]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/power.c
Merge tag 'rtc-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / power.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * drivers/acpi/power.c - ACPI Power Resources management.
4 *
5 * Copyright (C) 2001 - 2015 Intel Corp.
6 * Author: Andy Grover <andrew.grover@intel.com>
7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 */
10
11 /*
12 * ACPI power-managed devices may be controlled in two ways:
13 * 1. via "Device Specific (D-State) Control"
14 * 2. via "Power Resource Control".
15 * The code below deals with ACPI Power Resources control.
16 *
17 * An ACPI "power resource object" represents a software controllable power
18 * plane, clock plane, or other resource depended on by a device.
19 *
20 * A device may rely on multiple power resources, and a power resource
21 * may be shared by multiple devices.
22 */
23
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sysfs.h>
33 #include <linux/acpi.h>
34 #include "sleep.h"
35 #include "internal.h"
36
37 #define ACPI_POWER_CLASS "power_resource"
38 #define ACPI_POWER_DEVICE_NAME "Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42
43 struct acpi_power_dependent_device {
44 struct device *dev;
45 struct list_head node;
46 };
47
48 struct acpi_power_resource {
49 struct acpi_device device;
50 struct list_head list_node;
51 char *name;
52 u32 system_level;
53 u32 order;
54 unsigned int ref_count;
55 bool wakeup_enabled;
56 struct mutex resource_lock;
57 struct list_head dependents;
58 };
59
60 struct acpi_power_resource_entry {
61 struct list_head node;
62 struct acpi_power_resource *resource;
63 };
64
65 static LIST_HEAD(acpi_power_resource_list);
66 static DEFINE_MUTEX(power_resource_list_lock);
67
68 /* --------------------------------------------------------------------------
69 Power Resource Management
70 -------------------------------------------------------------------------- */
71
72 static inline
73 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
74 {
75 return container_of(device, struct acpi_power_resource, device);
76 }
77
78 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
79 {
80 struct acpi_device *device;
81
82 if (acpi_bus_get_device(handle, &device))
83 return NULL;
84
85 return to_power_resource(device);
86 }
87
88 static int acpi_power_resources_list_add(acpi_handle handle,
89 struct list_head *list)
90 {
91 struct acpi_power_resource *resource = acpi_power_get_context(handle);
92 struct acpi_power_resource_entry *entry;
93
94 if (!resource || !list)
95 return -EINVAL;
96
97 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
98 if (!entry)
99 return -ENOMEM;
100
101 entry->resource = resource;
102 if (!list_empty(list)) {
103 struct acpi_power_resource_entry *e;
104
105 list_for_each_entry(e, list, node)
106 if (e->resource->order > resource->order) {
107 list_add_tail(&entry->node, &e->node);
108 return 0;
109 }
110 }
111 list_add_tail(&entry->node, list);
112 return 0;
113 }
114
115 void acpi_power_resources_list_free(struct list_head *list)
116 {
117 struct acpi_power_resource_entry *entry, *e;
118
119 list_for_each_entry_safe(entry, e, list, node) {
120 list_del(&entry->node);
121 kfree(entry);
122 }
123 }
124
125 static bool acpi_power_resource_is_dup(union acpi_object *package,
126 unsigned int start, unsigned int i)
127 {
128 acpi_handle rhandle, dup;
129 unsigned int j;
130
131 /* The caller is expected to check the package element types */
132 rhandle = package->package.elements[i].reference.handle;
133 for (j = start; j < i; j++) {
134 dup = package->package.elements[j].reference.handle;
135 if (dup == rhandle)
136 return true;
137 }
138
139 return false;
140 }
141
142 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
143 struct list_head *list)
144 {
145 unsigned int i;
146 int err = 0;
147
148 for (i = start; i < package->package.count; i++) {
149 union acpi_object *element = &package->package.elements[i];
150 acpi_handle rhandle;
151
152 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
153 err = -ENODATA;
154 break;
155 }
156 rhandle = element->reference.handle;
157 if (!rhandle) {
158 err = -ENODEV;
159 break;
160 }
161
162 /* Some ACPI tables contain duplicate power resource references */
163 if (acpi_power_resource_is_dup(package, start, i))
164 continue;
165
166 err = acpi_add_power_resource(rhandle);
167 if (err)
168 break;
169
170 err = acpi_power_resources_list_add(rhandle, list);
171 if (err)
172 break;
173 }
174 if (err)
175 acpi_power_resources_list_free(list);
176
177 return err;
178 }
179
180 static int acpi_power_get_state(acpi_handle handle, int *state)
181 {
182 acpi_status status = AE_OK;
183 unsigned long long sta = 0;
184
185 if (!handle || !state)
186 return -EINVAL;
187
188 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
189 if (ACPI_FAILURE(status))
190 return -ENODEV;
191
192 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
193 ACPI_POWER_RESOURCE_STATE_OFF;
194
195 acpi_handle_debug(handle, "Power resource is %s\n",
196 *state ? "on" : "off");
197
198 return 0;
199 }
200
201 static int acpi_power_get_list_state(struct list_head *list, int *state)
202 {
203 struct acpi_power_resource_entry *entry;
204 int cur_state;
205
206 if (!list || !state)
207 return -EINVAL;
208
209 /* The state of the list is 'on' IFF all resources are 'on'. */
210 cur_state = 0;
211 list_for_each_entry(entry, list, node) {
212 struct acpi_power_resource *resource = entry->resource;
213 acpi_handle handle = resource->device.handle;
214 int result;
215
216 mutex_lock(&resource->resource_lock);
217 result = acpi_power_get_state(handle, &cur_state);
218 mutex_unlock(&resource->resource_lock);
219 if (result)
220 return result;
221
222 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
223 break;
224 }
225
226 pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
227
228 *state = cur_state;
229 return 0;
230 }
231
232 static int
233 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
234 struct device *dev)
235 {
236 struct acpi_power_dependent_device *dep;
237 int ret = 0;
238
239 mutex_lock(&resource->resource_lock);
240 list_for_each_entry(dep, &resource->dependents, node) {
241 /* Only add it once */
242 if (dep->dev == dev)
243 goto unlock;
244 }
245
246 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
247 if (!dep) {
248 ret = -ENOMEM;
249 goto unlock;
250 }
251
252 dep->dev = dev;
253 list_add_tail(&dep->node, &resource->dependents);
254 dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
255
256 unlock:
257 mutex_unlock(&resource->resource_lock);
258 return ret;
259 }
260
261 static void
262 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
263 struct device *dev)
264 {
265 struct acpi_power_dependent_device *dep;
266
267 mutex_lock(&resource->resource_lock);
268 list_for_each_entry(dep, &resource->dependents, node) {
269 if (dep->dev == dev) {
270 list_del(&dep->node);
271 kfree(dep);
272 dev_dbg(dev, "removed power dependency to [%s]\n",
273 resource->name);
274 break;
275 }
276 }
277 mutex_unlock(&resource->resource_lock);
278 }
279
280 /**
281 * acpi_device_power_add_dependent - Add dependent device of this ACPI device
282 * @adev: ACPI device pointer
283 * @dev: Dependent device
284 *
285 * If @adev has non-empty _PR0 the @dev is added as dependent device to all
286 * power resources returned by it. This means that whenever these power
287 * resources are turned _ON the dependent devices get runtime resumed. This
288 * is needed for devices such as PCI to allow its driver to re-initialize
289 * it after it went to D0uninitialized.
290 *
291 * If @adev does not have _PR0 this does nothing.
292 *
293 * Returns %0 in case of success and negative errno otherwise.
294 */
295 int acpi_device_power_add_dependent(struct acpi_device *adev,
296 struct device *dev)
297 {
298 struct acpi_power_resource_entry *entry;
299 struct list_head *resources;
300 int ret;
301
302 if (!adev->flags.power_manageable)
303 return 0;
304
305 resources = &adev->power.states[ACPI_STATE_D0].resources;
306 list_for_each_entry(entry, resources, node) {
307 ret = acpi_power_resource_add_dependent(entry->resource, dev);
308 if (ret)
309 goto err;
310 }
311
312 return 0;
313
314 err:
315 list_for_each_entry(entry, resources, node)
316 acpi_power_resource_remove_dependent(entry->resource, dev);
317
318 return ret;
319 }
320
321 /**
322 * acpi_device_power_remove_dependent - Remove dependent device
323 * @adev: ACPI device pointer
324 * @dev: Dependent device
325 *
326 * Does the opposite of acpi_device_power_add_dependent() and removes the
327 * dependent device if it is found. Can be called to @adev that does not
328 * have _PR0 as well.
329 */
330 void acpi_device_power_remove_dependent(struct acpi_device *adev,
331 struct device *dev)
332 {
333 struct acpi_power_resource_entry *entry;
334 struct list_head *resources;
335
336 if (!adev->flags.power_manageable)
337 return;
338
339 resources = &adev->power.states[ACPI_STATE_D0].resources;
340 list_for_each_entry_reverse(entry, resources, node)
341 acpi_power_resource_remove_dependent(entry->resource, dev);
342 }
343
344 static int __acpi_power_on(struct acpi_power_resource *resource)
345 {
346 struct acpi_power_dependent_device *dep;
347 acpi_status status = AE_OK;
348
349 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
350 if (ACPI_FAILURE(status))
351 return -ENODEV;
352
353 pr_debug("Power resource [%s] turned on\n", resource->name);
354
355 /*
356 * If there are other dependents on this power resource we need to
357 * resume them now so that their drivers can re-initialize the
358 * hardware properly after it went back to D0.
359 */
360 if (list_empty(&resource->dependents) ||
361 list_is_singular(&resource->dependents))
362 return 0;
363
364 list_for_each_entry(dep, &resource->dependents, node) {
365 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
366 resource->name);
367 pm_request_resume(dep->dev);
368 }
369
370 return 0;
371 }
372
373 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
374 {
375 int result = 0;
376
377 if (resource->ref_count++) {
378 pr_debug("Power resource [%s] already on\n", resource->name);
379 } else {
380 result = __acpi_power_on(resource);
381 if (result)
382 resource->ref_count--;
383 }
384 return result;
385 }
386
387 static int acpi_power_on(struct acpi_power_resource *resource)
388 {
389 int result;
390
391 mutex_lock(&resource->resource_lock);
392 result = acpi_power_on_unlocked(resource);
393 mutex_unlock(&resource->resource_lock);
394 return result;
395 }
396
397 static int __acpi_power_off(struct acpi_power_resource *resource)
398 {
399 acpi_status status;
400
401 status = acpi_evaluate_object(resource->device.handle, "_OFF",
402 NULL, NULL);
403 if (ACPI_FAILURE(status))
404 return -ENODEV;
405
406 pr_debug("Power resource [%s] turned off\n", resource->name);
407
408 return 0;
409 }
410
411 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
412 {
413 int result = 0;
414
415 if (!resource->ref_count) {
416 pr_debug("Power resource [%s] already off\n", resource->name);
417 return 0;
418 }
419
420 if (--resource->ref_count) {
421 pr_debug("Power resource [%s] still in use\n", resource->name);
422 } else {
423 result = __acpi_power_off(resource);
424 if (result)
425 resource->ref_count++;
426 }
427 return result;
428 }
429
430 static int acpi_power_off(struct acpi_power_resource *resource)
431 {
432 int result;
433
434 mutex_lock(&resource->resource_lock);
435 result = acpi_power_off_unlocked(resource);
436 mutex_unlock(&resource->resource_lock);
437 return result;
438 }
439
440 static int acpi_power_off_list(struct list_head *list)
441 {
442 struct acpi_power_resource_entry *entry;
443 int result = 0;
444
445 list_for_each_entry_reverse(entry, list, node) {
446 result = acpi_power_off(entry->resource);
447 if (result)
448 goto err;
449 }
450 return 0;
451
452 err:
453 list_for_each_entry_continue(entry, list, node)
454 acpi_power_on(entry->resource);
455
456 return result;
457 }
458
459 static int acpi_power_on_list(struct list_head *list)
460 {
461 struct acpi_power_resource_entry *entry;
462 int result = 0;
463
464 list_for_each_entry(entry, list, node) {
465 result = acpi_power_on(entry->resource);
466 if (result)
467 goto err;
468 }
469 return 0;
470
471 err:
472 list_for_each_entry_continue_reverse(entry, list, node)
473 acpi_power_off(entry->resource);
474
475 return result;
476 }
477
478 static struct attribute *attrs[] = {
479 NULL,
480 };
481
482 static const struct attribute_group attr_groups[] = {
483 [ACPI_STATE_D0] = {
484 .name = "power_resources_D0",
485 .attrs = attrs,
486 },
487 [ACPI_STATE_D1] = {
488 .name = "power_resources_D1",
489 .attrs = attrs,
490 },
491 [ACPI_STATE_D2] = {
492 .name = "power_resources_D2",
493 .attrs = attrs,
494 },
495 [ACPI_STATE_D3_HOT] = {
496 .name = "power_resources_D3hot",
497 .attrs = attrs,
498 },
499 };
500
501 static const struct attribute_group wakeup_attr_group = {
502 .name = "power_resources_wakeup",
503 .attrs = attrs,
504 };
505
506 static void acpi_power_hide_list(struct acpi_device *adev,
507 struct list_head *resources,
508 const struct attribute_group *attr_group)
509 {
510 struct acpi_power_resource_entry *entry;
511
512 if (list_empty(resources))
513 return;
514
515 list_for_each_entry_reverse(entry, resources, node) {
516 struct acpi_device *res_dev = &entry->resource->device;
517
518 sysfs_remove_link_from_group(&adev->dev.kobj,
519 attr_group->name,
520 dev_name(&res_dev->dev));
521 }
522 sysfs_remove_group(&adev->dev.kobj, attr_group);
523 }
524
525 static void acpi_power_expose_list(struct acpi_device *adev,
526 struct list_head *resources,
527 const struct attribute_group *attr_group)
528 {
529 struct acpi_power_resource_entry *entry;
530 int ret;
531
532 if (list_empty(resources))
533 return;
534
535 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
536 if (ret)
537 return;
538
539 list_for_each_entry(entry, resources, node) {
540 struct acpi_device *res_dev = &entry->resource->device;
541
542 ret = sysfs_add_link_to_group(&adev->dev.kobj,
543 attr_group->name,
544 &res_dev->dev.kobj,
545 dev_name(&res_dev->dev));
546 if (ret) {
547 acpi_power_hide_list(adev, resources, attr_group);
548 break;
549 }
550 }
551 }
552
553 static void acpi_power_expose_hide(struct acpi_device *adev,
554 struct list_head *resources,
555 const struct attribute_group *attr_group,
556 bool expose)
557 {
558 if (expose)
559 acpi_power_expose_list(adev, resources, attr_group);
560 else
561 acpi_power_hide_list(adev, resources, attr_group);
562 }
563
564 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
565 {
566 int state;
567
568 if (adev->wakeup.flags.valid)
569 acpi_power_expose_hide(adev, &adev->wakeup.resources,
570 &wakeup_attr_group, add);
571
572 if (!adev->power.flags.power_resources)
573 return;
574
575 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
576 acpi_power_expose_hide(adev,
577 &adev->power.states[state].resources,
578 &attr_groups[state], add);
579 }
580
581 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
582 {
583 struct acpi_power_resource_entry *entry;
584 int system_level = 5;
585
586 list_for_each_entry(entry, list, node) {
587 struct acpi_power_resource *resource = entry->resource;
588 acpi_handle handle = resource->device.handle;
589 int result;
590 int state;
591
592 mutex_lock(&resource->resource_lock);
593
594 result = acpi_power_get_state(handle, &state);
595 if (result) {
596 mutex_unlock(&resource->resource_lock);
597 return result;
598 }
599 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
600 resource->ref_count++;
601 resource->wakeup_enabled = true;
602 }
603 if (system_level > resource->system_level)
604 system_level = resource->system_level;
605
606 mutex_unlock(&resource->resource_lock);
607 }
608 *system_level_p = system_level;
609 return 0;
610 }
611
612 /* --------------------------------------------------------------------------
613 Device Power Management
614 -------------------------------------------------------------------------- */
615
616 /**
617 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
618 * ACPI 3.0) _PSW (Power State Wake)
619 * @dev: Device to handle.
620 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
621 * @sleep_state: Target sleep state of the system.
622 * @dev_state: Target power state of the device.
623 *
624 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
625 * State Wake) for the device, if present. On failure reset the device's
626 * wakeup.flags.valid flag.
627 *
628 * RETURN VALUE:
629 * 0 if either _DSW or _PSW has been successfully executed
630 * 0 if neither _DSW nor _PSW has been found
631 * -ENODEV if the execution of either _DSW or _PSW has failed
632 */
633 int acpi_device_sleep_wake(struct acpi_device *dev,
634 int enable, int sleep_state, int dev_state)
635 {
636 union acpi_object in_arg[3];
637 struct acpi_object_list arg_list = { 3, in_arg };
638 acpi_status status = AE_OK;
639
640 /*
641 * Try to execute _DSW first.
642 *
643 * Three arguments are needed for the _DSW object:
644 * Argument 0: enable/disable the wake capabilities
645 * Argument 1: target system state
646 * Argument 2: target device state
647 * When _DSW object is called to disable the wake capabilities, maybe
648 * the first argument is filled. The values of the other two arguments
649 * are meaningless.
650 */
651 in_arg[0].type = ACPI_TYPE_INTEGER;
652 in_arg[0].integer.value = enable;
653 in_arg[1].type = ACPI_TYPE_INTEGER;
654 in_arg[1].integer.value = sleep_state;
655 in_arg[2].type = ACPI_TYPE_INTEGER;
656 in_arg[2].integer.value = dev_state;
657 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
658 if (ACPI_SUCCESS(status)) {
659 return 0;
660 } else if (status != AE_NOT_FOUND) {
661 acpi_handle_info(dev->handle, "_DSW execution failed\n");
662 dev->wakeup.flags.valid = 0;
663 return -ENODEV;
664 }
665
666 /* Execute _PSW */
667 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
668 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
669 acpi_handle_info(dev->handle, "_PSW execution failed\n");
670 dev->wakeup.flags.valid = 0;
671 return -ENODEV;
672 }
673
674 return 0;
675 }
676
677 /*
678 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
679 * 1. Power on the power resources required for the wakeup device
680 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
681 * State Wake) for the device, if present
682 */
683 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
684 {
685 struct acpi_power_resource_entry *entry;
686 int err = 0;
687
688 if (!dev || !dev->wakeup.flags.valid)
689 return -EINVAL;
690
691 mutex_lock(&acpi_device_lock);
692
693 if (dev->wakeup.prepare_count++)
694 goto out;
695
696 list_for_each_entry(entry, &dev->wakeup.resources, node) {
697 struct acpi_power_resource *resource = entry->resource;
698
699 mutex_lock(&resource->resource_lock);
700
701 if (!resource->wakeup_enabled) {
702 err = acpi_power_on_unlocked(resource);
703 if (!err)
704 resource->wakeup_enabled = true;
705 }
706
707 mutex_unlock(&resource->resource_lock);
708
709 if (err) {
710 dev_err(&dev->dev,
711 "Cannot turn wakeup power resources on\n");
712 dev->wakeup.flags.valid = 0;
713 goto out;
714 }
715 }
716 /*
717 * Passing 3 as the third argument below means the device may be
718 * put into arbitrary power state afterward.
719 */
720 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
721 if (err)
722 dev->wakeup.prepare_count = 0;
723
724 out:
725 mutex_unlock(&acpi_device_lock);
726 return err;
727 }
728
729 /*
730 * Shutdown a wakeup device, counterpart of above method
731 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
732 * State Wake) for the device, if present
733 * 2. Shutdown down the power resources
734 */
735 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
736 {
737 struct acpi_power_resource_entry *entry;
738 int err = 0;
739
740 if (!dev || !dev->wakeup.flags.valid)
741 return -EINVAL;
742
743 mutex_lock(&acpi_device_lock);
744
745 if (--dev->wakeup.prepare_count > 0)
746 goto out;
747
748 /*
749 * Executing the code below even if prepare_count is already zero when
750 * the function is called may be useful, for example for initialisation.
751 */
752 if (dev->wakeup.prepare_count < 0)
753 dev->wakeup.prepare_count = 0;
754
755 err = acpi_device_sleep_wake(dev, 0, 0, 0);
756 if (err)
757 goto out;
758
759 list_for_each_entry(entry, &dev->wakeup.resources, node) {
760 struct acpi_power_resource *resource = entry->resource;
761
762 mutex_lock(&resource->resource_lock);
763
764 if (resource->wakeup_enabled) {
765 err = acpi_power_off_unlocked(resource);
766 if (!err)
767 resource->wakeup_enabled = false;
768 }
769
770 mutex_unlock(&resource->resource_lock);
771
772 if (err) {
773 dev_err(&dev->dev,
774 "Cannot turn wakeup power resources off\n");
775 dev->wakeup.flags.valid = 0;
776 break;
777 }
778 }
779
780 out:
781 mutex_unlock(&acpi_device_lock);
782 return err;
783 }
784
785 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
786 {
787 int result = 0;
788 int list_state = 0;
789 int i = 0;
790
791 if (!device || !state)
792 return -EINVAL;
793
794 /*
795 * We know a device's inferred power state when all the resources
796 * required for a given D-state are 'on'.
797 */
798 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
799 struct list_head *list = &device->power.states[i].resources;
800
801 if (list_empty(list))
802 continue;
803
804 result = acpi_power_get_list_state(list, &list_state);
805 if (result)
806 return result;
807
808 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
809 *state = i;
810 return 0;
811 }
812 }
813
814 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
815 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
816 return 0;
817 }
818
819 int acpi_power_on_resources(struct acpi_device *device, int state)
820 {
821 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
822 return -EINVAL;
823
824 return acpi_power_on_list(&device->power.states[state].resources);
825 }
826
827 int acpi_power_transition(struct acpi_device *device, int state)
828 {
829 int result = 0;
830
831 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
832 return -EINVAL;
833
834 if (device->power.state == state || !device->flags.power_manageable)
835 return 0;
836
837 if ((device->power.state < ACPI_STATE_D0)
838 || (device->power.state > ACPI_STATE_D3_COLD))
839 return -ENODEV;
840
841 /*
842 * First we reference all power resources required in the target list
843 * (e.g. so the device doesn't lose power while transitioning). Then,
844 * we dereference all power resources used in the current list.
845 */
846 if (state < ACPI_STATE_D3_COLD)
847 result = acpi_power_on_list(
848 &device->power.states[state].resources);
849
850 if (!result && device->power.state < ACPI_STATE_D3_COLD)
851 acpi_power_off_list(
852 &device->power.states[device->power.state].resources);
853
854 /* We shouldn't change the state unless the above operations succeed. */
855 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
856
857 return result;
858 }
859
860 static void acpi_release_power_resource(struct device *dev)
861 {
862 struct acpi_device *device = to_acpi_device(dev);
863 struct acpi_power_resource *resource;
864
865 resource = container_of(device, struct acpi_power_resource, device);
866
867 mutex_lock(&power_resource_list_lock);
868 list_del(&resource->list_node);
869 mutex_unlock(&power_resource_list_lock);
870
871 acpi_free_pnp_ids(&device->pnp);
872 kfree(resource);
873 }
874
875 static ssize_t resource_in_use_show(struct device *dev,
876 struct device_attribute *attr,
877 char *buf)
878 {
879 struct acpi_power_resource *resource;
880
881 resource = to_power_resource(to_acpi_device(dev));
882 return sprintf(buf, "%u\n", !!resource->ref_count);
883 }
884 static DEVICE_ATTR_RO(resource_in_use);
885
886 static void acpi_power_sysfs_remove(struct acpi_device *device)
887 {
888 device_remove_file(&device->dev, &dev_attr_resource_in_use);
889 }
890
891 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
892 {
893 mutex_lock(&power_resource_list_lock);
894
895 if (!list_empty(&acpi_power_resource_list)) {
896 struct acpi_power_resource *r;
897
898 list_for_each_entry(r, &acpi_power_resource_list, list_node)
899 if (r->order > resource->order) {
900 list_add_tail(&resource->list_node, &r->list_node);
901 goto out;
902 }
903 }
904 list_add_tail(&resource->list_node, &acpi_power_resource_list);
905
906 out:
907 mutex_unlock(&power_resource_list_lock);
908 }
909
910 int acpi_add_power_resource(acpi_handle handle)
911 {
912 struct acpi_power_resource *resource;
913 struct acpi_device *device = NULL;
914 union acpi_object acpi_object;
915 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
916 acpi_status status;
917 int state, result = -ENODEV;
918
919 acpi_bus_get_device(handle, &device);
920 if (device)
921 return 0;
922
923 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
924 if (!resource)
925 return -ENOMEM;
926
927 device = &resource->device;
928 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
929 mutex_init(&resource->resource_lock);
930 INIT_LIST_HEAD(&resource->list_node);
931 INIT_LIST_HEAD(&resource->dependents);
932 resource->name = device->pnp.bus_id;
933 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
934 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
935 device->power.state = ACPI_STATE_UNKNOWN;
936
937 /* Evaluate the object to get the system level and resource order. */
938 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
939 if (ACPI_FAILURE(status))
940 goto err;
941
942 resource->system_level = acpi_object.power_resource.system_level;
943 resource->order = acpi_object.power_resource.resource_order;
944
945 result = acpi_power_get_state(handle, &state);
946 if (result)
947 goto err;
948
949 pr_info("%s [%s] (%s)\n", acpi_device_name(device),
950 acpi_device_bid(device), state ? "on" : "off");
951
952 device->flags.match_driver = true;
953 result = acpi_device_add(device, acpi_release_power_resource);
954 if (result)
955 goto err;
956
957 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
958 device->remove = acpi_power_sysfs_remove;
959
960 acpi_power_add_resource_to_list(resource);
961 acpi_device_add_finalize(device);
962 return 0;
963
964 err:
965 acpi_release_power_resource(&device->dev);
966 return result;
967 }
968
969 #ifdef CONFIG_ACPI_SLEEP
970 void acpi_resume_power_resources(void)
971 {
972 struct acpi_power_resource *resource;
973
974 mutex_lock(&power_resource_list_lock);
975
976 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
977 int result, state;
978
979 mutex_lock(&resource->resource_lock);
980
981 result = acpi_power_get_state(resource->device.handle, &state);
982 if (result) {
983 mutex_unlock(&resource->resource_lock);
984 continue;
985 }
986
987 if (state == ACPI_POWER_RESOURCE_STATE_OFF
988 && resource->ref_count) {
989 dev_info(&resource->device.dev, "Turning ON\n");
990 __acpi_power_on(resource);
991 }
992
993 mutex_unlock(&resource->resource_lock);
994 }
995
996 mutex_unlock(&power_resource_list_lock);
997 }
998 #endif
999
1000 void acpi_turn_off_unused_power_resources(void)
1001 {
1002 struct acpi_power_resource *resource;
1003
1004 mutex_lock(&power_resource_list_lock);
1005
1006 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1007 mutex_lock(&resource->resource_lock);
1008
1009 if (!resource->ref_count) {
1010 dev_info(&resource->device.dev, "Turning OFF\n");
1011 __acpi_power_off(resource);
1012 }
1013
1014 mutex_unlock(&resource->resource_lock);
1015 }
1016
1017 mutex_unlock(&power_resource_list_lock);
1018 }