]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/processor_idle.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
94 */
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #endif
102
103 /*
104 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105 * For now disable this. Probably a bug somewhere else.
106 *
107 * To skip this limit, boot/load with a large max_cstate limit.
108 */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112 return 0;
113
114 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115 " Override with \"processor.max_cstate=%d\"\n", id->ident,
116 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117
118 max_cstate = (long)id->driver_data;
119
120 return 0;
121 }
122
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124 callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126 { set_max_cstate, "IBM ThinkPad R40e", {
127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174 { set_max_cstate, "Medion 41700", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177 { set_max_cstate, "Clevo 5600D", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 (void *)2},
181 {},
182 };
183
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186 if (t2 >= t1)
187 return (t2 - t1);
188 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190 else
191 return ((0xFFFFFFFF - t1) + t2);
192 }
193
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196 if (t2 >= t1)
197 return PM_TIMER_TICKS_TO_US(t2 - t1);
198 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200 else
201 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203
204 static void acpi_safe_halt(void)
205 {
206 current_thread_info()->status &= ~TS_POLLING;
207 /*
208 * TS_POLLING-cleared state must be visible before we
209 * test NEED_RESCHED:
210 */
211 smp_mb();
212 if (!need_resched())
213 safe_halt();
214 current_thread_info()->status |= TS_POLLING;
215 }
216
217 #ifndef CONFIG_CPU_IDLE
218
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221 struct acpi_processor_cx *new)
222 {
223 struct acpi_processor_cx *old;
224
225 if (!pr || !new)
226 return;
227
228 old = pr->power.state;
229
230 if (old)
231 old->promotion.count = 0;
232 new->demotion.count = 0;
233
234 /* Cleanup from old state. */
235 if (old) {
236 switch (old->type) {
237 case ACPI_STATE_C3:
238 /* Disable bus master reload */
239 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241 break;
242 }
243 }
244
245 /* Prepare to use new state. */
246 switch (new->type) {
247 case ACPI_STATE_C3:
248 /* Enable bus master reload */
249 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251 break;
252 }
253
254 pr->power.state = new;
255
256 return;
257 }
258
259 static atomic_t c3_cpu_count;
260
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
263 {
264 if (cstate->space_id == ACPI_CSTATE_FFH) {
265 /* Call into architectural FFH based C-state */
266 acpi_processor_ffh_cstate_enter(cstate);
267 } else {
268 int unused;
269 /* IO port based C-state */
270 inb(cstate->address);
271 /* Dummy wait op - must do something useless after P_LVL2 read
272 because chipsets cannot guarantee that STPCLK# signal
273 gets asserted in time to freeze execution properly. */
274 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
275 }
276 }
277 #endif /* !CONFIG_CPU_IDLE */
278
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
280
281 /*
282 * Some BIOS implementations switch to C3 in the published C2 state.
283 * This seems to be a common problem on AMD boxen, but other vendors
284 * are affected too. We pick the most conservative approach: we assume
285 * that the local APIC stops in both C2 and C3.
286 */
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288 struct acpi_processor_cx *cx)
289 {
290 struct acpi_processor_power *pwr = &pr->power;
291 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
292
293 /*
294 * Check, if one of the previous states already marked the lapic
295 * unstable
296 */
297 if (pwr->timer_broadcast_on_state < state)
298 return;
299
300 if (cx->type >= type)
301 pr->power.timer_broadcast_on_state = state;
302 }
303
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
305 {
306 unsigned long reason;
307
308 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
310
311 clockevents_notify(reason, &pr->id);
312 }
313
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316 struct acpi_processor_cx *cx,
317 int broadcast)
318 {
319 int state = cx - pr->power.states;
320
321 if (state >= pr->power.timer_broadcast_on_state) {
322 unsigned long reason;
323
324 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326 clockevents_notify(reason, &pr->id);
327 }
328 }
329
330 #else
331
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333 struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336 struct acpi_processor_cx *cx,
337 int broadcast)
338 {
339 }
340
341 #endif
342
343 /*
344 * Suspend / resume control
345 */
346 static int acpi_idle_suspend;
347
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
349 {
350 acpi_idle_suspend = 1;
351 return 0;
352 }
353
354 int acpi_processor_resume(struct acpi_device * device)
355 {
356 acpi_idle_suspend = 0;
357 return 0;
358 }
359
360 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
361 static int tsc_halts_in_c(int state)
362 {
363 switch (boot_cpu_data.x86_vendor) {
364 case X86_VENDOR_AMD:
365 /*
366 * AMD Fam10h TSC will tick in all
367 * C/P/S0/S1 states when this bit is set.
368 */
369 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
370 return 0;
371 /*FALL THROUGH*/
372 case X86_VENDOR_INTEL:
373 /* Several cases known where TSC halts in C2 too */
374 default:
375 return state > ACPI_STATE_C1;
376 }
377 }
378 #endif
379
380 #ifndef CONFIG_CPU_IDLE
381 static void acpi_processor_idle(void)
382 {
383 struct acpi_processor *pr = NULL;
384 struct acpi_processor_cx *cx = NULL;
385 struct acpi_processor_cx *next_state = NULL;
386 int sleep_ticks = 0;
387 u32 t1, t2 = 0;
388
389 /*
390 * Interrupts must be disabled during bus mastering calculations and
391 * for C2/C3 transitions.
392 */
393 local_irq_disable();
394
395 pr = processors[smp_processor_id()];
396 if (!pr) {
397 local_irq_enable();
398 return;
399 }
400
401 /*
402 * Check whether we truly need to go idle, or should
403 * reschedule:
404 */
405 if (unlikely(need_resched())) {
406 local_irq_enable();
407 return;
408 }
409
410 cx = pr->power.state;
411 if (!cx || acpi_idle_suspend) {
412 if (pm_idle_save)
413 pm_idle_save();
414 else
415 acpi_safe_halt();
416 return;
417 }
418
419 /*
420 * Check BM Activity
421 * -----------------
422 * Check for bus mastering activity (if required), record, and check
423 * for demotion.
424 */
425 if (pr->flags.bm_check) {
426 u32 bm_status = 0;
427 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
428
429 if (diff > 31)
430 diff = 31;
431
432 pr->power.bm_activity <<= diff;
433
434 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
435 if (bm_status) {
436 pr->power.bm_activity |= 0x1;
437 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
438 }
439 /*
440 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
441 * the true state of bus mastering activity; forcing us to
442 * manually check the BMIDEA bit of each IDE channel.
443 */
444 else if (errata.piix4.bmisx) {
445 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
446 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
447 pr->power.bm_activity |= 0x1;
448 }
449
450 pr->power.bm_check_timestamp = jiffies;
451
452 /*
453 * If bus mastering is or was active this jiffy, demote
454 * to avoid a faulty transition. Note that the processor
455 * won't enter a low-power state during this call (to this
456 * function) but should upon the next.
457 *
458 * TBD: A better policy might be to fallback to the demotion
459 * state (use it for this quantum only) istead of
460 * demoting -- and rely on duration as our sole demotion
461 * qualification. This may, however, introduce DMA
462 * issues (e.g. floppy DMA transfer overrun/underrun).
463 */
464 if ((pr->power.bm_activity & 0x1) &&
465 cx->demotion.threshold.bm) {
466 local_irq_enable();
467 next_state = cx->demotion.state;
468 goto end;
469 }
470 }
471
472 #ifdef CONFIG_HOTPLUG_CPU
473 /*
474 * Check for P_LVL2_UP flag before entering C2 and above on
475 * an SMP system. We do it here instead of doing it at _CST/P_LVL
476 * detection phase, to work cleanly with logical CPU hotplug.
477 */
478 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
479 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
480 cx = &pr->power.states[ACPI_STATE_C1];
481 #endif
482
483 /*
484 * Sleep:
485 * ------
486 * Invoke the current Cx state to put the processor to sleep.
487 */
488 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
489 current_thread_info()->status &= ~TS_POLLING;
490 /*
491 * TS_POLLING-cleared state must be visible before we
492 * test NEED_RESCHED:
493 */
494 smp_mb();
495 if (need_resched()) {
496 current_thread_info()->status |= TS_POLLING;
497 local_irq_enable();
498 return;
499 }
500 }
501
502 switch (cx->type) {
503
504 case ACPI_STATE_C1:
505 /*
506 * Invoke C1.
507 * Use the appropriate idle routine, the one that would
508 * be used without acpi C-states.
509 */
510 if (pm_idle_save)
511 pm_idle_save();
512 else
513 acpi_safe_halt();
514
515 /*
516 * TBD: Can't get time duration while in C1, as resumes
517 * go to an ISR rather than here. Need to instrument
518 * base interrupt handler.
519 *
520 * Note: the TSC better not stop in C1, sched_clock() will
521 * skew otherwise.
522 */
523 sleep_ticks = 0xFFFFFFFF;
524 break;
525
526 case ACPI_STATE_C2:
527 /* Get start time (ticks) */
528 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
529 /* Tell the scheduler that we are going deep-idle: */
530 sched_clock_idle_sleep_event();
531 /* Invoke C2 */
532 acpi_state_timer_broadcast(pr, cx, 1);
533 acpi_cstate_enter(cx);
534 /* Get end time (ticks) */
535 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
536
537 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
538 /* TSC halts in C2, so notify users */
539 if (tsc_halts_in_c(ACPI_STATE_C2))
540 mark_tsc_unstable("possible TSC halt in C2");
541 #endif
542 /* Compute time (ticks) that we were actually asleep */
543 sleep_ticks = ticks_elapsed(t1, t2);
544
545 /* Tell the scheduler how much we idled: */
546 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
547
548 /* Re-enable interrupts */
549 local_irq_enable();
550 /* Do not account our idle-switching overhead: */
551 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
552
553 current_thread_info()->status |= TS_POLLING;
554 acpi_state_timer_broadcast(pr, cx, 0);
555 break;
556
557 case ACPI_STATE_C3:
558 acpi_unlazy_tlb(smp_processor_id());
559 /*
560 * Must be done before busmaster disable as we might
561 * need to access HPET !
562 */
563 acpi_state_timer_broadcast(pr, cx, 1);
564 /*
565 * disable bus master
566 * bm_check implies we need ARB_DIS
567 * !bm_check implies we need cache flush
568 * bm_control implies whether we can do ARB_DIS
569 *
570 * That leaves a case where bm_check is set and bm_control is
571 * not set. In that case we cannot do much, we enter C3
572 * without doing anything.
573 */
574 if (pr->flags.bm_check && pr->flags.bm_control) {
575 if (atomic_inc_return(&c3_cpu_count) ==
576 num_online_cpus()) {
577 /*
578 * All CPUs are trying to go to C3
579 * Disable bus master arbitration
580 */
581 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
582 }
583 } else if (!pr->flags.bm_check) {
584 /* SMP with no shared cache... Invalidate cache */
585 ACPI_FLUSH_CPU_CACHE();
586 }
587
588 /* Get start time (ticks) */
589 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
590 /* Invoke C3 */
591 /* Tell the scheduler that we are going deep-idle: */
592 sched_clock_idle_sleep_event();
593 acpi_cstate_enter(cx);
594 /* Get end time (ticks) */
595 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
596 if (pr->flags.bm_check && pr->flags.bm_control) {
597 /* Enable bus master arbitration */
598 atomic_dec(&c3_cpu_count);
599 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
600 }
601
602 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
603 /* TSC halts in C3, so notify users */
604 if (tsc_halts_in_c(ACPI_STATE_C3))
605 mark_tsc_unstable("TSC halts in C3");
606 #endif
607 /* Compute time (ticks) that we were actually asleep */
608 sleep_ticks = ticks_elapsed(t1, t2);
609 /* Tell the scheduler how much we idled: */
610 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
611
612 /* Re-enable interrupts */
613 local_irq_enable();
614 /* Do not account our idle-switching overhead: */
615 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
616
617 current_thread_info()->status |= TS_POLLING;
618 acpi_state_timer_broadcast(pr, cx, 0);
619 break;
620
621 default:
622 local_irq_enable();
623 return;
624 }
625 cx->usage++;
626 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
627 cx->time += sleep_ticks;
628
629 next_state = pr->power.state;
630
631 #ifdef CONFIG_HOTPLUG_CPU
632 /* Don't do promotion/demotion */
633 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
634 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
635 next_state = cx;
636 goto end;
637 }
638 #endif
639
640 /*
641 * Promotion?
642 * ----------
643 * Track the number of longs (time asleep is greater than threshold)
644 * and promote when the count threshold is reached. Note that bus
645 * mastering activity may prevent promotions.
646 * Do not promote above max_cstate.
647 */
648 if (cx->promotion.state &&
649 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
650 if (sleep_ticks > cx->promotion.threshold.ticks &&
651 cx->promotion.state->latency <=
652 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
653 cx->promotion.count++;
654 cx->demotion.count = 0;
655 if (cx->promotion.count >=
656 cx->promotion.threshold.count) {
657 if (pr->flags.bm_check) {
658 if (!
659 (pr->power.bm_activity & cx->
660 promotion.threshold.bm)) {
661 next_state =
662 cx->promotion.state;
663 goto end;
664 }
665 } else {
666 next_state = cx->promotion.state;
667 goto end;
668 }
669 }
670 }
671 }
672
673 /*
674 * Demotion?
675 * ---------
676 * Track the number of shorts (time asleep is less than time threshold)
677 * and demote when the usage threshold is reached.
678 */
679 if (cx->demotion.state) {
680 if (sleep_ticks < cx->demotion.threshold.ticks) {
681 cx->demotion.count++;
682 cx->promotion.count = 0;
683 if (cx->demotion.count >= cx->demotion.threshold.count) {
684 next_state = cx->demotion.state;
685 goto end;
686 }
687 }
688 }
689
690 end:
691 /*
692 * Demote if current state exceeds max_cstate
693 * or if the latency of the current state is unacceptable
694 */
695 if ((pr->power.state - pr->power.states) > max_cstate ||
696 pr->power.state->latency >
697 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
698 if (cx->demotion.state)
699 next_state = cx->demotion.state;
700 }
701
702 /*
703 * New Cx State?
704 * -------------
705 * If we're going to start using a new Cx state we must clean up
706 * from the previous and prepare to use the new.
707 */
708 if (next_state != pr->power.state)
709 acpi_processor_power_activate(pr, next_state);
710 }
711
712 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
713 {
714 unsigned int i;
715 unsigned int state_is_set = 0;
716 struct acpi_processor_cx *lower = NULL;
717 struct acpi_processor_cx *higher = NULL;
718 struct acpi_processor_cx *cx;
719
720
721 if (!pr)
722 return -EINVAL;
723
724 /*
725 * This function sets the default Cx state policy (OS idle handler).
726 * Our scheme is to promote quickly to C2 but more conservatively
727 * to C3. We're favoring C2 for its characteristics of low latency
728 * (quick response), good power savings, and ability to allow bus
729 * mastering activity. Note that the Cx state policy is completely
730 * customizable and can be altered dynamically.
731 */
732
733 /* startup state */
734 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
735 cx = &pr->power.states[i];
736 if (!cx->valid)
737 continue;
738
739 if (!state_is_set)
740 pr->power.state = cx;
741 state_is_set++;
742 break;
743 }
744
745 if (!state_is_set)
746 return -ENODEV;
747
748 /* demotion */
749 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
750 cx = &pr->power.states[i];
751 if (!cx->valid)
752 continue;
753
754 if (lower) {
755 cx->demotion.state = lower;
756 cx->demotion.threshold.ticks = cx->latency_ticks;
757 cx->demotion.threshold.count = 1;
758 if (cx->type == ACPI_STATE_C3)
759 cx->demotion.threshold.bm = bm_history;
760 }
761
762 lower = cx;
763 }
764
765 /* promotion */
766 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
767 cx = &pr->power.states[i];
768 if (!cx->valid)
769 continue;
770
771 if (higher) {
772 cx->promotion.state = higher;
773 cx->promotion.threshold.ticks = cx->latency_ticks;
774 if (cx->type >= ACPI_STATE_C2)
775 cx->promotion.threshold.count = 4;
776 else
777 cx->promotion.threshold.count = 10;
778 if (higher->type == ACPI_STATE_C3)
779 cx->promotion.threshold.bm = bm_history;
780 }
781
782 higher = cx;
783 }
784
785 return 0;
786 }
787 #endif /* !CONFIG_CPU_IDLE */
788
789 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
790 {
791
792 if (!pr)
793 return -EINVAL;
794
795 if (!pr->pblk)
796 return -ENODEV;
797
798 /* if info is obtained from pblk/fadt, type equals state */
799 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
800 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
801
802 #ifndef CONFIG_HOTPLUG_CPU
803 /*
804 * Check for P_LVL2_UP flag before entering C2 and above on
805 * an SMP system.
806 */
807 if ((num_online_cpus() > 1) &&
808 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
809 return -ENODEV;
810 #endif
811
812 /* determine C2 and C3 address from pblk */
813 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
814 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
815
816 /* determine latencies from FADT */
817 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
818 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
819
820 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
821 "lvl2[0x%08x] lvl3[0x%08x]\n",
822 pr->power.states[ACPI_STATE_C2].address,
823 pr->power.states[ACPI_STATE_C3].address));
824
825 return 0;
826 }
827
828 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
829 {
830 if (!pr->power.states[ACPI_STATE_C1].valid) {
831 /* set the first C-State to C1 */
832 /* all processors need to support C1 */
833 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
834 pr->power.states[ACPI_STATE_C1].valid = 1;
835 }
836 /* the C0 state only exists as a filler in our array */
837 pr->power.states[ACPI_STATE_C0].valid = 1;
838 return 0;
839 }
840
841 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
842 {
843 acpi_status status = 0;
844 acpi_integer count;
845 int current_count;
846 int i;
847 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
848 union acpi_object *cst;
849
850
851 if (nocst)
852 return -ENODEV;
853
854 current_count = 0;
855
856 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
857 if (ACPI_FAILURE(status)) {
858 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
859 return -ENODEV;
860 }
861
862 cst = buffer.pointer;
863
864 /* There must be at least 2 elements */
865 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
866 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
867 status = -EFAULT;
868 goto end;
869 }
870
871 count = cst->package.elements[0].integer.value;
872
873 /* Validate number of power states. */
874 if (count < 1 || count != cst->package.count - 1) {
875 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
876 status = -EFAULT;
877 goto end;
878 }
879
880 /* Tell driver that at least _CST is supported. */
881 pr->flags.has_cst = 1;
882
883 for (i = 1; i <= count; i++) {
884 union acpi_object *element;
885 union acpi_object *obj;
886 struct acpi_power_register *reg;
887 struct acpi_processor_cx cx;
888
889 memset(&cx, 0, sizeof(cx));
890
891 element = &(cst->package.elements[i]);
892 if (element->type != ACPI_TYPE_PACKAGE)
893 continue;
894
895 if (element->package.count != 4)
896 continue;
897
898 obj = &(element->package.elements[0]);
899
900 if (obj->type != ACPI_TYPE_BUFFER)
901 continue;
902
903 reg = (struct acpi_power_register *)obj->buffer.pointer;
904
905 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
906 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
907 continue;
908
909 /* There should be an easy way to extract an integer... */
910 obj = &(element->package.elements[1]);
911 if (obj->type != ACPI_TYPE_INTEGER)
912 continue;
913
914 cx.type = obj->integer.value;
915 /*
916 * Some buggy BIOSes won't list C1 in _CST -
917 * Let acpi_processor_get_power_info_default() handle them later
918 */
919 if (i == 1 && cx.type != ACPI_STATE_C1)
920 current_count++;
921
922 cx.address = reg->address;
923 cx.index = current_count + 1;
924
925 cx.space_id = ACPI_CSTATE_SYSTEMIO;
926 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
927 if (acpi_processor_ffh_cstate_probe
928 (pr->id, &cx, reg) == 0) {
929 cx.space_id = ACPI_CSTATE_FFH;
930 } else if (cx.type != ACPI_STATE_C1) {
931 /*
932 * C1 is a special case where FIXED_HARDWARE
933 * can be handled in non-MWAIT way as well.
934 * In that case, save this _CST entry info.
935 * That is, we retain space_id of SYSTEM_IO for
936 * halt based C1.
937 * Otherwise, ignore this info and continue.
938 */
939 continue;
940 }
941 }
942
943 obj = &(element->package.elements[2]);
944 if (obj->type != ACPI_TYPE_INTEGER)
945 continue;
946
947 cx.latency = obj->integer.value;
948
949 obj = &(element->package.elements[3]);
950 if (obj->type != ACPI_TYPE_INTEGER)
951 continue;
952
953 cx.power = obj->integer.value;
954
955 current_count++;
956 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
957
958 /*
959 * We support total ACPI_PROCESSOR_MAX_POWER - 1
960 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
961 */
962 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
963 printk(KERN_WARNING
964 "Limiting number of power states to max (%d)\n",
965 ACPI_PROCESSOR_MAX_POWER);
966 printk(KERN_WARNING
967 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
968 break;
969 }
970 }
971
972 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
973 current_count));
974
975 /* Validate number of power states discovered */
976 if (current_count < 2)
977 status = -EFAULT;
978
979 end:
980 kfree(buffer.pointer);
981
982 return status;
983 }
984
985 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
986 {
987
988 if (!cx->address)
989 return;
990
991 /*
992 * C2 latency must be less than or equal to 100
993 * microseconds.
994 */
995 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
996 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
997 "latency too large [%d]\n", cx->latency));
998 return;
999 }
1000
1001 /*
1002 * Otherwise we've met all of our C2 requirements.
1003 * Normalize the C2 latency to expidite policy
1004 */
1005 cx->valid = 1;
1006
1007 #ifndef CONFIG_CPU_IDLE
1008 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1009 #else
1010 cx->latency_ticks = cx->latency;
1011 #endif
1012
1013 return;
1014 }
1015
1016 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1017 struct acpi_processor_cx *cx)
1018 {
1019 static int bm_check_flag;
1020
1021
1022 if (!cx->address)
1023 return;
1024
1025 /*
1026 * C3 latency must be less than or equal to 1000
1027 * microseconds.
1028 */
1029 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1030 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1031 "latency too large [%d]\n", cx->latency));
1032 return;
1033 }
1034
1035 /*
1036 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1037 * DMA transfers are used by any ISA device to avoid livelock.
1038 * Note that we could disable Type-F DMA (as recommended by
1039 * the erratum), but this is known to disrupt certain ISA
1040 * devices thus we take the conservative approach.
1041 */
1042 else if (errata.piix4.fdma) {
1043 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1044 "C3 not supported on PIIX4 with Type-F DMA\n"));
1045 return;
1046 }
1047
1048 /* All the logic here assumes flags.bm_check is same across all CPUs */
1049 if (!bm_check_flag) {
1050 /* Determine whether bm_check is needed based on CPU */
1051 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1052 bm_check_flag = pr->flags.bm_check;
1053 } else {
1054 pr->flags.bm_check = bm_check_flag;
1055 }
1056
1057 if (pr->flags.bm_check) {
1058 if (!pr->flags.bm_control) {
1059 if (pr->flags.has_cst != 1) {
1060 /* bus mastering control is necessary */
1061 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1062 "C3 support requires BM control\n"));
1063 return;
1064 } else {
1065 /* Here we enter C3 without bus mastering */
1066 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1067 "C3 support without BM control\n"));
1068 }
1069 }
1070 } else {
1071 /*
1072 * WBINVD should be set in fadt, for C3 state to be
1073 * supported on when bm_check is not required.
1074 */
1075 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1076 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1077 "Cache invalidation should work properly"
1078 " for C3 to be enabled on SMP systems\n"));
1079 return;
1080 }
1081 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1082 }
1083
1084 /*
1085 * Otherwise we've met all of our C3 requirements.
1086 * Normalize the C3 latency to expidite policy. Enable
1087 * checking of bus mastering status (bm_check) so we can
1088 * use this in our C3 policy
1089 */
1090 cx->valid = 1;
1091
1092 #ifndef CONFIG_CPU_IDLE
1093 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1094 #else
1095 cx->latency_ticks = cx->latency;
1096 #endif
1097
1098 return;
1099 }
1100
1101 static int acpi_processor_power_verify(struct acpi_processor *pr)
1102 {
1103 unsigned int i;
1104 unsigned int working = 0;
1105
1106 pr->power.timer_broadcast_on_state = INT_MAX;
1107
1108 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1109 struct acpi_processor_cx *cx = &pr->power.states[i];
1110
1111 switch (cx->type) {
1112 case ACPI_STATE_C1:
1113 cx->valid = 1;
1114 break;
1115
1116 case ACPI_STATE_C2:
1117 acpi_processor_power_verify_c2(cx);
1118 if (cx->valid)
1119 acpi_timer_check_state(i, pr, cx);
1120 break;
1121
1122 case ACPI_STATE_C3:
1123 acpi_processor_power_verify_c3(pr, cx);
1124 if (cx->valid)
1125 acpi_timer_check_state(i, pr, cx);
1126 break;
1127 }
1128
1129 if (cx->valid)
1130 working++;
1131 }
1132
1133 acpi_propagate_timer_broadcast(pr);
1134
1135 return (working);
1136 }
1137
1138 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1139 {
1140 unsigned int i;
1141 int result;
1142
1143
1144 /* NOTE: the idle thread may not be running while calling
1145 * this function */
1146
1147 /* Zero initialize all the C-states info. */
1148 memset(pr->power.states, 0, sizeof(pr->power.states));
1149
1150 result = acpi_processor_get_power_info_cst(pr);
1151 if (result == -ENODEV)
1152 result = acpi_processor_get_power_info_fadt(pr);
1153
1154 if (result)
1155 return result;
1156
1157 acpi_processor_get_power_info_default(pr);
1158
1159 pr->power.count = acpi_processor_power_verify(pr);
1160
1161 #ifndef CONFIG_CPU_IDLE
1162 /*
1163 * Set Default Policy
1164 * ------------------
1165 * Now that we know which states are supported, set the default
1166 * policy. Note that this policy can be changed dynamically
1167 * (e.g. encourage deeper sleeps to conserve battery life when
1168 * not on AC).
1169 */
1170 result = acpi_processor_set_power_policy(pr);
1171 if (result)
1172 return result;
1173 #endif
1174
1175 /*
1176 * if one state of type C2 or C3 is available, mark this
1177 * CPU as being "idle manageable"
1178 */
1179 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1180 if (pr->power.states[i].valid) {
1181 pr->power.count = i;
1182 if (pr->power.states[i].type >= ACPI_STATE_C2)
1183 pr->flags.power = 1;
1184 }
1185 }
1186
1187 return 0;
1188 }
1189
1190 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1191 {
1192 struct acpi_processor *pr = seq->private;
1193 unsigned int i;
1194
1195
1196 if (!pr)
1197 goto end;
1198
1199 seq_printf(seq, "active state: C%zd\n"
1200 "max_cstate: C%d\n"
1201 "bus master activity: %08x\n"
1202 "maximum allowed latency: %d usec\n",
1203 pr->power.state ? pr->power.state - pr->power.states : 0,
1204 max_cstate, (unsigned)pr->power.bm_activity,
1205 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1206
1207 seq_puts(seq, "states:\n");
1208
1209 for (i = 1; i <= pr->power.count; i++) {
1210 seq_printf(seq, " %cC%d: ",
1211 (&pr->power.states[i] ==
1212 pr->power.state ? '*' : ' '), i);
1213
1214 if (!pr->power.states[i].valid) {
1215 seq_puts(seq, "<not supported>\n");
1216 continue;
1217 }
1218
1219 switch (pr->power.states[i].type) {
1220 case ACPI_STATE_C1:
1221 seq_printf(seq, "type[C1] ");
1222 break;
1223 case ACPI_STATE_C2:
1224 seq_printf(seq, "type[C2] ");
1225 break;
1226 case ACPI_STATE_C3:
1227 seq_printf(seq, "type[C3] ");
1228 break;
1229 default:
1230 seq_printf(seq, "type[--] ");
1231 break;
1232 }
1233
1234 if (pr->power.states[i].promotion.state)
1235 seq_printf(seq, "promotion[C%zd] ",
1236 (pr->power.states[i].promotion.state -
1237 pr->power.states));
1238 else
1239 seq_puts(seq, "promotion[--] ");
1240
1241 if (pr->power.states[i].demotion.state)
1242 seq_printf(seq, "demotion[C%zd] ",
1243 (pr->power.states[i].demotion.state -
1244 pr->power.states));
1245 else
1246 seq_puts(seq, "demotion[--] ");
1247
1248 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1249 pr->power.states[i].latency,
1250 pr->power.states[i].usage,
1251 (unsigned long long)pr->power.states[i].time);
1252 }
1253
1254 end:
1255 return 0;
1256 }
1257
1258 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1259 {
1260 return single_open(file, acpi_processor_power_seq_show,
1261 PDE(inode)->data);
1262 }
1263
1264 static const struct file_operations acpi_processor_power_fops = {
1265 .open = acpi_processor_power_open_fs,
1266 .read = seq_read,
1267 .llseek = seq_lseek,
1268 .release = single_release,
1269 };
1270
1271 #ifndef CONFIG_CPU_IDLE
1272
1273 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1274 {
1275 int result = 0;
1276
1277
1278 if (!pr)
1279 return -EINVAL;
1280
1281 if (nocst) {
1282 return -ENODEV;
1283 }
1284
1285 if (!pr->flags.power_setup_done)
1286 return -ENODEV;
1287
1288 /* Fall back to the default idle loop */
1289 pm_idle = pm_idle_save;
1290 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1291
1292 pr->flags.power = 0;
1293 result = acpi_processor_get_power_info(pr);
1294 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1295 pm_idle = acpi_processor_idle;
1296
1297 return result;
1298 }
1299
1300 #ifdef CONFIG_SMP
1301 static void smp_callback(void *v)
1302 {
1303 /* we already woke the CPU up, nothing more to do */
1304 }
1305
1306 /*
1307 * This function gets called when a part of the kernel has a new latency
1308 * requirement. This means we need to get all processors out of their C-state,
1309 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1310 * wakes them all right up.
1311 */
1312 static int acpi_processor_latency_notify(struct notifier_block *b,
1313 unsigned long l, void *v)
1314 {
1315 smp_call_function(smp_callback, NULL, 0, 1);
1316 return NOTIFY_OK;
1317 }
1318
1319 static struct notifier_block acpi_processor_latency_notifier = {
1320 .notifier_call = acpi_processor_latency_notify,
1321 };
1322
1323 #endif
1324
1325 #else /* CONFIG_CPU_IDLE */
1326
1327 /**
1328 * acpi_idle_bm_check - checks if bus master activity was detected
1329 */
1330 static int acpi_idle_bm_check(void)
1331 {
1332 u32 bm_status = 0;
1333
1334 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1335 if (bm_status)
1336 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1337 /*
1338 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1339 * the true state of bus mastering activity; forcing us to
1340 * manually check the BMIDEA bit of each IDE channel.
1341 */
1342 else if (errata.piix4.bmisx) {
1343 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1344 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1345 bm_status = 1;
1346 }
1347 return bm_status;
1348 }
1349
1350 /**
1351 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1352 * @pr: the processor
1353 * @target: the new target state
1354 */
1355 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1356 struct acpi_processor_cx *target)
1357 {
1358 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1359 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1360 pr->flags.bm_rld_set = 0;
1361 }
1362
1363 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1364 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1365 pr->flags.bm_rld_set = 1;
1366 }
1367 }
1368
1369 /**
1370 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1371 * @cx: cstate data
1372 */
1373 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1374 {
1375 if (cx->space_id == ACPI_CSTATE_FFH) {
1376 /* Call into architectural FFH based C-state */
1377 acpi_processor_ffh_cstate_enter(cx);
1378 } else {
1379 int unused;
1380 /* IO port based C-state */
1381 inb(cx->address);
1382 /* Dummy wait op - must do something useless after P_LVL2 read
1383 because chipsets cannot guarantee that STPCLK# signal
1384 gets asserted in time to freeze execution properly. */
1385 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1386 }
1387 }
1388
1389 /**
1390 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1391 * @dev: the target CPU
1392 * @state: the state data
1393 *
1394 * This is equivalent to the HALT instruction.
1395 */
1396 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1397 struct cpuidle_state *state)
1398 {
1399 struct acpi_processor *pr;
1400 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1401 pr = processors[smp_processor_id()];
1402
1403 if (unlikely(!pr))
1404 return 0;
1405
1406 if (pr->flags.bm_check)
1407 acpi_idle_update_bm_rld(pr, cx);
1408
1409 acpi_safe_halt();
1410
1411 cx->usage++;
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1418 * @dev: the target CPU
1419 * @state: the state data
1420 */
1421 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1422 struct cpuidle_state *state)
1423 {
1424 struct acpi_processor *pr;
1425 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1426 u32 t1, t2;
1427 int sleep_ticks = 0;
1428
1429 pr = processors[smp_processor_id()];
1430
1431 if (unlikely(!pr))
1432 return 0;
1433
1434 if (acpi_idle_suspend)
1435 return(acpi_idle_enter_c1(dev, state));
1436
1437 local_irq_disable();
1438 current_thread_info()->status &= ~TS_POLLING;
1439 /*
1440 * TS_POLLING-cleared state must be visible before we test
1441 * NEED_RESCHED:
1442 */
1443 smp_mb();
1444
1445 if (unlikely(need_resched())) {
1446 current_thread_info()->status |= TS_POLLING;
1447 local_irq_enable();
1448 return 0;
1449 }
1450
1451 acpi_unlazy_tlb(smp_processor_id());
1452 /*
1453 * Must be done before busmaster disable as we might need to
1454 * access HPET !
1455 */
1456 acpi_state_timer_broadcast(pr, cx, 1);
1457
1458 if (pr->flags.bm_check)
1459 acpi_idle_update_bm_rld(pr, cx);
1460
1461 if (cx->type == ACPI_STATE_C3)
1462 ACPI_FLUSH_CPU_CACHE();
1463
1464 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1465 /* Tell the scheduler that we are going deep-idle: */
1466 sched_clock_idle_sleep_event();
1467 acpi_idle_do_entry(cx);
1468 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1469
1470 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1471 /* TSC could halt in idle, so notify users */
1472 if (tsc_halts_in_c(cx->type))
1473 mark_tsc_unstable("TSC halts in idle");;
1474 #endif
1475 sleep_ticks = ticks_elapsed(t1, t2);
1476
1477 /* Tell the scheduler how much we idled: */
1478 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1479
1480 local_irq_enable();
1481 current_thread_info()->status |= TS_POLLING;
1482
1483 cx->usage++;
1484
1485 acpi_state_timer_broadcast(pr, cx, 0);
1486 cx->time += sleep_ticks;
1487 return ticks_elapsed_in_us(t1, t2);
1488 }
1489
1490 static int c3_cpu_count;
1491 static DEFINE_SPINLOCK(c3_lock);
1492
1493 /**
1494 * acpi_idle_enter_bm - enters C3 with proper BM handling
1495 * @dev: the target CPU
1496 * @state: the state data
1497 *
1498 * If BM is detected, the deepest non-C3 idle state is entered instead.
1499 */
1500 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1501 struct cpuidle_state *state)
1502 {
1503 struct acpi_processor *pr;
1504 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1505 u32 t1, t2;
1506 int sleep_ticks = 0;
1507
1508 pr = processors[smp_processor_id()];
1509
1510 if (unlikely(!pr))
1511 return 0;
1512
1513 if (acpi_idle_suspend)
1514 return(acpi_idle_enter_c1(dev, state));
1515
1516 if (acpi_idle_bm_check()) {
1517 if (dev->safe_state) {
1518 return dev->safe_state->enter(dev, dev->safe_state);
1519 } else {
1520 acpi_safe_halt();
1521 return 0;
1522 }
1523 }
1524
1525 local_irq_disable();
1526 current_thread_info()->status &= ~TS_POLLING;
1527 /*
1528 * TS_POLLING-cleared state must be visible before we test
1529 * NEED_RESCHED:
1530 */
1531 smp_mb();
1532
1533 if (unlikely(need_resched())) {
1534 current_thread_info()->status |= TS_POLLING;
1535 local_irq_enable();
1536 return 0;
1537 }
1538
1539 /* Tell the scheduler that we are going deep-idle: */
1540 sched_clock_idle_sleep_event();
1541 /*
1542 * Must be done before busmaster disable as we might need to
1543 * access HPET !
1544 */
1545 acpi_state_timer_broadcast(pr, cx, 1);
1546
1547 acpi_idle_update_bm_rld(pr, cx);
1548
1549 /*
1550 * disable bus master
1551 * bm_check implies we need ARB_DIS
1552 * !bm_check implies we need cache flush
1553 * bm_control implies whether we can do ARB_DIS
1554 *
1555 * That leaves a case where bm_check is set and bm_control is
1556 * not set. In that case we cannot do much, we enter C3
1557 * without doing anything.
1558 */
1559 if (pr->flags.bm_check && pr->flags.bm_control) {
1560 spin_lock(&c3_lock);
1561 c3_cpu_count++;
1562 /* Disable bus master arbitration when all CPUs are in C3 */
1563 if (c3_cpu_count == num_online_cpus())
1564 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1565 spin_unlock(&c3_lock);
1566 } else if (!pr->flags.bm_check) {
1567 ACPI_FLUSH_CPU_CACHE();
1568 }
1569
1570 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1571 acpi_idle_do_entry(cx);
1572 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1573
1574 /* Re-enable bus master arbitration */
1575 if (pr->flags.bm_check && pr->flags.bm_control) {
1576 spin_lock(&c3_lock);
1577 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1578 c3_cpu_count--;
1579 spin_unlock(&c3_lock);
1580 }
1581
1582 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1583 /* TSC could halt in idle, so notify users */
1584 if (tsc_halts_in_c(ACPI_STATE_C3))
1585 mark_tsc_unstable("TSC halts in idle");
1586 #endif
1587 sleep_ticks = ticks_elapsed(t1, t2);
1588 /* Tell the scheduler how much we idled: */
1589 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1590
1591 local_irq_enable();
1592 current_thread_info()->status |= TS_POLLING;
1593
1594 cx->usage++;
1595
1596 acpi_state_timer_broadcast(pr, cx, 0);
1597 cx->time += sleep_ticks;
1598 return ticks_elapsed_in_us(t1, t2);
1599 }
1600
1601 struct cpuidle_driver acpi_idle_driver = {
1602 .name = "acpi_idle",
1603 .owner = THIS_MODULE,
1604 };
1605
1606 /**
1607 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1608 * @pr: the ACPI processor
1609 */
1610 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1611 {
1612 int i, count = 0;
1613 struct acpi_processor_cx *cx;
1614 struct cpuidle_state *state;
1615 struct cpuidle_device *dev = &pr->power.dev;
1616
1617 if (!pr->flags.power_setup_done)
1618 return -EINVAL;
1619
1620 if (pr->flags.power == 0) {
1621 return -EINVAL;
1622 }
1623
1624 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1625 cx = &pr->power.states[i];
1626 state = &dev->states[count];
1627
1628 if (!cx->valid)
1629 continue;
1630
1631 #ifdef CONFIG_HOTPLUG_CPU
1632 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1633 !pr->flags.has_cst &&
1634 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1635 continue;
1636 #endif
1637 cpuidle_set_statedata(state, cx);
1638
1639 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1640 state->exit_latency = cx->latency;
1641 state->target_residency = cx->latency * 6;
1642 state->power_usage = cx->power;
1643
1644 state->flags = 0;
1645 switch (cx->type) {
1646 case ACPI_STATE_C1:
1647 state->flags |= CPUIDLE_FLAG_SHALLOW;
1648 state->enter = acpi_idle_enter_c1;
1649 dev->safe_state = state;
1650 break;
1651
1652 case ACPI_STATE_C2:
1653 state->flags |= CPUIDLE_FLAG_BALANCED;
1654 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1655 state->enter = acpi_idle_enter_simple;
1656 dev->safe_state = state;
1657 break;
1658
1659 case ACPI_STATE_C3:
1660 state->flags |= CPUIDLE_FLAG_DEEP;
1661 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1662 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1663 state->enter = pr->flags.bm_check ?
1664 acpi_idle_enter_bm :
1665 acpi_idle_enter_simple;
1666 break;
1667 }
1668
1669 count++;
1670 }
1671
1672 dev->state_count = count;
1673
1674 if (!count)
1675 return -EINVAL;
1676
1677 return 0;
1678 }
1679
1680 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1681 {
1682 int ret;
1683
1684 if (!pr)
1685 return -EINVAL;
1686
1687 if (nocst) {
1688 return -ENODEV;
1689 }
1690
1691 if (!pr->flags.power_setup_done)
1692 return -ENODEV;
1693
1694 cpuidle_pause_and_lock();
1695 cpuidle_disable_device(&pr->power.dev);
1696 acpi_processor_get_power_info(pr);
1697 acpi_processor_setup_cpuidle(pr);
1698 ret = cpuidle_enable_device(&pr->power.dev);
1699 cpuidle_resume_and_unlock();
1700
1701 return ret;
1702 }
1703
1704 #endif /* CONFIG_CPU_IDLE */
1705
1706 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1707 struct acpi_device *device)
1708 {
1709 acpi_status status = 0;
1710 static int first_run;
1711 struct proc_dir_entry *entry = NULL;
1712 unsigned int i;
1713
1714
1715 if (!first_run) {
1716 dmi_check_system(processor_power_dmi_table);
1717 max_cstate = acpi_processor_cstate_check(max_cstate);
1718 if (max_cstate < ACPI_C_STATES_MAX)
1719 printk(KERN_NOTICE
1720 "ACPI: processor limited to max C-state %d\n",
1721 max_cstate);
1722 first_run++;
1723 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1724 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1725 &acpi_processor_latency_notifier);
1726 #endif
1727 }
1728
1729 if (!pr)
1730 return -EINVAL;
1731
1732 if (acpi_gbl_FADT.cst_control && !nocst) {
1733 status =
1734 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1735 if (ACPI_FAILURE(status)) {
1736 ACPI_EXCEPTION((AE_INFO, status,
1737 "Notifying BIOS of _CST ability failed"));
1738 }
1739 }
1740
1741 acpi_processor_get_power_info(pr);
1742 pr->flags.power_setup_done = 1;
1743
1744 /*
1745 * Install the idle handler if processor power management is supported.
1746 * Note that we use previously set idle handler will be used on
1747 * platforms that only support C1.
1748 */
1749 if ((pr->flags.power) && (!boot_option_idle_override)) {
1750 #ifdef CONFIG_CPU_IDLE
1751 acpi_processor_setup_cpuidle(pr);
1752 pr->power.dev.cpu = pr->id;
1753 if (cpuidle_register_device(&pr->power.dev))
1754 return -EIO;
1755 #endif
1756
1757 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1758 for (i = 1; i <= pr->power.count; i++)
1759 if (pr->power.states[i].valid)
1760 printk(" C%d[C%d]", i,
1761 pr->power.states[i].type);
1762 printk(")\n");
1763
1764 #ifndef CONFIG_CPU_IDLE
1765 if (pr->id == 0) {
1766 pm_idle_save = pm_idle;
1767 pm_idle = acpi_processor_idle;
1768 }
1769 #endif
1770 }
1771
1772 /* 'power' [R] */
1773 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1774 S_IRUGO, acpi_device_dir(device));
1775 if (!entry)
1776 return -EIO;
1777 else {
1778 entry->proc_fops = &acpi_processor_power_fops;
1779 entry->data = acpi_driver_data(device);
1780 entry->owner = THIS_MODULE;
1781 }
1782
1783 return 0;
1784 }
1785
1786 int acpi_processor_power_exit(struct acpi_processor *pr,
1787 struct acpi_device *device)
1788 {
1789 #ifdef CONFIG_CPU_IDLE
1790 if ((pr->flags.power) && (!boot_option_idle_override))
1791 cpuidle_unregister_device(&pr->power.dev);
1792 #endif
1793 pr->flags.power_setup_done = 0;
1794
1795 if (acpi_device_dir(device))
1796 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1797 acpi_device_dir(device));
1798
1799 #ifndef CONFIG_CPU_IDLE
1800
1801 /* Unregister the idle handler when processor #0 is removed. */
1802 if (pr->id == 0) {
1803 pm_idle = pm_idle_save;
1804
1805 /*
1806 * We are about to unload the current idle thread pm callback
1807 * (pm_idle), Wait for all processors to update cached/local
1808 * copies of pm_idle before proceeding.
1809 */
1810 cpu_idle_wait();
1811 #ifdef CONFIG_SMP
1812 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1813 &acpi_processor_latency_notifier);
1814 #endif
1815 }
1816 #endif
1817
1818 return 0;
1819 }