1225 return AE_SUPPORT;
1226
1227 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228 handle, units, timeout));
1229
1230 if (timeout == ACPI_WAIT_FOREVER)
1231 jiffies = MAX_SCHEDULE_TIMEOUT;
1232 else
1233 jiffies = msecs_to_jiffies(timeout);
1234
1235 ret = down_timeout(sem, jiffies);
1236 if (ret)
1237 status = AE_TIME;
1238
1239 if (ACPI_FAILURE(status)) {
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241 "Failed to acquire semaphore[%p|%d|%d], %s",
1242 handle, units, timeout,
1243 acpi_format_exception(status)));
1244 } else {
1245 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246 "Acquired semaphore[%p|%d|%d]", handle,
1247 units, timeout));
1248 }
1249
1250 return status;
1251 }
1252
1253 /*
1254 * TODO: Support for units > 1?
1255 */
1256 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257 {
1258 struct semaphore *sem = (struct semaphore *)handle;
1259
1260 if (!acpi_os_initialized)
1261 return AE_OK;
1262
1263 if (!sem || (units < 1))
1264 return AE_BAD_PARAMETER;
1265
1266 if (units > 1)
1267 return AE_SUPPORT;
1268
1269 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270 units));
1271
1272 up(sem);
1273
1274 return AE_OK;
1275 }
1276
1277 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278 {
1279 #ifdef ENABLE_DEBUGGER
1280 if (acpi_in_debugger) {
1281 u32 chars;
1282
1283 kdb_read(buffer, buffer_length);
1284
1285 /* remove the CR kdb includes */
1286 chars = strlen(buffer) - 1;
1287 buffer[chars] = '\0';
1288 }
1289 #else
1290 int ret;
1291
1292 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293 if (ret < 0)
1294 return AE_ERROR;
1295 if (bytes_read)
1296 *bytes_read = ret;
1297 #endif
1298
1299 return AE_OK;
1300 }
1301 EXPORT_SYMBOL(acpi_os_get_line);
1302
1303 acpi_status acpi_os_wait_command_ready(void)
1304 {
1305 int ret;
1306
1307 ret = acpi_debugger_wait_command_ready();
1308 if (ret < 0)
1309 return AE_ERROR;
1310 return AE_OK;
1311 }
1312
1313 acpi_status acpi_os_notify_command_complete(void)
1314 {
1315 int ret;
1316
1317 ret = acpi_debugger_notify_command_complete();
1318 if (ret < 0)
1319 return AE_ERROR;
1320 return AE_OK;
1321 }
1322
1323 acpi_status acpi_os_signal(u32 function, void *info)
1324 {
1325 switch (function) {
1326 case ACPI_SIGNAL_FATAL:
1327 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328 break;
1329 case ACPI_SIGNAL_BREAKPOINT:
1330 /*
1331 * AML Breakpoint
1332 * ACPI spec. says to treat it as a NOP unless
1333 * you are debugging. So if/when we integrate
1334 * AML debugger into the kernel debugger its
1335 * hook will go here. But until then it is
1336 * not useful to print anything on breakpoints.
1337 */
1338 break;
1339 default:
1340 break;
1341 }
1342
1343 return AE_OK;
1344 }
1345
1346 static int __init acpi_os_name_setup(char *str)
1347 {
1348 char *p = acpi_os_name;
1349 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351 if (!str || !*str)
1352 return 0;
1353
1354 for (; count-- && *str; str++) {
1355 if (isalnum(*str) || *str == ' ' || *str == ':')
1356 *p++ = *str;
1357 else if (*str == '\'' || *str == '"')
1358 continue;
1359 else
1360 break;
1361 }
1362 *p = 0;
1363
1364 return 1;
1365
1366 }
1367
1368 __setup("acpi_os_name=", acpi_os_name_setup);
1369
1370 /*
1371 * Disable the auto-serialization of named objects creation methods.
1372 *
1373 * This feature is enabled by default. It marks the AML control methods
1374 * that contain the opcodes to create named objects as "Serialized".
1375 */
1376 static int __init acpi_no_auto_serialize_setup(char *str)
1377 {
1378 acpi_gbl_auto_serialize_methods = FALSE;
1379 pr_info("ACPI: auto-serialization disabled\n");
1380
1381 return 1;
1382 }
1383
1384 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385
1386 /* Check of resource interference between native drivers and ACPI
1387 * OperationRegions (SystemIO and System Memory only).
1388 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389 * in arbitrary AML code and can interfere with legacy drivers.
1390 * acpi_enforce_resources= can be set to:
1391 *
1392 * - strict (default) (2)
1393 * -> further driver trying to access the resources will not load
1394 * - lax (1)
1395 * -> further driver trying to access the resources will load, but you
1396 * get a system message that something might go wrong...
1397 *
1398 * - no (0)
1399 * -> ACPI Operation Region resources will not be registered
1400 *
1401 */
1402 #define ENFORCE_RESOURCES_STRICT 2
1403 #define ENFORCE_RESOURCES_LAX 1
1404 #define ENFORCE_RESOURCES_NO 0
1405
1406 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408 static int __init acpi_enforce_resources_setup(char *str)
1409 {
1410 if (str == NULL || *str == '\0')
1411 return 0;
1412
1413 if (!strcmp("strict", str))
1414 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415 else if (!strcmp("lax", str))
1416 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417 else if (!strcmp("no", str))
1418 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420 return 1;
1421 }
1422
1423 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425 /* Check for resource conflicts between ACPI OperationRegions and native
1426 * drivers */
1427 int acpi_check_resource_conflict(const struct resource *res)
1428 {
1429 acpi_adr_space_type space_id;
1430 acpi_size length;
1431 u8 warn = 0;
1432 int clash = 0;
1433
1434 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435 return 0;
1436 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437 return 0;
1438
1439 if (res->flags & IORESOURCE_IO)
1440 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441 else
1442 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443
1444 length = resource_size(res);
1445 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446 warn = 1;
1447 clash = acpi_check_address_range(space_id, res->start, length, warn);
1448
1449 if (clash) {
1450 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452 printk(KERN_NOTICE "ACPI: This conflict may"
1453 " cause random problems and system"
1454 " instability\n");
1455 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456 " for this device, you should use it instead of"
1457 " the native driver\n");
1458 }
1459 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460 return -EBUSY;
1461 }
1462 return 0;
1463 }
1464 EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466 int acpi_check_region(resource_size_t start, resource_size_t n,
1467 const char *name)
1468 {
1469 struct resource res = {
1470 .start = start,
1471 .end = start + n - 1,
1472 .name = name,
1473 .flags = IORESOURCE_IO,
1474 };
1475
1476 return acpi_check_resource_conflict(&res);
1477 }
1478 EXPORT_SYMBOL(acpi_check_region);
1479
1480 /*
1481 * Let drivers know whether the resource checks are effective
1482 */
1483 int acpi_resources_are_enforced(void)
1484 {
1485 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486 }
1487 EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489 /*
1490 * Deallocate the memory for a spinlock.
1491 */
1492 void acpi_os_delete_lock(acpi_spinlock handle)
1493 {
1494 ACPI_FREE(handle);
1495 }
1496
1497 /*
1498 * Acquire a spinlock.
1499 *
1500 * handle is a pointer to the spinlock_t.
1501 */
1502
1503 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504 {
1505 acpi_cpu_flags flags;
1506 spin_lock_irqsave(lockp, flags);
1507 return flags;
1508 }
1509
1510 /*
1511 * Release a spinlock. See above.
1512 */
1513
1514 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515 {
1516 spin_unlock_irqrestore(lockp, flags);
1517 }
1518
1519 #ifndef ACPI_USE_LOCAL_CACHE
1520
1521 /*******************************************************************************
1522 *
1523 * FUNCTION: acpi_os_create_cache
1524 *
1525 * PARAMETERS: name - Ascii name for the cache
1526 * size - Size of each cached object
1527 * depth - Maximum depth of the cache (in objects) <ignored>
1528 * cache - Where the new cache object is returned
1529 *
1530 * RETURN: status
1531 *
1532 * DESCRIPTION: Create a cache object
1533 *
1534 ******************************************************************************/
1535
1536 acpi_status
1537 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538 {
1539 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1540 if (*cache == NULL)
1541 return AE_ERROR;
1542 else
1543 return AE_OK;
1544 }
1545
1546 /*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_purge_cache
1549 *
1550 * PARAMETERS: Cache - Handle to cache object
1551 *
1552 * RETURN: Status
1553 *
1554 * DESCRIPTION: Free all objects within the requested cache.
1555 *
1556 ******************************************************************************/
1557
1558 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559 {
1560 kmem_cache_shrink(cache);
1561 return (AE_OK);
1562 }
1563
1564 /*******************************************************************************
1565 *
1566 * FUNCTION: acpi_os_delete_cache
1567 *
1568 * PARAMETERS: Cache - Handle to cache object
1569 *
1570 * RETURN: Status
1571 *
1572 * DESCRIPTION: Free all objects within the requested cache and delete the
1573 * cache object.
1574 *
1575 ******************************************************************************/
1576
1577 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578 {
1579 kmem_cache_destroy(cache);
1580 return (AE_OK);
1581 }
1582
1583 /*******************************************************************************
1584 *
1585 * FUNCTION: acpi_os_release_object
1586 *
1587 * PARAMETERS: Cache - Handle to cache object
1588 * Object - The object to be released
1589 *
1590 * RETURN: None
1591 *
1592 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1593 * the object is deleted.
1594 *
1595 ******************************************************************************/
1596
1597 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598 {
1599 kmem_cache_free(cache, object);
1600 return (AE_OK);
1601 }
1602 #endif
1603
1604 static int __init acpi_no_static_ssdt_setup(char *s)
1605 {
1606 acpi_gbl_disable_ssdt_table_install = TRUE;
1607 pr_info("ACPI: static SSDT installation disabled\n");
1608
1609 return 0;
1610 }
1611
1612 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613
1614 static int __init acpi_disable_return_repair(char *s)
1615 {
1616 printk(KERN_NOTICE PREFIX
1617 "ACPI: Predefined validation mechanism disabled\n");
1618 acpi_gbl_disable_auto_repair = TRUE;
1619
1620 return 1;
1621 }
1622
1623 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625 acpi_status __init acpi_os_initialize(void)
1626 {
1627 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632 /*
1633 * Use acpi_os_map_generic_address to pre-map the reset
1634 * register if it's in system memory.
1635 */
1636 int rv;
1637
1638 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640 }
1641 acpi_os_initialized = true;
1642
1643 return AE_OK;
1644 }
1645
1646 acpi_status __init acpi_os_initialize1(void)
1647 {
1648 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651 BUG_ON(!kacpid_wq);
1652 BUG_ON(!kacpi_notify_wq);
1653 BUG_ON(!kacpi_hotplug_wq);
1654 acpi_osi_init();
1655 return AE_OK;
1656 }
1657
1658 acpi_status acpi_os_terminate(void)
1659 {
1660 if (acpi_irq_handler) {
1661 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662 acpi_irq_handler);
1663 }
1664
1665 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672 destroy_workqueue(kacpid_wq);
1673 destroy_workqueue(kacpi_notify_wq);
1674 destroy_workqueue(kacpi_hotplug_wq);
1675
1676 return AE_OK;
1677 }
1678
1679 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680 u32 pm1b_control)
1681 {
1682 int rc = 0;
1683 if (__acpi_os_prepare_sleep)
1684 rc = __acpi_os_prepare_sleep(sleep_state,
1685 pm1a_control, pm1b_control);
1686 if (rc < 0)
1687 return AE_ERROR;
1688 else if (rc > 0)
1689 return AE_CTRL_SKIP;
1690
1691 return AE_OK;
1692 }
1693
1694 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695 u32 pm1a_ctrl, u32 pm1b_ctrl))
1696 {
1697 __acpi_os_prepare_sleep = func;
1698 }
1699
1700 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1701 u32 val_b)
1702 {
1703 int rc = 0;
1704 if (__acpi_os_prepare_extended_sleep)
1705 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1706 val_a, val_b);
1707 if (rc < 0)
1708 return AE_ERROR;
1709 else if (rc > 0)
1710 return AE_CTRL_SKIP;
1711
1712 return AE_OK;
1713 }
1714
1715 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1716 u32 val_a, u32 val_b))
1717 {
1718 __acpi_os_prepare_extended_sleep = func;
1719 }