]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/acpi/processor_idle.c
ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()
[mirror_ubuntu-hirsute-kernel.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25 * Include the apic definitions for x86 to have the APIC timer related defines
26 * available also for UP (on SMP it gets magically included via linux/smp.h).
27 * asm/acpi.h is not an option, as it would require more include magic. Also
28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29 */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #include <asm/cpu.h>
33 #endif
34
35 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53 .name = "acpi_idle",
54 .owner = THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63 return boot_option_idle_override == IDLE_POLL ||
64 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
70 *
71 * To skip this limit, boot/load with a large max_cstate limit.
72 */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 return 0;
77
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82 max_cstate = (long)id->driver_data;
83
84 return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 { set_max_cstate, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 (void *)2},
92 { set_max_cstate, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 (void *)1},
96 { set_max_cstate, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 (void *)1},
100 {},
101 };
102
103
104 /*
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
107 */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110 if (!tif_need_resched()) {
111 safe_halt();
112 local_irq_disable();
113 }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
123 */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 struct acpi_processor_cx *cx)
126 {
127 struct acpi_processor_power *pwr = &pr->power;
128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 return;
132
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 type = ACPI_STATE_C1;
135
136 /*
137 * Check, if one of the previous states already marked the lapic
138 * unstable
139 */
140 if (pwr->timer_broadcast_on_state < state)
141 return;
142
143 if (cx->type >= type)
144 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151 if (pr->power.timer_broadcast_on_state < INT_MAX)
152 tick_broadcast_enable();
153 else
154 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165 struct acpi_processor_cx *cx)
166 {
167 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169
170 #else
171
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173 struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177 struct acpi_processor_cx *cx)
178 {
179 return false;
180 }
181
182 #endif
183
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
186 {
187 switch (boot_cpu_data.x86_vendor) {
188 case X86_VENDOR_HYGON:
189 case X86_VENDOR_AMD:
190 case X86_VENDOR_INTEL:
191 case X86_VENDOR_CENTAUR:
192 case X86_VENDOR_ZHAOXIN:
193 /*
194 * AMD Fam10h TSC will tick in all
195 * C/P/S0/S1 states when this bit is set.
196 */
197 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198 return;
199 fallthrough;
200 default:
201 /* TSC could halt in idle, so notify users */
202 if (state > ACPI_STATE_C1)
203 mark_tsc_unstable("TSC halts in idle");
204 }
205 }
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
209
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212
213 if (!pr->pblk)
214 return -ENODEV;
215
216 /* if info is obtained from pblk/fadt, type equals state */
217 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219
220 #ifndef CONFIG_HOTPLUG_CPU
221 /*
222 * Check for P_LVL2_UP flag before entering C2 and above on
223 * an SMP system.
224 */
225 if ((num_online_cpus() > 1) &&
226 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227 return -ENODEV;
228 #endif
229
230 /* determine C2 and C3 address from pblk */
231 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233
234 /* determine latencies from FADT */
235 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237
238 /*
239 * FADT specified C2 latency must be less than or equal to
240 * 100 microseconds.
241 */
242 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
244 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
245 /* invalidate C2 */
246 pr->power.states[ACPI_STATE_C2].address = 0;
247 }
248
249 /*
250 * FADT supplied C3 latency must be less than or equal to
251 * 1000 microseconds.
252 */
253 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
255 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
256 /* invalidate C3 */
257 pr->power.states[ACPI_STATE_C3].address = 0;
258 }
259
260 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
261 "lvl2[0x%08x] lvl3[0x%08x]\n",
262 pr->power.states[ACPI_STATE_C2].address,
263 pr->power.states[ACPI_STATE_C3].address));
264
265 snprintf(pr->power.states[ACPI_STATE_C2].desc,
266 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267 pr->power.states[ACPI_STATE_C2].address);
268 snprintf(pr->power.states[ACPI_STATE_C3].desc,
269 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270 pr->power.states[ACPI_STATE_C3].address);
271
272 return 0;
273 }
274
275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277 if (!pr->power.states[ACPI_STATE_C1].valid) {
278 /* set the first C-State to C1 */
279 /* all processors need to support C1 */
280 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281 pr->power.states[ACPI_STATE_C1].valid = 1;
282 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285 ACPI_CX_DESC_LEN, "ACPI HLT");
286 }
287 /* the C0 state only exists as a filler in our array */
288 pr->power.states[ACPI_STATE_C0].valid = 1;
289 return 0;
290 }
291
292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294 int ret;
295
296 if (nocst)
297 return -ENODEV;
298
299 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300 if (ret)
301 return ret;
302
303 if (!pr->power.count)
304 return -EFAULT;
305
306 pr->flags.has_cst = 1;
307 return 0;
308 }
309
310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311 struct acpi_processor_cx *cx)
312 {
313 static int bm_check_flag = -1;
314 static int bm_control_flag = -1;
315
316
317 if (!cx->address)
318 return;
319
320 /*
321 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322 * DMA transfers are used by any ISA device to avoid livelock.
323 * Note that we could disable Type-F DMA (as recommended by
324 * the erratum), but this is known to disrupt certain ISA
325 * devices thus we take the conservative approach.
326 */
327 else if (errata.piix4.fdma) {
328 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
329 "C3 not supported on PIIX4 with Type-F DMA\n"));
330 return;
331 }
332
333 /* All the logic here assumes flags.bm_check is same across all CPUs */
334 if (bm_check_flag == -1) {
335 /* Determine whether bm_check is needed based on CPU */
336 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337 bm_check_flag = pr->flags.bm_check;
338 bm_control_flag = pr->flags.bm_control;
339 } else {
340 pr->flags.bm_check = bm_check_flag;
341 pr->flags.bm_control = bm_control_flag;
342 }
343
344 if (pr->flags.bm_check) {
345 if (!pr->flags.bm_control) {
346 if (pr->flags.has_cst != 1) {
347 /* bus mastering control is necessary */
348 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
349 "C3 support requires BM control\n"));
350 return;
351 } else {
352 /* Here we enter C3 without bus mastering */
353 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
354 "C3 support without BM control\n"));
355 }
356 }
357 } else {
358 /*
359 * WBINVD should be set in fadt, for C3 state to be
360 * supported on when bm_check is not required.
361 */
362 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
364 "Cache invalidation should work properly"
365 " for C3 to be enabled on SMP systems\n"));
366 return;
367 }
368 }
369
370 /*
371 * Otherwise we've met all of our C3 requirements.
372 * Normalize the C3 latency to expidite policy. Enable
373 * checking of bus mastering status (bm_check) so we can
374 * use this in our C3 policy
375 */
376 cx->valid = 1;
377
378 /*
379 * On older chipsets, BM_RLD needs to be set
380 * in order for Bus Master activity to wake the
381 * system from C3. Newer chipsets handle DMA
382 * during C3 automatically and BM_RLD is a NOP.
383 * In either case, the proper way to
384 * handle BM_RLD is to set it and leave it set.
385 */
386 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388 return;
389 }
390
391 static int acpi_processor_power_verify(struct acpi_processor *pr)
392 {
393 unsigned int i;
394 unsigned int working = 0;
395
396 pr->power.timer_broadcast_on_state = INT_MAX;
397
398 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
399 struct acpi_processor_cx *cx = &pr->power.states[i];
400
401 switch (cx->type) {
402 case ACPI_STATE_C1:
403 cx->valid = 1;
404 break;
405
406 case ACPI_STATE_C2:
407 if (!cx->address)
408 break;
409 cx->valid = 1;
410 break;
411
412 case ACPI_STATE_C3:
413 acpi_processor_power_verify_c3(pr, cx);
414 break;
415 }
416 if (!cx->valid)
417 continue;
418
419 lapic_timer_check_state(i, pr, cx);
420 tsc_check_state(cx->type);
421 working++;
422 }
423
424 lapic_timer_propagate_broadcast(pr);
425
426 return (working);
427 }
428
429 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
430 {
431 unsigned int i;
432 int result;
433
434
435 /* NOTE: the idle thread may not be running while calling
436 * this function */
437
438 /* Zero initialize all the C-states info. */
439 memset(pr->power.states, 0, sizeof(pr->power.states));
440
441 result = acpi_processor_get_power_info_cst(pr);
442 if (result == -ENODEV)
443 result = acpi_processor_get_power_info_fadt(pr);
444
445 if (result)
446 return result;
447
448 acpi_processor_get_power_info_default(pr);
449
450 pr->power.count = acpi_processor_power_verify(pr);
451
452 /*
453 * if one state of type C2 or C3 is available, mark this
454 * CPU as being "idle manageable"
455 */
456 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
457 if (pr->power.states[i].valid) {
458 pr->power.count = i;
459 pr->flags.power = 1;
460 }
461 }
462
463 return 0;
464 }
465
466 /**
467 * acpi_idle_bm_check - checks if bus master activity was detected
468 */
469 static int acpi_idle_bm_check(void)
470 {
471 u32 bm_status = 0;
472
473 if (bm_check_disable)
474 return 0;
475
476 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
477 if (bm_status)
478 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
479 /*
480 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
481 * the true state of bus mastering activity; forcing us to
482 * manually check the BMIDEA bit of each IDE channel.
483 */
484 else if (errata.piix4.bmisx) {
485 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
486 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
487 bm_status = 1;
488 }
489 return bm_status;
490 }
491
492 static void wait_for_freeze(void)
493 {
494 #ifdef CONFIG_X86
495 /* No delay is needed if we are in guest */
496 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
497 return;
498 #endif
499 /* Dummy wait op - must do something useless after P_LVL2 read
500 because chipsets cannot guarantee that STPCLK# signal
501 gets asserted in time to freeze execution properly. */
502 inl(acpi_gbl_FADT.xpm_timer_block.address);
503 }
504
505 /**
506 * acpi_idle_do_entry - enter idle state using the appropriate method
507 * @cx: cstate data
508 *
509 * Caller disables interrupt before call and enables interrupt after return.
510 */
511 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
512 {
513 if (cx->entry_method == ACPI_CSTATE_FFH) {
514 /* Call into architectural FFH based C-state */
515 acpi_processor_ffh_cstate_enter(cx);
516 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
517 acpi_safe_halt();
518 } else {
519 /* IO port based C-state */
520 inb(cx->address);
521 wait_for_freeze();
522 }
523 }
524
525 /**
526 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
527 * @dev: the target CPU
528 * @index: the index of suggested state
529 */
530 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
531 {
532 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
533
534 ACPI_FLUSH_CPU_CACHE();
535
536 while (1) {
537
538 if (cx->entry_method == ACPI_CSTATE_HALT)
539 safe_halt();
540 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
541 inb(cx->address);
542 wait_for_freeze();
543 } else
544 return -ENODEV;
545
546 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
547 /* If NMI wants to wake up CPU0, start CPU0. */
548 if (wakeup_cpu0())
549 start_cpu0();
550 #endif
551 }
552
553 /* Never reached */
554 return 0;
555 }
556
557 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
558 {
559 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
560 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
561 }
562
563 static int c3_cpu_count;
564 static DEFINE_RAW_SPINLOCK(c3_lock);
565
566 /**
567 * acpi_idle_enter_bm - enters C3 with proper BM handling
568 * @drv: cpuidle driver
569 * @pr: Target processor
570 * @cx: Target state context
571 * @index: index of target state
572 */
573 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
574 struct acpi_processor *pr,
575 struct acpi_processor_cx *cx,
576 int index)
577 {
578 static struct acpi_processor_cx safe_cx = {
579 .entry_method = ACPI_CSTATE_HALT,
580 };
581
582 /*
583 * disable bus master
584 * bm_check implies we need ARB_DIS
585 * bm_control implies whether we can do ARB_DIS
586 *
587 * That leaves a case where bm_check is set and bm_control is not set.
588 * In that case we cannot do much, we enter C3 without doing anything.
589 */
590 bool dis_bm = pr->flags.bm_control;
591
592 /* If we can skip BM, demote to a safe state. */
593 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
594 dis_bm = false;
595 index = drv->safe_state_index;
596 if (index >= 0) {
597 cx = this_cpu_read(acpi_cstate[index]);
598 } else {
599 cx = &safe_cx;
600 index = -EBUSY;
601 }
602 }
603
604 if (dis_bm) {
605 raw_spin_lock(&c3_lock);
606 c3_cpu_count++;
607 /* Disable bus master arbitration when all CPUs are in C3 */
608 if (c3_cpu_count == num_online_cpus())
609 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
610 raw_spin_unlock(&c3_lock);
611 }
612
613 rcu_idle_enter();
614
615 acpi_idle_do_entry(cx);
616
617 rcu_idle_exit();
618
619 /* Re-enable bus master arbitration */
620 if (dis_bm) {
621 raw_spin_lock(&c3_lock);
622 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
623 c3_cpu_count--;
624 raw_spin_unlock(&c3_lock);
625 }
626
627 return index;
628 }
629
630 static int acpi_idle_enter(struct cpuidle_device *dev,
631 struct cpuidle_driver *drv, int index)
632 {
633 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
634 struct acpi_processor *pr;
635
636 pr = __this_cpu_read(processors);
637 if (unlikely(!pr))
638 return -EINVAL;
639
640 if (cx->type != ACPI_STATE_C1) {
641 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
642 return acpi_idle_enter_bm(drv, pr, cx, index);
643
644 /* C2 to C1 demotion. */
645 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
646 index = ACPI_IDLE_STATE_START;
647 cx = per_cpu(acpi_cstate[index], dev->cpu);
648 }
649 }
650
651 if (cx->type == ACPI_STATE_C3)
652 ACPI_FLUSH_CPU_CACHE();
653
654 acpi_idle_do_entry(cx);
655
656 return index;
657 }
658
659 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
660 struct cpuidle_driver *drv, int index)
661 {
662 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
663
664 if (cx->type == ACPI_STATE_C3) {
665 struct acpi_processor *pr = __this_cpu_read(processors);
666
667 if (unlikely(!pr))
668 return 0;
669
670 if (pr->flags.bm_check) {
671 u8 bm_sts_skip = cx->bm_sts_skip;
672
673 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
674 cx->bm_sts_skip = 1;
675 acpi_idle_enter_bm(drv, pr, cx, index);
676 cx->bm_sts_skip = bm_sts_skip;
677
678 return 0;
679 } else {
680 ACPI_FLUSH_CPU_CACHE();
681 }
682 }
683 acpi_idle_do_entry(cx);
684
685 return 0;
686 }
687
688 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
689 struct cpuidle_device *dev)
690 {
691 int i, count = ACPI_IDLE_STATE_START;
692 struct acpi_processor_cx *cx;
693 struct cpuidle_state *state;
694
695 if (max_cstate == 0)
696 max_cstate = 1;
697
698 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
699 state = &acpi_idle_driver.states[count];
700 cx = &pr->power.states[i];
701
702 if (!cx->valid)
703 continue;
704
705 per_cpu(acpi_cstate[count], dev->cpu) = cx;
706
707 if (lapic_timer_needs_broadcast(pr, cx))
708 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
709
710 if (cx->type == ACPI_STATE_C3) {
711 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
712 if (pr->flags.bm_check)
713 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
714 }
715
716 count++;
717 if (count == CPUIDLE_STATE_MAX)
718 break;
719 }
720
721 if (!count)
722 return -EINVAL;
723
724 return 0;
725 }
726
727 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
728 {
729 int i, count;
730 struct acpi_processor_cx *cx;
731 struct cpuidle_state *state;
732 struct cpuidle_driver *drv = &acpi_idle_driver;
733
734 if (max_cstate == 0)
735 max_cstate = 1;
736
737 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
738 cpuidle_poll_state_init(drv);
739 count = 1;
740 } else {
741 count = 0;
742 }
743
744 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
745 cx = &pr->power.states[i];
746
747 if (!cx->valid)
748 continue;
749
750 state = &drv->states[count];
751 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
752 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
753 state->exit_latency = cx->latency;
754 state->target_residency = cx->latency * latency_factor;
755 state->enter = acpi_idle_enter;
756
757 state->flags = 0;
758 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
759 state->enter_dead = acpi_idle_play_dead;
760 drv->safe_state_index = count;
761 }
762 /*
763 * Halt-induced C1 is not good for ->enter_s2idle, because it
764 * re-enables interrupts on exit. Moreover, C1 is generally not
765 * particularly interesting from the suspend-to-idle angle, so
766 * avoid C1 and the situations in which we may need to fall back
767 * to it altogether.
768 */
769 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
770 state->enter_s2idle = acpi_idle_enter_s2idle;
771
772 count++;
773 if (count == CPUIDLE_STATE_MAX)
774 break;
775 }
776
777 drv->state_count = count;
778
779 if (!count)
780 return -EINVAL;
781
782 return 0;
783 }
784
785 static inline void acpi_processor_cstate_first_run_checks(void)
786 {
787 static int first_run;
788
789 if (first_run)
790 return;
791 dmi_check_system(processor_power_dmi_table);
792 max_cstate = acpi_processor_cstate_check(max_cstate);
793 if (max_cstate < ACPI_C_STATES_MAX)
794 pr_notice("ACPI: processor limited to max C-state %d\n",
795 max_cstate);
796 first_run++;
797
798 if (nocst)
799 return;
800
801 acpi_processor_claim_cst_control();
802 }
803 #else
804
805 static inline int disabled_by_idle_boot_param(void) { return 0; }
806 static inline void acpi_processor_cstate_first_run_checks(void) { }
807 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
808 {
809 return -ENODEV;
810 }
811
812 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
813 struct cpuidle_device *dev)
814 {
815 return -EINVAL;
816 }
817
818 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
819 {
820 return -EINVAL;
821 }
822
823 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
824
825 struct acpi_lpi_states_array {
826 unsigned int size;
827 unsigned int composite_states_size;
828 struct acpi_lpi_state *entries;
829 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
830 };
831
832 static int obj_get_integer(union acpi_object *obj, u32 *value)
833 {
834 if (obj->type != ACPI_TYPE_INTEGER)
835 return -EINVAL;
836
837 *value = obj->integer.value;
838 return 0;
839 }
840
841 static int acpi_processor_evaluate_lpi(acpi_handle handle,
842 struct acpi_lpi_states_array *info)
843 {
844 acpi_status status;
845 int ret = 0;
846 int pkg_count, state_idx = 1, loop;
847 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
848 union acpi_object *lpi_data;
849 struct acpi_lpi_state *lpi_state;
850
851 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
852 if (ACPI_FAILURE(status)) {
853 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
854 return -ENODEV;
855 }
856
857 lpi_data = buffer.pointer;
858
859 /* There must be at least 4 elements = 3 elements + 1 package */
860 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
861 lpi_data->package.count < 4) {
862 pr_debug("not enough elements in _LPI\n");
863 ret = -ENODATA;
864 goto end;
865 }
866
867 pkg_count = lpi_data->package.elements[2].integer.value;
868
869 /* Validate number of power states. */
870 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
871 pr_debug("count given by _LPI is not valid\n");
872 ret = -ENODATA;
873 goto end;
874 }
875
876 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
877 if (!lpi_state) {
878 ret = -ENOMEM;
879 goto end;
880 }
881
882 info->size = pkg_count;
883 info->entries = lpi_state;
884
885 /* LPI States start at index 3 */
886 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
887 union acpi_object *element, *pkg_elem, *obj;
888
889 element = &lpi_data->package.elements[loop];
890 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
891 continue;
892
893 pkg_elem = element->package.elements;
894
895 obj = pkg_elem + 6;
896 if (obj->type == ACPI_TYPE_BUFFER) {
897 struct acpi_power_register *reg;
898
899 reg = (struct acpi_power_register *)obj->buffer.pointer;
900 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
901 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
902 continue;
903
904 lpi_state->address = reg->address;
905 lpi_state->entry_method =
906 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
907 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
908 } else if (obj->type == ACPI_TYPE_INTEGER) {
909 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
910 lpi_state->address = obj->integer.value;
911 } else {
912 continue;
913 }
914
915 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
916
917 obj = pkg_elem + 9;
918 if (obj->type == ACPI_TYPE_STRING)
919 strlcpy(lpi_state->desc, obj->string.pointer,
920 ACPI_CX_DESC_LEN);
921
922 lpi_state->index = state_idx;
923 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
924 pr_debug("No min. residency found, assuming 10 us\n");
925 lpi_state->min_residency = 10;
926 }
927
928 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
929 pr_debug("No wakeup residency found, assuming 10 us\n");
930 lpi_state->wake_latency = 10;
931 }
932
933 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
934 lpi_state->flags = 0;
935
936 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
937 lpi_state->arch_flags = 0;
938
939 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
940 lpi_state->res_cnt_freq = 1;
941
942 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
943 lpi_state->enable_parent_state = 0;
944 }
945
946 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
947 end:
948 kfree(buffer.pointer);
949 return ret;
950 }
951
952 /*
953 * flat_state_cnt - the number of composite LPI states after the process of flattening
954 */
955 static int flat_state_cnt;
956
957 /**
958 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
959 *
960 * @local: local LPI state
961 * @parent: parent LPI state
962 * @result: composite LPI state
963 */
964 static bool combine_lpi_states(struct acpi_lpi_state *local,
965 struct acpi_lpi_state *parent,
966 struct acpi_lpi_state *result)
967 {
968 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
969 if (!parent->address) /* 0 means autopromotable */
970 return false;
971 result->address = local->address + parent->address;
972 } else {
973 result->address = parent->address;
974 }
975
976 result->min_residency = max(local->min_residency, parent->min_residency);
977 result->wake_latency = local->wake_latency + parent->wake_latency;
978 result->enable_parent_state = parent->enable_parent_state;
979 result->entry_method = local->entry_method;
980
981 result->flags = parent->flags;
982 result->arch_flags = parent->arch_flags;
983 result->index = parent->index;
984
985 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
986 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
987 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
988 return true;
989 }
990
991 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
992
993 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
994 struct acpi_lpi_state *t)
995 {
996 curr_level->composite_states[curr_level->composite_states_size++] = t;
997 }
998
999 static int flatten_lpi_states(struct acpi_processor *pr,
1000 struct acpi_lpi_states_array *curr_level,
1001 struct acpi_lpi_states_array *prev_level)
1002 {
1003 int i, j, state_count = curr_level->size;
1004 struct acpi_lpi_state *p, *t = curr_level->entries;
1005
1006 curr_level->composite_states_size = 0;
1007 for (j = 0; j < state_count; j++, t++) {
1008 struct acpi_lpi_state *flpi;
1009
1010 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1011 continue;
1012
1013 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1014 pr_warn("Limiting number of LPI states to max (%d)\n",
1015 ACPI_PROCESSOR_MAX_POWER);
1016 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1017 break;
1018 }
1019
1020 flpi = &pr->power.lpi_states[flat_state_cnt];
1021
1022 if (!prev_level) { /* leaf/processor node */
1023 memcpy(flpi, t, sizeof(*t));
1024 stash_composite_state(curr_level, flpi);
1025 flat_state_cnt++;
1026 continue;
1027 }
1028
1029 for (i = 0; i < prev_level->composite_states_size; i++) {
1030 p = prev_level->composite_states[i];
1031 if (t->index <= p->enable_parent_state &&
1032 combine_lpi_states(p, t, flpi)) {
1033 stash_composite_state(curr_level, flpi);
1034 flat_state_cnt++;
1035 flpi++;
1036 }
1037 }
1038 }
1039
1040 kfree(curr_level->entries);
1041 return 0;
1042 }
1043
1044 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1045 {
1046 int ret, i;
1047 acpi_status status;
1048 acpi_handle handle = pr->handle, pr_ahandle;
1049 struct acpi_device *d = NULL;
1050 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1051
1052 if (!osc_pc_lpi_support_confirmed)
1053 return -EOPNOTSUPP;
1054
1055 if (!acpi_has_method(handle, "_LPI"))
1056 return -EINVAL;
1057
1058 flat_state_cnt = 0;
1059 prev = &info[0];
1060 curr = &info[1];
1061 handle = pr->handle;
1062 ret = acpi_processor_evaluate_lpi(handle, prev);
1063 if (ret)
1064 return ret;
1065 flatten_lpi_states(pr, prev, NULL);
1066
1067 status = acpi_get_parent(handle, &pr_ahandle);
1068 while (ACPI_SUCCESS(status)) {
1069 acpi_bus_get_device(pr_ahandle, &d);
1070 handle = pr_ahandle;
1071
1072 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1073 break;
1074
1075 /* can be optional ? */
1076 if (!acpi_has_method(handle, "_LPI"))
1077 break;
1078
1079 ret = acpi_processor_evaluate_lpi(handle, curr);
1080 if (ret)
1081 break;
1082
1083 /* flatten all the LPI states in this level of hierarchy */
1084 flatten_lpi_states(pr, curr, prev);
1085
1086 tmp = prev, prev = curr, curr = tmp;
1087
1088 status = acpi_get_parent(handle, &pr_ahandle);
1089 }
1090
1091 pr->power.count = flat_state_cnt;
1092 /* reset the index after flattening */
1093 for (i = 0; i < pr->power.count; i++)
1094 pr->power.lpi_states[i].index = i;
1095
1096 /* Tell driver that _LPI is supported. */
1097 pr->flags.has_lpi = 1;
1098 pr->flags.power = 1;
1099
1100 return 0;
1101 }
1102
1103 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1104 {
1105 return -ENODEV;
1106 }
1107
1108 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1109 {
1110 return -ENODEV;
1111 }
1112
1113 /**
1114 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1115 * @dev: the target CPU
1116 * @drv: cpuidle driver containing cpuidle state info
1117 * @index: index of target state
1118 *
1119 * Return: 0 for success or negative value for error
1120 */
1121 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1122 struct cpuidle_driver *drv, int index)
1123 {
1124 struct acpi_processor *pr;
1125 struct acpi_lpi_state *lpi;
1126
1127 pr = __this_cpu_read(processors);
1128
1129 if (unlikely(!pr))
1130 return -EINVAL;
1131
1132 lpi = &pr->power.lpi_states[index];
1133 if (lpi->entry_method == ACPI_CSTATE_FFH)
1134 return acpi_processor_ffh_lpi_enter(lpi);
1135
1136 return -EINVAL;
1137 }
1138
1139 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1140 {
1141 int i;
1142 struct acpi_lpi_state *lpi;
1143 struct cpuidle_state *state;
1144 struct cpuidle_driver *drv = &acpi_idle_driver;
1145
1146 if (!pr->flags.has_lpi)
1147 return -EOPNOTSUPP;
1148
1149 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1150 lpi = &pr->power.lpi_states[i];
1151
1152 state = &drv->states[i];
1153 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1154 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1155 state->exit_latency = lpi->wake_latency;
1156 state->target_residency = lpi->min_residency;
1157 if (lpi->arch_flags)
1158 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1159 state->enter = acpi_idle_lpi_enter;
1160 drv->safe_state_index = i;
1161 }
1162
1163 drv->state_count = i;
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1170 * global state data i.e. idle routines
1171 *
1172 * @pr: the ACPI processor
1173 */
1174 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1175 {
1176 int i;
1177 struct cpuidle_driver *drv = &acpi_idle_driver;
1178
1179 if (!pr->flags.power_setup_done || !pr->flags.power)
1180 return -EINVAL;
1181
1182 drv->safe_state_index = -1;
1183 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1184 drv->states[i].name[0] = '\0';
1185 drv->states[i].desc[0] = '\0';
1186 }
1187
1188 if (pr->flags.has_lpi)
1189 return acpi_processor_setup_lpi_states(pr);
1190
1191 return acpi_processor_setup_cstates(pr);
1192 }
1193
1194 /**
1195 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1196 * device i.e. per-cpu data
1197 *
1198 * @pr: the ACPI processor
1199 * @dev : the cpuidle device
1200 */
1201 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1202 struct cpuidle_device *dev)
1203 {
1204 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1205 return -EINVAL;
1206
1207 dev->cpu = pr->id;
1208 if (pr->flags.has_lpi)
1209 return acpi_processor_ffh_lpi_probe(pr->id);
1210
1211 return acpi_processor_setup_cpuidle_cx(pr, dev);
1212 }
1213
1214 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1215 {
1216 int ret;
1217
1218 ret = acpi_processor_get_lpi_info(pr);
1219 if (ret)
1220 ret = acpi_processor_get_cstate_info(pr);
1221
1222 return ret;
1223 }
1224
1225 int acpi_processor_hotplug(struct acpi_processor *pr)
1226 {
1227 int ret = 0;
1228 struct cpuidle_device *dev;
1229
1230 if (disabled_by_idle_boot_param())
1231 return 0;
1232
1233 if (!pr->flags.power_setup_done)
1234 return -ENODEV;
1235
1236 dev = per_cpu(acpi_cpuidle_device, pr->id);
1237 cpuidle_pause_and_lock();
1238 cpuidle_disable_device(dev);
1239 ret = acpi_processor_get_power_info(pr);
1240 if (!ret && pr->flags.power) {
1241 acpi_processor_setup_cpuidle_dev(pr, dev);
1242 ret = cpuidle_enable_device(dev);
1243 }
1244 cpuidle_resume_and_unlock();
1245
1246 return ret;
1247 }
1248
1249 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1250 {
1251 int cpu;
1252 struct acpi_processor *_pr;
1253 struct cpuidle_device *dev;
1254
1255 if (disabled_by_idle_boot_param())
1256 return 0;
1257
1258 if (!pr->flags.power_setup_done)
1259 return -ENODEV;
1260
1261 /*
1262 * FIXME: Design the ACPI notification to make it once per
1263 * system instead of once per-cpu. This condition is a hack
1264 * to make the code that updates C-States be called once.
1265 */
1266
1267 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1268
1269 /* Protect against cpu-hotplug */
1270 get_online_cpus();
1271 cpuidle_pause_and_lock();
1272
1273 /* Disable all cpuidle devices */
1274 for_each_online_cpu(cpu) {
1275 _pr = per_cpu(processors, cpu);
1276 if (!_pr || !_pr->flags.power_setup_done)
1277 continue;
1278 dev = per_cpu(acpi_cpuidle_device, cpu);
1279 cpuidle_disable_device(dev);
1280 }
1281
1282 /* Populate Updated C-state information */
1283 acpi_processor_get_power_info(pr);
1284 acpi_processor_setup_cpuidle_states(pr);
1285
1286 /* Enable all cpuidle devices */
1287 for_each_online_cpu(cpu) {
1288 _pr = per_cpu(processors, cpu);
1289 if (!_pr || !_pr->flags.power_setup_done)
1290 continue;
1291 acpi_processor_get_power_info(_pr);
1292 if (_pr->flags.power) {
1293 dev = per_cpu(acpi_cpuidle_device, cpu);
1294 acpi_processor_setup_cpuidle_dev(_pr, dev);
1295 cpuidle_enable_device(dev);
1296 }
1297 }
1298 cpuidle_resume_and_unlock();
1299 put_online_cpus();
1300 }
1301
1302 return 0;
1303 }
1304
1305 static int acpi_processor_registered;
1306
1307 int acpi_processor_power_init(struct acpi_processor *pr)
1308 {
1309 int retval;
1310 struct cpuidle_device *dev;
1311
1312 if (disabled_by_idle_boot_param())
1313 return 0;
1314
1315 acpi_processor_cstate_first_run_checks();
1316
1317 if (!acpi_processor_get_power_info(pr))
1318 pr->flags.power_setup_done = 1;
1319
1320 /*
1321 * Install the idle handler if processor power management is supported.
1322 * Note that we use previously set idle handler will be used on
1323 * platforms that only support C1.
1324 */
1325 if (pr->flags.power) {
1326 /* Register acpi_idle_driver if not already registered */
1327 if (!acpi_processor_registered) {
1328 acpi_processor_setup_cpuidle_states(pr);
1329 retval = cpuidle_register_driver(&acpi_idle_driver);
1330 if (retval)
1331 return retval;
1332 pr_debug("%s registered with cpuidle\n",
1333 acpi_idle_driver.name);
1334 }
1335
1336 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1337 if (!dev)
1338 return -ENOMEM;
1339 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1340
1341 acpi_processor_setup_cpuidle_dev(pr, dev);
1342
1343 /* Register per-cpu cpuidle_device. Cpuidle driver
1344 * must already be registered before registering device
1345 */
1346 retval = cpuidle_register_device(dev);
1347 if (retval) {
1348 if (acpi_processor_registered == 0)
1349 cpuidle_unregister_driver(&acpi_idle_driver);
1350 return retval;
1351 }
1352 acpi_processor_registered++;
1353 }
1354 return 0;
1355 }
1356
1357 int acpi_processor_power_exit(struct acpi_processor *pr)
1358 {
1359 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1360
1361 if (disabled_by_idle_boot_param())
1362 return 0;
1363
1364 if (pr->flags.power) {
1365 cpuidle_unregister_device(dev);
1366 acpi_processor_registered--;
1367 if (acpi_processor_registered == 0)
1368 cpuidle_unregister_driver(&acpi_idle_driver);
1369 }
1370
1371 pr->flags.power_setup_done = 0;
1372 return 0;
1373 }