]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/acpi/processor_idle.c
ACPI: suspend: restore BM_RLD on resume
[mirror_ubuntu-bionic-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86 * For now disable this. Probably a bug somewhere else.
87 *
88 * To skip this limit, boot/load with a large max_cstate limit.
89 */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 return 0;
94
95 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99 max_cstate = (long)id->driver_data;
100
101 return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105 callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 { set_max_cstate, "Clevo 5600D", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 (void *)2},
111 {},
112 };
113
114
115 /*
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
118 */
119 static void acpi_safe_halt(void)
120 {
121 current_thread_info()->status &= ~TS_POLLING;
122 /*
123 * TS_POLLING-cleared state must be visible before we
124 * test NEED_RESCHED:
125 */
126 smp_mb();
127 if (!need_resched()) {
128 safe_halt();
129 local_irq_disable();
130 }
131 current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137 * Some BIOS implementations switch to C3 in the published C2 state.
138 * This seems to be a common problem on AMD boxen, but other vendors
139 * are affected too. We pick the most conservative approach: we assume
140 * that the local APIC stops in both C2 and C3.
141 */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143 struct acpi_processor_cx *cx)
144 {
145 struct acpi_processor_power *pwr = &pr->power;
146 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149 return;
150
151 /*
152 * Check, if one of the previous states already marked the lapic
153 * unstable
154 */
155 if (pwr->timer_broadcast_on_state < state)
156 return;
157
158 if (cx->type >= type)
159 pr->power.timer_broadcast_on_state = state;
160 }
161
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
163 {
164 unsigned long reason;
165
166 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
168
169 clockevents_notify(reason, &pr->id);
170 }
171
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174 struct acpi_processor_cx *cx,
175 int broadcast)
176 {
177 int state = cx - pr->power.states;
178
179 if (state >= pr->power.timer_broadcast_on_state) {
180 unsigned long reason;
181
182 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184 clockevents_notify(reason, &pr->id);
185 }
186 }
187
188 #else
189
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
196 {
197 }
198
199 #endif
200
201 /*
202 * Suspend / resume control
203 */
204 static int acpi_idle_suspend;
205 static u32 saved_bm_rld;
206
207 static void acpi_idle_bm_rld_save(void)
208 {
209 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
210 }
211 static void acpi_idle_bm_rld_restore(void)
212 {
213 u32 resumed_bm_rld;
214
215 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
216
217 if (resumed_bm_rld != saved_bm_rld)
218 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
219 }
220
221 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
222 {
223 if (acpi_idle_suspend == 1)
224 return 0;
225
226 acpi_idle_bm_rld_save();
227 acpi_idle_suspend = 1;
228 return 0;
229 }
230
231 int acpi_processor_resume(struct acpi_device * device)
232 {
233 if (acpi_idle_suspend == 0)
234 return 0;
235
236 acpi_idle_bm_rld_restore();
237 acpi_idle_suspend = 0;
238 return 0;
239 }
240
241 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
242 static int tsc_halts_in_c(int state)
243 {
244 switch (boot_cpu_data.x86_vendor) {
245 case X86_VENDOR_AMD:
246 case X86_VENDOR_INTEL:
247 /*
248 * AMD Fam10h TSC will tick in all
249 * C/P/S0/S1 states when this bit is set.
250 */
251 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
252 return 0;
253
254 /*FALL THROUGH*/
255 default:
256 return state > ACPI_STATE_C1;
257 }
258 }
259 #endif
260
261 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
262 {
263
264 if (!pr)
265 return -EINVAL;
266
267 if (!pr->pblk)
268 return -ENODEV;
269
270 /* if info is obtained from pblk/fadt, type equals state */
271 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
272 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
273
274 #ifndef CONFIG_HOTPLUG_CPU
275 /*
276 * Check for P_LVL2_UP flag before entering C2 and above on
277 * an SMP system.
278 */
279 if ((num_online_cpus() > 1) &&
280 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
281 return -ENODEV;
282 #endif
283
284 /* determine C2 and C3 address from pblk */
285 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
286 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
287
288 /* determine latencies from FADT */
289 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
290 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
291
292 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
293 "lvl2[0x%08x] lvl3[0x%08x]\n",
294 pr->power.states[ACPI_STATE_C2].address,
295 pr->power.states[ACPI_STATE_C3].address));
296
297 return 0;
298 }
299
300 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
301 {
302 if (!pr->power.states[ACPI_STATE_C1].valid) {
303 /* set the first C-State to C1 */
304 /* all processors need to support C1 */
305 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
306 pr->power.states[ACPI_STATE_C1].valid = 1;
307 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
308 }
309 /* the C0 state only exists as a filler in our array */
310 pr->power.states[ACPI_STATE_C0].valid = 1;
311 return 0;
312 }
313
314 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
315 {
316 acpi_status status = 0;
317 acpi_integer count;
318 int current_count;
319 int i;
320 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
321 union acpi_object *cst;
322
323
324 if (nocst)
325 return -ENODEV;
326
327 current_count = 0;
328
329 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
330 if (ACPI_FAILURE(status)) {
331 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
332 return -ENODEV;
333 }
334
335 cst = buffer.pointer;
336
337 /* There must be at least 2 elements */
338 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
339 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
340 status = -EFAULT;
341 goto end;
342 }
343
344 count = cst->package.elements[0].integer.value;
345
346 /* Validate number of power states. */
347 if (count < 1 || count != cst->package.count - 1) {
348 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
349 status = -EFAULT;
350 goto end;
351 }
352
353 /* Tell driver that at least _CST is supported. */
354 pr->flags.has_cst = 1;
355
356 for (i = 1; i <= count; i++) {
357 union acpi_object *element;
358 union acpi_object *obj;
359 struct acpi_power_register *reg;
360 struct acpi_processor_cx cx;
361
362 memset(&cx, 0, sizeof(cx));
363
364 element = &(cst->package.elements[i]);
365 if (element->type != ACPI_TYPE_PACKAGE)
366 continue;
367
368 if (element->package.count != 4)
369 continue;
370
371 obj = &(element->package.elements[0]);
372
373 if (obj->type != ACPI_TYPE_BUFFER)
374 continue;
375
376 reg = (struct acpi_power_register *)obj->buffer.pointer;
377
378 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
379 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
380 continue;
381
382 /* There should be an easy way to extract an integer... */
383 obj = &(element->package.elements[1]);
384 if (obj->type != ACPI_TYPE_INTEGER)
385 continue;
386
387 cx.type = obj->integer.value;
388 /*
389 * Some buggy BIOSes won't list C1 in _CST -
390 * Let acpi_processor_get_power_info_default() handle them later
391 */
392 if (i == 1 && cx.type != ACPI_STATE_C1)
393 current_count++;
394
395 cx.address = reg->address;
396 cx.index = current_count + 1;
397
398 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
399 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
400 if (acpi_processor_ffh_cstate_probe
401 (pr->id, &cx, reg) == 0) {
402 cx.entry_method = ACPI_CSTATE_FFH;
403 } else if (cx.type == ACPI_STATE_C1) {
404 /*
405 * C1 is a special case where FIXED_HARDWARE
406 * can be handled in non-MWAIT way as well.
407 * In that case, save this _CST entry info.
408 * Otherwise, ignore this info and continue.
409 */
410 cx.entry_method = ACPI_CSTATE_HALT;
411 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
412 } else {
413 continue;
414 }
415 if (cx.type == ACPI_STATE_C1 &&
416 (idle_halt || idle_nomwait)) {
417 /*
418 * In most cases the C1 space_id obtained from
419 * _CST object is FIXED_HARDWARE access mode.
420 * But when the option of idle=halt is added,
421 * the entry_method type should be changed from
422 * CSTATE_FFH to CSTATE_HALT.
423 * When the option of idle=nomwait is added,
424 * the C1 entry_method type should be
425 * CSTATE_HALT.
426 */
427 cx.entry_method = ACPI_CSTATE_HALT;
428 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
429 }
430 } else {
431 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
432 cx.address);
433 }
434
435 if (cx.type == ACPI_STATE_C1) {
436 cx.valid = 1;
437 }
438
439 obj = &(element->package.elements[2]);
440 if (obj->type != ACPI_TYPE_INTEGER)
441 continue;
442
443 cx.latency = obj->integer.value;
444
445 obj = &(element->package.elements[3]);
446 if (obj->type != ACPI_TYPE_INTEGER)
447 continue;
448
449 cx.power = obj->integer.value;
450
451 current_count++;
452 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
453
454 /*
455 * We support total ACPI_PROCESSOR_MAX_POWER - 1
456 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
457 */
458 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
459 printk(KERN_WARNING
460 "Limiting number of power states to max (%d)\n",
461 ACPI_PROCESSOR_MAX_POWER);
462 printk(KERN_WARNING
463 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
464 break;
465 }
466 }
467
468 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
469 current_count));
470
471 /* Validate number of power states discovered */
472 if (current_count < 2)
473 status = -EFAULT;
474
475 end:
476 kfree(buffer.pointer);
477
478 return status;
479 }
480
481 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
482 {
483
484 if (!cx->address)
485 return;
486
487 /*
488 * C2 latency must be less than or equal to 100
489 * microseconds.
490 */
491 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
492 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
493 "latency too large [%d]\n", cx->latency));
494 return;
495 }
496
497 /*
498 * Otherwise we've met all of our C2 requirements.
499 * Normalize the C2 latency to expidite policy
500 */
501 cx->valid = 1;
502
503 cx->latency_ticks = cx->latency;
504
505 return;
506 }
507
508 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
509 struct acpi_processor_cx *cx)
510 {
511 static int bm_check_flag;
512
513
514 if (!cx->address)
515 return;
516
517 /*
518 * C3 latency must be less than or equal to 1000
519 * microseconds.
520 */
521 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
522 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
523 "latency too large [%d]\n", cx->latency));
524 return;
525 }
526
527 /*
528 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
529 * DMA transfers are used by any ISA device to avoid livelock.
530 * Note that we could disable Type-F DMA (as recommended by
531 * the erratum), but this is known to disrupt certain ISA
532 * devices thus we take the conservative approach.
533 */
534 else if (errata.piix4.fdma) {
535 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
536 "C3 not supported on PIIX4 with Type-F DMA\n"));
537 return;
538 }
539
540 /* All the logic here assumes flags.bm_check is same across all CPUs */
541 if (!bm_check_flag) {
542 /* Determine whether bm_check is needed based on CPU */
543 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
544 bm_check_flag = pr->flags.bm_check;
545 } else {
546 pr->flags.bm_check = bm_check_flag;
547 }
548
549 if (pr->flags.bm_check) {
550 if (!pr->flags.bm_control) {
551 if (pr->flags.has_cst != 1) {
552 /* bus mastering control is necessary */
553 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
554 "C3 support requires BM control\n"));
555 return;
556 } else {
557 /* Here we enter C3 without bus mastering */
558 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
559 "C3 support without BM control\n"));
560 }
561 }
562 } else {
563 /*
564 * WBINVD should be set in fadt, for C3 state to be
565 * supported on when bm_check is not required.
566 */
567 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
568 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
569 "Cache invalidation should work properly"
570 " for C3 to be enabled on SMP systems\n"));
571 return;
572 }
573 }
574
575 /*
576 * Otherwise we've met all of our C3 requirements.
577 * Normalize the C3 latency to expidite policy. Enable
578 * checking of bus mastering status (bm_check) so we can
579 * use this in our C3 policy
580 */
581 cx->valid = 1;
582
583 cx->latency_ticks = cx->latency;
584 /*
585 * On older chipsets, BM_RLD needs to be set
586 * in order for Bus Master activity to wake the
587 * system from C3. Newer chipsets handle DMA
588 * during C3 automatically and BM_RLD is a NOP.
589 * In either case, the proper way to
590 * handle BM_RLD is to set it and leave it set.
591 */
592 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
593
594 return;
595 }
596
597 static int acpi_processor_power_verify(struct acpi_processor *pr)
598 {
599 unsigned int i;
600 unsigned int working = 0;
601
602 pr->power.timer_broadcast_on_state = INT_MAX;
603
604 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
605 struct acpi_processor_cx *cx = &pr->power.states[i];
606
607 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
608 /* TSC could halt in idle, so notify users */
609 if (tsc_halts_in_c(cx->type))
610 mark_tsc_unstable("TSC halts in idle");;
611 #endif
612 switch (cx->type) {
613 case ACPI_STATE_C1:
614 cx->valid = 1;
615 break;
616
617 case ACPI_STATE_C2:
618 acpi_processor_power_verify_c2(cx);
619 if (cx->valid)
620 acpi_timer_check_state(i, pr, cx);
621 break;
622
623 case ACPI_STATE_C3:
624 acpi_processor_power_verify_c3(pr, cx);
625 if (cx->valid)
626 acpi_timer_check_state(i, pr, cx);
627 break;
628 }
629
630 if (cx->valid)
631 working++;
632 }
633
634 acpi_propagate_timer_broadcast(pr);
635
636 return (working);
637 }
638
639 static int acpi_processor_get_power_info(struct acpi_processor *pr)
640 {
641 unsigned int i;
642 int result;
643
644
645 /* NOTE: the idle thread may not be running while calling
646 * this function */
647
648 /* Zero initialize all the C-states info. */
649 memset(pr->power.states, 0, sizeof(pr->power.states));
650
651 result = acpi_processor_get_power_info_cst(pr);
652 if (result == -ENODEV)
653 result = acpi_processor_get_power_info_fadt(pr);
654
655 if (result)
656 return result;
657
658 acpi_processor_get_power_info_default(pr);
659
660 pr->power.count = acpi_processor_power_verify(pr);
661
662 /*
663 * if one state of type C2 or C3 is available, mark this
664 * CPU as being "idle manageable"
665 */
666 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
667 if (pr->power.states[i].valid) {
668 pr->power.count = i;
669 if (pr->power.states[i].type >= ACPI_STATE_C2)
670 pr->flags.power = 1;
671 }
672 }
673
674 return 0;
675 }
676
677 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
678 {
679 struct acpi_processor *pr = seq->private;
680 unsigned int i;
681
682
683 if (!pr)
684 goto end;
685
686 seq_printf(seq, "active state: C%zd\n"
687 "max_cstate: C%d\n"
688 "maximum allowed latency: %d usec\n",
689 pr->power.state ? pr->power.state - pr->power.states : 0,
690 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
691
692 seq_puts(seq, "states:\n");
693
694 for (i = 1; i <= pr->power.count; i++) {
695 seq_printf(seq, " %cC%d: ",
696 (&pr->power.states[i] ==
697 pr->power.state ? '*' : ' '), i);
698
699 if (!pr->power.states[i].valid) {
700 seq_puts(seq, "<not supported>\n");
701 continue;
702 }
703
704 switch (pr->power.states[i].type) {
705 case ACPI_STATE_C1:
706 seq_printf(seq, "type[C1] ");
707 break;
708 case ACPI_STATE_C2:
709 seq_printf(seq, "type[C2] ");
710 break;
711 case ACPI_STATE_C3:
712 seq_printf(seq, "type[C3] ");
713 break;
714 default:
715 seq_printf(seq, "type[--] ");
716 break;
717 }
718
719 if (pr->power.states[i].promotion.state)
720 seq_printf(seq, "promotion[C%zd] ",
721 (pr->power.states[i].promotion.state -
722 pr->power.states));
723 else
724 seq_puts(seq, "promotion[--] ");
725
726 if (pr->power.states[i].demotion.state)
727 seq_printf(seq, "demotion[C%zd] ",
728 (pr->power.states[i].demotion.state -
729 pr->power.states));
730 else
731 seq_puts(seq, "demotion[--] ");
732
733 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
734 pr->power.states[i].latency,
735 pr->power.states[i].usage,
736 (unsigned long long)pr->power.states[i].time);
737 }
738
739 end:
740 return 0;
741 }
742
743 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
744 {
745 return single_open(file, acpi_processor_power_seq_show,
746 PDE(inode)->data);
747 }
748
749 static const struct file_operations acpi_processor_power_fops = {
750 .owner = THIS_MODULE,
751 .open = acpi_processor_power_open_fs,
752 .read = seq_read,
753 .llseek = seq_lseek,
754 .release = single_release,
755 };
756
757
758 /**
759 * acpi_idle_bm_check - checks if bus master activity was detected
760 */
761 static int acpi_idle_bm_check(void)
762 {
763 u32 bm_status = 0;
764
765 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
766 if (bm_status)
767 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
768 /*
769 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
770 * the true state of bus mastering activity; forcing us to
771 * manually check the BMIDEA bit of each IDE channel.
772 */
773 else if (errata.piix4.bmisx) {
774 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
775 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
776 bm_status = 1;
777 }
778 return bm_status;
779 }
780
781 /**
782 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
783 * @cx: cstate data
784 *
785 * Caller disables interrupt before call and enables interrupt after return.
786 */
787 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
788 {
789 /* Don't trace irqs off for idle */
790 stop_critical_timings();
791 if (cx->entry_method == ACPI_CSTATE_FFH) {
792 /* Call into architectural FFH based C-state */
793 acpi_processor_ffh_cstate_enter(cx);
794 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
795 acpi_safe_halt();
796 } else {
797 int unused;
798 /* IO port based C-state */
799 inb(cx->address);
800 /* Dummy wait op - must do something useless after P_LVL2 read
801 because chipsets cannot guarantee that STPCLK# signal
802 gets asserted in time to freeze execution properly. */
803 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
804 }
805 start_critical_timings();
806 }
807
808 /**
809 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
810 * @dev: the target CPU
811 * @state: the state data
812 *
813 * This is equivalent to the HALT instruction.
814 */
815 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
816 struct cpuidle_state *state)
817 {
818 ktime_t kt1, kt2;
819 s64 idle_time;
820 struct acpi_processor *pr;
821 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
822
823 pr = __get_cpu_var(processors);
824
825 if (unlikely(!pr))
826 return 0;
827
828 local_irq_disable();
829
830 /* Do not access any ACPI IO ports in suspend path */
831 if (acpi_idle_suspend) {
832 acpi_safe_halt();
833 local_irq_enable();
834 return 0;
835 }
836
837 kt1 = ktime_get_real();
838 acpi_idle_do_entry(cx);
839 kt2 = ktime_get_real();
840 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
841
842 local_irq_enable();
843 cx->usage++;
844
845 return idle_time;
846 }
847
848 /**
849 * acpi_idle_enter_simple - enters an ACPI state without BM handling
850 * @dev: the target CPU
851 * @state: the state data
852 */
853 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
854 struct cpuidle_state *state)
855 {
856 struct acpi_processor *pr;
857 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
858 ktime_t kt1, kt2;
859 s64 idle_time;
860 s64 sleep_ticks = 0;
861
862 pr = __get_cpu_var(processors);
863
864 if (unlikely(!pr))
865 return 0;
866
867 if (acpi_idle_suspend)
868 return(acpi_idle_enter_c1(dev, state));
869
870 local_irq_disable();
871 current_thread_info()->status &= ~TS_POLLING;
872 /*
873 * TS_POLLING-cleared state must be visible before we test
874 * NEED_RESCHED:
875 */
876 smp_mb();
877
878 if (unlikely(need_resched())) {
879 current_thread_info()->status |= TS_POLLING;
880 local_irq_enable();
881 return 0;
882 }
883
884 /*
885 * Must be done before busmaster disable as we might need to
886 * access HPET !
887 */
888 acpi_state_timer_broadcast(pr, cx, 1);
889
890 if (cx->type == ACPI_STATE_C3)
891 ACPI_FLUSH_CPU_CACHE();
892
893 kt1 = ktime_get_real();
894 /* Tell the scheduler that we are going deep-idle: */
895 sched_clock_idle_sleep_event();
896 acpi_idle_do_entry(cx);
897 kt2 = ktime_get_real();
898 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
899
900 sleep_ticks = us_to_pm_timer_ticks(idle_time);
901
902 /* Tell the scheduler how much we idled: */
903 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
904
905 local_irq_enable();
906 current_thread_info()->status |= TS_POLLING;
907
908 cx->usage++;
909
910 acpi_state_timer_broadcast(pr, cx, 0);
911 cx->time += sleep_ticks;
912 return idle_time;
913 }
914
915 static int c3_cpu_count;
916 static DEFINE_SPINLOCK(c3_lock);
917
918 /**
919 * acpi_idle_enter_bm - enters C3 with proper BM handling
920 * @dev: the target CPU
921 * @state: the state data
922 *
923 * If BM is detected, the deepest non-C3 idle state is entered instead.
924 */
925 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
926 struct cpuidle_state *state)
927 {
928 struct acpi_processor *pr;
929 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
930 ktime_t kt1, kt2;
931 s64 idle_time;
932 s64 sleep_ticks = 0;
933
934
935 pr = __get_cpu_var(processors);
936
937 if (unlikely(!pr))
938 return 0;
939
940 if (acpi_idle_suspend)
941 return(acpi_idle_enter_c1(dev, state));
942
943 if (acpi_idle_bm_check()) {
944 if (dev->safe_state) {
945 dev->last_state = dev->safe_state;
946 return dev->safe_state->enter(dev, dev->safe_state);
947 } else {
948 local_irq_disable();
949 acpi_safe_halt();
950 local_irq_enable();
951 return 0;
952 }
953 }
954
955 local_irq_disable();
956 current_thread_info()->status &= ~TS_POLLING;
957 /*
958 * TS_POLLING-cleared state must be visible before we test
959 * NEED_RESCHED:
960 */
961 smp_mb();
962
963 if (unlikely(need_resched())) {
964 current_thread_info()->status |= TS_POLLING;
965 local_irq_enable();
966 return 0;
967 }
968
969 acpi_unlazy_tlb(smp_processor_id());
970
971 /* Tell the scheduler that we are going deep-idle: */
972 sched_clock_idle_sleep_event();
973 /*
974 * Must be done before busmaster disable as we might need to
975 * access HPET !
976 */
977 acpi_state_timer_broadcast(pr, cx, 1);
978
979 kt1 = ktime_get_real();
980 /*
981 * disable bus master
982 * bm_check implies we need ARB_DIS
983 * !bm_check implies we need cache flush
984 * bm_control implies whether we can do ARB_DIS
985 *
986 * That leaves a case where bm_check is set and bm_control is
987 * not set. In that case we cannot do much, we enter C3
988 * without doing anything.
989 */
990 if (pr->flags.bm_check && pr->flags.bm_control) {
991 spin_lock(&c3_lock);
992 c3_cpu_count++;
993 /* Disable bus master arbitration when all CPUs are in C3 */
994 if (c3_cpu_count == num_online_cpus())
995 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
996 spin_unlock(&c3_lock);
997 } else if (!pr->flags.bm_check) {
998 ACPI_FLUSH_CPU_CACHE();
999 }
1000
1001 acpi_idle_do_entry(cx);
1002
1003 /* Re-enable bus master arbitration */
1004 if (pr->flags.bm_check && pr->flags.bm_control) {
1005 spin_lock(&c3_lock);
1006 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1007 c3_cpu_count--;
1008 spin_unlock(&c3_lock);
1009 }
1010 kt2 = ktime_get_real();
1011 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1012
1013 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1014 /* Tell the scheduler how much we idled: */
1015 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1016
1017 local_irq_enable();
1018 current_thread_info()->status |= TS_POLLING;
1019
1020 cx->usage++;
1021
1022 acpi_state_timer_broadcast(pr, cx, 0);
1023 cx->time += sleep_ticks;
1024 return idle_time;
1025 }
1026
1027 struct cpuidle_driver acpi_idle_driver = {
1028 .name = "acpi_idle",
1029 .owner = THIS_MODULE,
1030 };
1031
1032 /**
1033 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1034 * @pr: the ACPI processor
1035 */
1036 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1037 {
1038 int i, count = CPUIDLE_DRIVER_STATE_START;
1039 struct acpi_processor_cx *cx;
1040 struct cpuidle_state *state;
1041 struct cpuidle_device *dev = &pr->power.dev;
1042
1043 if (!pr->flags.power_setup_done)
1044 return -EINVAL;
1045
1046 if (pr->flags.power == 0) {
1047 return -EINVAL;
1048 }
1049
1050 dev->cpu = pr->id;
1051 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1052 dev->states[i].name[0] = '\0';
1053 dev->states[i].desc[0] = '\0';
1054 }
1055
1056 if (max_cstate == 0)
1057 max_cstate = 1;
1058
1059 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1060 cx = &pr->power.states[i];
1061 state = &dev->states[count];
1062
1063 if (!cx->valid)
1064 continue;
1065
1066 #ifdef CONFIG_HOTPLUG_CPU
1067 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1068 !pr->flags.has_cst &&
1069 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1070 continue;
1071 #endif
1072 cpuidle_set_statedata(state, cx);
1073
1074 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1075 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1076 state->exit_latency = cx->latency;
1077 state->target_residency = cx->latency * latency_factor;
1078 state->power_usage = cx->power;
1079
1080 state->flags = 0;
1081 switch (cx->type) {
1082 case ACPI_STATE_C1:
1083 state->flags |= CPUIDLE_FLAG_SHALLOW;
1084 if (cx->entry_method == ACPI_CSTATE_FFH)
1085 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1086
1087 state->enter = acpi_idle_enter_c1;
1088 dev->safe_state = state;
1089 break;
1090
1091 case ACPI_STATE_C2:
1092 state->flags |= CPUIDLE_FLAG_BALANCED;
1093 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1094 state->enter = acpi_idle_enter_simple;
1095 dev->safe_state = state;
1096 break;
1097
1098 case ACPI_STATE_C3:
1099 state->flags |= CPUIDLE_FLAG_DEEP;
1100 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1101 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1102 state->enter = pr->flags.bm_check ?
1103 acpi_idle_enter_bm :
1104 acpi_idle_enter_simple;
1105 break;
1106 }
1107
1108 count++;
1109 if (count == CPUIDLE_STATE_MAX)
1110 break;
1111 }
1112
1113 dev->state_count = count;
1114
1115 if (!count)
1116 return -EINVAL;
1117
1118 return 0;
1119 }
1120
1121 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1122 {
1123 int ret = 0;
1124
1125 if (boot_option_idle_override)
1126 return 0;
1127
1128 if (!pr)
1129 return -EINVAL;
1130
1131 if (nocst) {
1132 return -ENODEV;
1133 }
1134
1135 if (!pr->flags.power_setup_done)
1136 return -ENODEV;
1137
1138 cpuidle_pause_and_lock();
1139 cpuidle_disable_device(&pr->power.dev);
1140 acpi_processor_get_power_info(pr);
1141 if (pr->flags.power) {
1142 acpi_processor_setup_cpuidle(pr);
1143 ret = cpuidle_enable_device(&pr->power.dev);
1144 }
1145 cpuidle_resume_and_unlock();
1146
1147 return ret;
1148 }
1149
1150 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1151 struct acpi_device *device)
1152 {
1153 acpi_status status = 0;
1154 static int first_run;
1155 struct proc_dir_entry *entry = NULL;
1156 unsigned int i;
1157
1158 if (boot_option_idle_override)
1159 return 0;
1160
1161 if (!first_run) {
1162 if (idle_halt) {
1163 /*
1164 * When the boot option of "idle=halt" is added, halt
1165 * is used for CPU IDLE.
1166 * In such case C2/C3 is meaningless. So the max_cstate
1167 * is set to one.
1168 */
1169 max_cstate = 1;
1170 }
1171 dmi_check_system(processor_power_dmi_table);
1172 max_cstate = acpi_processor_cstate_check(max_cstate);
1173 if (max_cstate < ACPI_C_STATES_MAX)
1174 printk(KERN_NOTICE
1175 "ACPI: processor limited to max C-state %d\n",
1176 max_cstate);
1177 first_run++;
1178 }
1179
1180 if (!pr)
1181 return -EINVAL;
1182
1183 if (acpi_gbl_FADT.cst_control && !nocst) {
1184 status =
1185 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1186 if (ACPI_FAILURE(status)) {
1187 ACPI_EXCEPTION((AE_INFO, status,
1188 "Notifying BIOS of _CST ability failed"));
1189 }
1190 }
1191
1192 acpi_processor_get_power_info(pr);
1193 pr->flags.power_setup_done = 1;
1194
1195 /*
1196 * Install the idle handler if processor power management is supported.
1197 * Note that we use previously set idle handler will be used on
1198 * platforms that only support C1.
1199 */
1200 if (pr->flags.power) {
1201 acpi_processor_setup_cpuidle(pr);
1202 if (cpuidle_register_device(&pr->power.dev))
1203 return -EIO;
1204
1205 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1206 for (i = 1; i <= pr->power.count; i++)
1207 if (pr->power.states[i].valid)
1208 printk(" C%d[C%d]", i,
1209 pr->power.states[i].type);
1210 printk(")\n");
1211 }
1212
1213 /* 'power' [R] */
1214 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1215 S_IRUGO, acpi_device_dir(device),
1216 &acpi_processor_power_fops,
1217 acpi_driver_data(device));
1218 if (!entry)
1219 return -EIO;
1220 return 0;
1221 }
1222
1223 int acpi_processor_power_exit(struct acpi_processor *pr,
1224 struct acpi_device *device)
1225 {
1226 if (boot_option_idle_override)
1227 return 0;
1228
1229 cpuidle_unregister_device(&pr->power.dev);
1230 pr->flags.power_setup_done = 0;
1231
1232 if (acpi_device_dir(device))
1233 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1234 acpi_device_dir(device));
1235
1236 return 0;
1237 }