]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/processor_idle.c
Merge git://git.infradead.org/battery-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
94 */
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105
106 /*
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
109 *
110 * To skip this limit, boot/load with a large max_cstate limit.
111 */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 return 0;
116
117 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120
121 max_cstate = (long)id->driver_data;
122
123 return 0;
124 }
125
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 { set_max_cstate, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 { set_max_cstate, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 { set_max_cstate, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 (void *)2},
184 {},
185 };
186
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 if (t2 >= t1)
190 return (t2 - t1);
191 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 else
194 return ((0xFFFFFFFF - t1) + t2);
195 }
196
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 if (t2 >= t1)
200 return PM_TIMER_TICKS_TO_US(t2 - t1);
201 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 else
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206
207 /*
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
210 */
211 static void acpi_safe_halt(void)
212 {
213 current_thread_info()->status &= ~TS_POLLING;
214 /*
215 * TS_POLLING-cleared state must be visible before we
216 * test NEED_RESCHED:
217 */
218 smp_mb();
219 if (!need_resched()) {
220 safe_halt();
221 local_irq_disable();
222 }
223 current_thread_info()->status |= TS_POLLING;
224 }
225
226 #ifndef CONFIG_CPU_IDLE
227
228 static void
229 acpi_processor_power_activate(struct acpi_processor *pr,
230 struct acpi_processor_cx *new)
231 {
232 struct acpi_processor_cx *old;
233
234 if (!pr || !new)
235 return;
236
237 old = pr->power.state;
238
239 if (old)
240 old->promotion.count = 0;
241 new->demotion.count = 0;
242
243 /* Cleanup from old state. */
244 if (old) {
245 switch (old->type) {
246 case ACPI_STATE_C3:
247 /* Disable bus master reload */
248 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
249 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
250 break;
251 }
252 }
253
254 /* Prepare to use new state. */
255 switch (new->type) {
256 case ACPI_STATE_C3:
257 /* Enable bus master reload */
258 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
259 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
260 break;
261 }
262
263 pr->power.state = new;
264
265 return;
266 }
267
268 static atomic_t c3_cpu_count;
269
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
272 {
273 if (cstate->entry_method == ACPI_CSTATE_FFH) {
274 /* Call into architectural FFH based C-state */
275 acpi_processor_ffh_cstate_enter(cstate);
276 } else {
277 int unused;
278 /* IO port based C-state */
279 inb(cstate->address);
280 /* Dummy wait op - must do something useless after P_LVL2 read
281 because chipsets cannot guarantee that STPCLK# signal
282 gets asserted in time to freeze execution properly. */
283 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
284 }
285 }
286 #endif /* !CONFIG_CPU_IDLE */
287
288 #ifdef ARCH_APICTIMER_STOPS_ON_C3
289
290 /*
291 * Some BIOS implementations switch to C3 in the published C2 state.
292 * This seems to be a common problem on AMD boxen, but other vendors
293 * are affected too. We pick the most conservative approach: we assume
294 * that the local APIC stops in both C2 and C3.
295 */
296 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
297 struct acpi_processor_cx *cx)
298 {
299 struct acpi_processor_power *pwr = &pr->power;
300 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
301
302 /*
303 * Check, if one of the previous states already marked the lapic
304 * unstable
305 */
306 if (pwr->timer_broadcast_on_state < state)
307 return;
308
309 if (cx->type >= type)
310 pr->power.timer_broadcast_on_state = state;
311 }
312
313 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
314 {
315 unsigned long reason;
316
317 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
318 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
319
320 clockevents_notify(reason, &pr->id);
321 }
322
323 /* Power(C) State timer broadcast control */
324 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
325 struct acpi_processor_cx *cx,
326 int broadcast)
327 {
328 int state = cx - pr->power.states;
329
330 if (state >= pr->power.timer_broadcast_on_state) {
331 unsigned long reason;
332
333 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
334 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
335 clockevents_notify(reason, &pr->id);
336 }
337 }
338
339 #else
340
341 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
342 struct acpi_processor_cx *cstate) { }
343 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
344 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
345 struct acpi_processor_cx *cx,
346 int broadcast)
347 {
348 }
349
350 #endif
351
352 /*
353 * Suspend / resume control
354 */
355 static int acpi_idle_suspend;
356
357 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
358 {
359 acpi_idle_suspend = 1;
360 return 0;
361 }
362
363 int acpi_processor_resume(struct acpi_device * device)
364 {
365 acpi_idle_suspend = 0;
366 return 0;
367 }
368
369 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
370 static int tsc_halts_in_c(int state)
371 {
372 switch (boot_cpu_data.x86_vendor) {
373 case X86_VENDOR_AMD:
374 /*
375 * AMD Fam10h TSC will tick in all
376 * C/P/S0/S1 states when this bit is set.
377 */
378 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
379 return 0;
380 /*FALL THROUGH*/
381 case X86_VENDOR_INTEL:
382 /* Several cases known where TSC halts in C2 too */
383 default:
384 return state > ACPI_STATE_C1;
385 }
386 }
387 #endif
388
389 #ifndef CONFIG_CPU_IDLE
390 static void acpi_processor_idle(void)
391 {
392 struct acpi_processor *pr = NULL;
393 struct acpi_processor_cx *cx = NULL;
394 struct acpi_processor_cx *next_state = NULL;
395 int sleep_ticks = 0;
396 u32 t1, t2 = 0;
397
398 /*
399 * Interrupts must be disabled during bus mastering calculations and
400 * for C2/C3 transitions.
401 */
402 local_irq_disable();
403
404 pr = processors[smp_processor_id()];
405 if (!pr) {
406 local_irq_enable();
407 return;
408 }
409
410 /*
411 * Check whether we truly need to go idle, or should
412 * reschedule:
413 */
414 if (unlikely(need_resched())) {
415 local_irq_enable();
416 return;
417 }
418
419 cx = pr->power.state;
420 if (!cx || acpi_idle_suspend) {
421 if (pm_idle_save) {
422 pm_idle_save(); /* enables IRQs */
423 } else {
424 acpi_safe_halt();
425 local_irq_enable();
426 }
427
428 return;
429 }
430
431 /*
432 * Check BM Activity
433 * -----------------
434 * Check for bus mastering activity (if required), record, and check
435 * for demotion.
436 */
437 if (pr->flags.bm_check) {
438 u32 bm_status = 0;
439 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
440
441 if (diff > 31)
442 diff = 31;
443
444 pr->power.bm_activity <<= diff;
445
446 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
447 if (bm_status) {
448 pr->power.bm_activity |= 0x1;
449 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
450 }
451 /*
452 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
453 * the true state of bus mastering activity; forcing us to
454 * manually check the BMIDEA bit of each IDE channel.
455 */
456 else if (errata.piix4.bmisx) {
457 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
458 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
459 pr->power.bm_activity |= 0x1;
460 }
461
462 pr->power.bm_check_timestamp = jiffies;
463
464 /*
465 * If bus mastering is or was active this jiffy, demote
466 * to avoid a faulty transition. Note that the processor
467 * won't enter a low-power state during this call (to this
468 * function) but should upon the next.
469 *
470 * TBD: A better policy might be to fallback to the demotion
471 * state (use it for this quantum only) istead of
472 * demoting -- and rely on duration as our sole demotion
473 * qualification. This may, however, introduce DMA
474 * issues (e.g. floppy DMA transfer overrun/underrun).
475 */
476 if ((pr->power.bm_activity & 0x1) &&
477 cx->demotion.threshold.bm) {
478 local_irq_enable();
479 next_state = cx->demotion.state;
480 goto end;
481 }
482 }
483
484 #ifdef CONFIG_HOTPLUG_CPU
485 /*
486 * Check for P_LVL2_UP flag before entering C2 and above on
487 * an SMP system. We do it here instead of doing it at _CST/P_LVL
488 * detection phase, to work cleanly with logical CPU hotplug.
489 */
490 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
491 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
492 cx = &pr->power.states[ACPI_STATE_C1];
493 #endif
494
495 /*
496 * Sleep:
497 * ------
498 * Invoke the current Cx state to put the processor to sleep.
499 */
500 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
501 current_thread_info()->status &= ~TS_POLLING;
502 /*
503 * TS_POLLING-cleared state must be visible before we
504 * test NEED_RESCHED:
505 */
506 smp_mb();
507 if (need_resched()) {
508 current_thread_info()->status |= TS_POLLING;
509 local_irq_enable();
510 return;
511 }
512 }
513
514 switch (cx->type) {
515
516 case ACPI_STATE_C1:
517 /*
518 * Invoke C1.
519 * Use the appropriate idle routine, the one that would
520 * be used without acpi C-states.
521 */
522 if (pm_idle_save) {
523 pm_idle_save(); /* enables IRQs */
524 } else {
525 acpi_safe_halt();
526 local_irq_enable();
527 }
528
529 /*
530 * TBD: Can't get time duration while in C1, as resumes
531 * go to an ISR rather than here. Need to instrument
532 * base interrupt handler.
533 *
534 * Note: the TSC better not stop in C1, sched_clock() will
535 * skew otherwise.
536 */
537 sleep_ticks = 0xFFFFFFFF;
538
539 break;
540
541 case ACPI_STATE_C2:
542 /* Get start time (ticks) */
543 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
544 /* Tell the scheduler that we are going deep-idle: */
545 sched_clock_idle_sleep_event();
546 /* Invoke C2 */
547 acpi_state_timer_broadcast(pr, cx, 1);
548 acpi_cstate_enter(cx);
549 /* Get end time (ticks) */
550 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
551
552 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
553 /* TSC halts in C2, so notify users */
554 if (tsc_halts_in_c(ACPI_STATE_C2))
555 mark_tsc_unstable("possible TSC halt in C2");
556 #endif
557 /* Compute time (ticks) that we were actually asleep */
558 sleep_ticks = ticks_elapsed(t1, t2);
559
560 /* Tell the scheduler how much we idled: */
561 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
562
563 /* Re-enable interrupts */
564 local_irq_enable();
565 /* Do not account our idle-switching overhead: */
566 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
567
568 current_thread_info()->status |= TS_POLLING;
569 acpi_state_timer_broadcast(pr, cx, 0);
570 break;
571
572 case ACPI_STATE_C3:
573 acpi_unlazy_tlb(smp_processor_id());
574 /*
575 * Must be done before busmaster disable as we might
576 * need to access HPET !
577 */
578 acpi_state_timer_broadcast(pr, cx, 1);
579 /*
580 * disable bus master
581 * bm_check implies we need ARB_DIS
582 * !bm_check implies we need cache flush
583 * bm_control implies whether we can do ARB_DIS
584 *
585 * That leaves a case where bm_check is set and bm_control is
586 * not set. In that case we cannot do much, we enter C3
587 * without doing anything.
588 */
589 if (pr->flags.bm_check && pr->flags.bm_control) {
590 if (atomic_inc_return(&c3_cpu_count) ==
591 num_online_cpus()) {
592 /*
593 * All CPUs are trying to go to C3
594 * Disable bus master arbitration
595 */
596 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
597 }
598 } else if (!pr->flags.bm_check) {
599 /* SMP with no shared cache... Invalidate cache */
600 ACPI_FLUSH_CPU_CACHE();
601 }
602
603 /* Get start time (ticks) */
604 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
605 /* Invoke C3 */
606 /* Tell the scheduler that we are going deep-idle: */
607 sched_clock_idle_sleep_event();
608 acpi_cstate_enter(cx);
609 /* Get end time (ticks) */
610 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
611 if (pr->flags.bm_check && pr->flags.bm_control) {
612 /* Enable bus master arbitration */
613 atomic_dec(&c3_cpu_count);
614 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
615 }
616
617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
618 /* TSC halts in C3, so notify users */
619 if (tsc_halts_in_c(ACPI_STATE_C3))
620 mark_tsc_unstable("TSC halts in C3");
621 #endif
622 /* Compute time (ticks) that we were actually asleep */
623 sleep_ticks = ticks_elapsed(t1, t2);
624 /* Tell the scheduler how much we idled: */
625 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
626
627 /* Re-enable interrupts */
628 local_irq_enable();
629 /* Do not account our idle-switching overhead: */
630 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
631
632 current_thread_info()->status |= TS_POLLING;
633 acpi_state_timer_broadcast(pr, cx, 0);
634 break;
635
636 default:
637 local_irq_enable();
638 return;
639 }
640 cx->usage++;
641 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
642 cx->time += sleep_ticks;
643
644 next_state = pr->power.state;
645
646 #ifdef CONFIG_HOTPLUG_CPU
647 /* Don't do promotion/demotion */
648 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
649 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
650 next_state = cx;
651 goto end;
652 }
653 #endif
654
655 /*
656 * Promotion?
657 * ----------
658 * Track the number of longs (time asleep is greater than threshold)
659 * and promote when the count threshold is reached. Note that bus
660 * mastering activity may prevent promotions.
661 * Do not promote above max_cstate.
662 */
663 if (cx->promotion.state &&
664 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
665 if (sleep_ticks > cx->promotion.threshold.ticks &&
666 cx->promotion.state->latency <=
667 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
668 cx->promotion.count++;
669 cx->demotion.count = 0;
670 if (cx->promotion.count >=
671 cx->promotion.threshold.count) {
672 if (pr->flags.bm_check) {
673 if (!
674 (pr->power.bm_activity & cx->
675 promotion.threshold.bm)) {
676 next_state =
677 cx->promotion.state;
678 goto end;
679 }
680 } else {
681 next_state = cx->promotion.state;
682 goto end;
683 }
684 }
685 }
686 }
687
688 /*
689 * Demotion?
690 * ---------
691 * Track the number of shorts (time asleep is less than time threshold)
692 * and demote when the usage threshold is reached.
693 */
694 if (cx->demotion.state) {
695 if (sleep_ticks < cx->demotion.threshold.ticks) {
696 cx->demotion.count++;
697 cx->promotion.count = 0;
698 if (cx->demotion.count >= cx->demotion.threshold.count) {
699 next_state = cx->demotion.state;
700 goto end;
701 }
702 }
703 }
704
705 end:
706 /*
707 * Demote if current state exceeds max_cstate
708 * or if the latency of the current state is unacceptable
709 */
710 if ((pr->power.state - pr->power.states) > max_cstate ||
711 pr->power.state->latency >
712 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
713 if (cx->demotion.state)
714 next_state = cx->demotion.state;
715 }
716
717 /*
718 * New Cx State?
719 * -------------
720 * If we're going to start using a new Cx state we must clean up
721 * from the previous and prepare to use the new.
722 */
723 if (next_state != pr->power.state)
724 acpi_processor_power_activate(pr, next_state);
725 }
726
727 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
728 {
729 unsigned int i;
730 unsigned int state_is_set = 0;
731 struct acpi_processor_cx *lower = NULL;
732 struct acpi_processor_cx *higher = NULL;
733 struct acpi_processor_cx *cx;
734
735
736 if (!pr)
737 return -EINVAL;
738
739 /*
740 * This function sets the default Cx state policy (OS idle handler).
741 * Our scheme is to promote quickly to C2 but more conservatively
742 * to C3. We're favoring C2 for its characteristics of low latency
743 * (quick response), good power savings, and ability to allow bus
744 * mastering activity. Note that the Cx state policy is completely
745 * customizable and can be altered dynamically.
746 */
747
748 /* startup state */
749 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
750 cx = &pr->power.states[i];
751 if (!cx->valid)
752 continue;
753
754 if (!state_is_set)
755 pr->power.state = cx;
756 state_is_set++;
757 break;
758 }
759
760 if (!state_is_set)
761 return -ENODEV;
762
763 /* demotion */
764 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
765 cx = &pr->power.states[i];
766 if (!cx->valid)
767 continue;
768
769 if (lower) {
770 cx->demotion.state = lower;
771 cx->demotion.threshold.ticks = cx->latency_ticks;
772 cx->demotion.threshold.count = 1;
773 if (cx->type == ACPI_STATE_C3)
774 cx->demotion.threshold.bm = bm_history;
775 }
776
777 lower = cx;
778 }
779
780 /* promotion */
781 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
782 cx = &pr->power.states[i];
783 if (!cx->valid)
784 continue;
785
786 if (higher) {
787 cx->promotion.state = higher;
788 cx->promotion.threshold.ticks = cx->latency_ticks;
789 if (cx->type >= ACPI_STATE_C2)
790 cx->promotion.threshold.count = 4;
791 else
792 cx->promotion.threshold.count = 10;
793 if (higher->type == ACPI_STATE_C3)
794 cx->promotion.threshold.bm = bm_history;
795 }
796
797 higher = cx;
798 }
799
800 return 0;
801 }
802 #endif /* !CONFIG_CPU_IDLE */
803
804 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
805 {
806
807 if (!pr)
808 return -EINVAL;
809
810 if (!pr->pblk)
811 return -ENODEV;
812
813 /* if info is obtained from pblk/fadt, type equals state */
814 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
815 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
816
817 #ifndef CONFIG_HOTPLUG_CPU
818 /*
819 * Check for P_LVL2_UP flag before entering C2 and above on
820 * an SMP system.
821 */
822 if ((num_online_cpus() > 1) &&
823 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
824 return -ENODEV;
825 #endif
826
827 /* determine C2 and C3 address from pblk */
828 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
829 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
830
831 /* determine latencies from FADT */
832 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
833 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
834
835 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
836 "lvl2[0x%08x] lvl3[0x%08x]\n",
837 pr->power.states[ACPI_STATE_C2].address,
838 pr->power.states[ACPI_STATE_C3].address));
839
840 return 0;
841 }
842
843 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
844 {
845 if (!pr->power.states[ACPI_STATE_C1].valid) {
846 /* set the first C-State to C1 */
847 /* all processors need to support C1 */
848 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
849 pr->power.states[ACPI_STATE_C1].valid = 1;
850 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
851 }
852 /* the C0 state only exists as a filler in our array */
853 pr->power.states[ACPI_STATE_C0].valid = 1;
854 return 0;
855 }
856
857 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
858 {
859 acpi_status status = 0;
860 acpi_integer count;
861 int current_count;
862 int i;
863 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
864 union acpi_object *cst;
865
866
867 if (nocst)
868 return -ENODEV;
869
870 current_count = 0;
871
872 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
873 if (ACPI_FAILURE(status)) {
874 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
875 return -ENODEV;
876 }
877
878 cst = buffer.pointer;
879
880 /* There must be at least 2 elements */
881 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
882 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
883 status = -EFAULT;
884 goto end;
885 }
886
887 count = cst->package.elements[0].integer.value;
888
889 /* Validate number of power states. */
890 if (count < 1 || count != cst->package.count - 1) {
891 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
892 status = -EFAULT;
893 goto end;
894 }
895
896 /* Tell driver that at least _CST is supported. */
897 pr->flags.has_cst = 1;
898
899 for (i = 1; i <= count; i++) {
900 union acpi_object *element;
901 union acpi_object *obj;
902 struct acpi_power_register *reg;
903 struct acpi_processor_cx cx;
904
905 memset(&cx, 0, sizeof(cx));
906
907 element = &(cst->package.elements[i]);
908 if (element->type != ACPI_TYPE_PACKAGE)
909 continue;
910
911 if (element->package.count != 4)
912 continue;
913
914 obj = &(element->package.elements[0]);
915
916 if (obj->type != ACPI_TYPE_BUFFER)
917 continue;
918
919 reg = (struct acpi_power_register *)obj->buffer.pointer;
920
921 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
922 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
923 continue;
924
925 /* There should be an easy way to extract an integer... */
926 obj = &(element->package.elements[1]);
927 if (obj->type != ACPI_TYPE_INTEGER)
928 continue;
929
930 cx.type = obj->integer.value;
931 /*
932 * Some buggy BIOSes won't list C1 in _CST -
933 * Let acpi_processor_get_power_info_default() handle them later
934 */
935 if (i == 1 && cx.type != ACPI_STATE_C1)
936 current_count++;
937
938 cx.address = reg->address;
939 cx.index = current_count + 1;
940
941 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
942 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
943 if (acpi_processor_ffh_cstate_probe
944 (pr->id, &cx, reg) == 0) {
945 cx.entry_method = ACPI_CSTATE_FFH;
946 } else if (cx.type == ACPI_STATE_C1) {
947 /*
948 * C1 is a special case where FIXED_HARDWARE
949 * can be handled in non-MWAIT way as well.
950 * In that case, save this _CST entry info.
951 * Otherwise, ignore this info and continue.
952 */
953 cx.entry_method = ACPI_CSTATE_HALT;
954 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
955 } else {
956 continue;
957 }
958 } else {
959 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
960 cx.address);
961 }
962
963 if (cx.type == ACPI_STATE_C1) {
964 cx.valid = 1;
965 }
966
967 obj = &(element->package.elements[2]);
968 if (obj->type != ACPI_TYPE_INTEGER)
969 continue;
970
971 cx.latency = obj->integer.value;
972
973 obj = &(element->package.elements[3]);
974 if (obj->type != ACPI_TYPE_INTEGER)
975 continue;
976
977 cx.power = obj->integer.value;
978
979 current_count++;
980 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
981
982 /*
983 * We support total ACPI_PROCESSOR_MAX_POWER - 1
984 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
985 */
986 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
987 printk(KERN_WARNING
988 "Limiting number of power states to max (%d)\n",
989 ACPI_PROCESSOR_MAX_POWER);
990 printk(KERN_WARNING
991 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
992 break;
993 }
994 }
995
996 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
997 current_count));
998
999 /* Validate number of power states discovered */
1000 if (current_count < 2)
1001 status = -EFAULT;
1002
1003 end:
1004 kfree(buffer.pointer);
1005
1006 return status;
1007 }
1008
1009 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1010 {
1011
1012 if (!cx->address)
1013 return;
1014
1015 /*
1016 * C2 latency must be less than or equal to 100
1017 * microseconds.
1018 */
1019 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1020 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1021 "latency too large [%d]\n", cx->latency));
1022 return;
1023 }
1024
1025 /*
1026 * Otherwise we've met all of our C2 requirements.
1027 * Normalize the C2 latency to expidite policy
1028 */
1029 cx->valid = 1;
1030
1031 #ifndef CONFIG_CPU_IDLE
1032 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1033 #else
1034 cx->latency_ticks = cx->latency;
1035 #endif
1036
1037 return;
1038 }
1039
1040 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1041 struct acpi_processor_cx *cx)
1042 {
1043 static int bm_check_flag;
1044
1045
1046 if (!cx->address)
1047 return;
1048
1049 /*
1050 * C3 latency must be less than or equal to 1000
1051 * microseconds.
1052 */
1053 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1054 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1055 "latency too large [%d]\n", cx->latency));
1056 return;
1057 }
1058
1059 /*
1060 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1061 * DMA transfers are used by any ISA device to avoid livelock.
1062 * Note that we could disable Type-F DMA (as recommended by
1063 * the erratum), but this is known to disrupt certain ISA
1064 * devices thus we take the conservative approach.
1065 */
1066 else if (errata.piix4.fdma) {
1067 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1068 "C3 not supported on PIIX4 with Type-F DMA\n"));
1069 return;
1070 }
1071
1072 /* All the logic here assumes flags.bm_check is same across all CPUs */
1073 if (!bm_check_flag) {
1074 /* Determine whether bm_check is needed based on CPU */
1075 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1076 bm_check_flag = pr->flags.bm_check;
1077 } else {
1078 pr->flags.bm_check = bm_check_flag;
1079 }
1080
1081 if (pr->flags.bm_check) {
1082 if (!pr->flags.bm_control) {
1083 if (pr->flags.has_cst != 1) {
1084 /* bus mastering control is necessary */
1085 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1086 "C3 support requires BM control\n"));
1087 return;
1088 } else {
1089 /* Here we enter C3 without bus mastering */
1090 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1091 "C3 support without BM control\n"));
1092 }
1093 }
1094 } else {
1095 /*
1096 * WBINVD should be set in fadt, for C3 state to be
1097 * supported on when bm_check is not required.
1098 */
1099 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1100 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1101 "Cache invalidation should work properly"
1102 " for C3 to be enabled on SMP systems\n"));
1103 return;
1104 }
1105 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1106 }
1107
1108 /*
1109 * Otherwise we've met all of our C3 requirements.
1110 * Normalize the C3 latency to expidite policy. Enable
1111 * checking of bus mastering status (bm_check) so we can
1112 * use this in our C3 policy
1113 */
1114 cx->valid = 1;
1115
1116 #ifndef CONFIG_CPU_IDLE
1117 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1118 #else
1119 cx->latency_ticks = cx->latency;
1120 #endif
1121
1122 return;
1123 }
1124
1125 static int acpi_processor_power_verify(struct acpi_processor *pr)
1126 {
1127 unsigned int i;
1128 unsigned int working = 0;
1129
1130 pr->power.timer_broadcast_on_state = INT_MAX;
1131
1132 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1133 struct acpi_processor_cx *cx = &pr->power.states[i];
1134
1135 switch (cx->type) {
1136 case ACPI_STATE_C1:
1137 cx->valid = 1;
1138 break;
1139
1140 case ACPI_STATE_C2:
1141 acpi_processor_power_verify_c2(cx);
1142 if (cx->valid)
1143 acpi_timer_check_state(i, pr, cx);
1144 break;
1145
1146 case ACPI_STATE_C3:
1147 acpi_processor_power_verify_c3(pr, cx);
1148 if (cx->valid)
1149 acpi_timer_check_state(i, pr, cx);
1150 break;
1151 }
1152
1153 if (cx->valid)
1154 working++;
1155 }
1156
1157 acpi_propagate_timer_broadcast(pr);
1158
1159 return (working);
1160 }
1161
1162 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1163 {
1164 unsigned int i;
1165 int result;
1166
1167
1168 /* NOTE: the idle thread may not be running while calling
1169 * this function */
1170
1171 /* Zero initialize all the C-states info. */
1172 memset(pr->power.states, 0, sizeof(pr->power.states));
1173
1174 result = acpi_processor_get_power_info_cst(pr);
1175 if (result == -ENODEV)
1176 result = acpi_processor_get_power_info_fadt(pr);
1177
1178 if (result)
1179 return result;
1180
1181 acpi_processor_get_power_info_default(pr);
1182
1183 pr->power.count = acpi_processor_power_verify(pr);
1184
1185 #ifndef CONFIG_CPU_IDLE
1186 /*
1187 * Set Default Policy
1188 * ------------------
1189 * Now that we know which states are supported, set the default
1190 * policy. Note that this policy can be changed dynamically
1191 * (e.g. encourage deeper sleeps to conserve battery life when
1192 * not on AC).
1193 */
1194 result = acpi_processor_set_power_policy(pr);
1195 if (result)
1196 return result;
1197 #endif
1198
1199 /*
1200 * if one state of type C2 or C3 is available, mark this
1201 * CPU as being "idle manageable"
1202 */
1203 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1204 if (pr->power.states[i].valid) {
1205 pr->power.count = i;
1206 if (pr->power.states[i].type >= ACPI_STATE_C2)
1207 pr->flags.power = 1;
1208 }
1209 }
1210
1211 return 0;
1212 }
1213
1214 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1215 {
1216 struct acpi_processor *pr = seq->private;
1217 unsigned int i;
1218
1219
1220 if (!pr)
1221 goto end;
1222
1223 seq_printf(seq, "active state: C%zd\n"
1224 "max_cstate: C%d\n"
1225 "bus master activity: %08x\n"
1226 "maximum allowed latency: %d usec\n",
1227 pr->power.state ? pr->power.state - pr->power.states : 0,
1228 max_cstate, (unsigned)pr->power.bm_activity,
1229 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1230
1231 seq_puts(seq, "states:\n");
1232
1233 for (i = 1; i <= pr->power.count; i++) {
1234 seq_printf(seq, " %cC%d: ",
1235 (&pr->power.states[i] ==
1236 pr->power.state ? '*' : ' '), i);
1237
1238 if (!pr->power.states[i].valid) {
1239 seq_puts(seq, "<not supported>\n");
1240 continue;
1241 }
1242
1243 switch (pr->power.states[i].type) {
1244 case ACPI_STATE_C1:
1245 seq_printf(seq, "type[C1] ");
1246 break;
1247 case ACPI_STATE_C2:
1248 seq_printf(seq, "type[C2] ");
1249 break;
1250 case ACPI_STATE_C3:
1251 seq_printf(seq, "type[C3] ");
1252 break;
1253 default:
1254 seq_printf(seq, "type[--] ");
1255 break;
1256 }
1257
1258 if (pr->power.states[i].promotion.state)
1259 seq_printf(seq, "promotion[C%zd] ",
1260 (pr->power.states[i].promotion.state -
1261 pr->power.states));
1262 else
1263 seq_puts(seq, "promotion[--] ");
1264
1265 if (pr->power.states[i].demotion.state)
1266 seq_printf(seq, "demotion[C%zd] ",
1267 (pr->power.states[i].demotion.state -
1268 pr->power.states));
1269 else
1270 seq_puts(seq, "demotion[--] ");
1271
1272 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1273 pr->power.states[i].latency,
1274 pr->power.states[i].usage,
1275 (unsigned long long)pr->power.states[i].time);
1276 }
1277
1278 end:
1279 return 0;
1280 }
1281
1282 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1283 {
1284 return single_open(file, acpi_processor_power_seq_show,
1285 PDE(inode)->data);
1286 }
1287
1288 static const struct file_operations acpi_processor_power_fops = {
1289 .owner = THIS_MODULE,
1290 .open = acpi_processor_power_open_fs,
1291 .read = seq_read,
1292 .llseek = seq_lseek,
1293 .release = single_release,
1294 };
1295
1296 #ifndef CONFIG_CPU_IDLE
1297
1298 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1299 {
1300 int result = 0;
1301
1302 if (boot_option_idle_override)
1303 return 0;
1304
1305 if (!pr)
1306 return -EINVAL;
1307
1308 if (nocst) {
1309 return -ENODEV;
1310 }
1311
1312 if (!pr->flags.power_setup_done)
1313 return -ENODEV;
1314
1315 /* Fall back to the default idle loop */
1316 pm_idle = pm_idle_save;
1317 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1318
1319 pr->flags.power = 0;
1320 result = acpi_processor_get_power_info(pr);
1321 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1322 pm_idle = acpi_processor_idle;
1323
1324 return result;
1325 }
1326
1327 #ifdef CONFIG_SMP
1328 static void smp_callback(void *v)
1329 {
1330 /* we already woke the CPU up, nothing more to do */
1331 }
1332
1333 /*
1334 * This function gets called when a part of the kernel has a new latency
1335 * requirement. This means we need to get all processors out of their C-state,
1336 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1337 * wakes them all right up.
1338 */
1339 static int acpi_processor_latency_notify(struct notifier_block *b,
1340 unsigned long l, void *v)
1341 {
1342 smp_call_function(smp_callback, NULL, 0, 1);
1343 return NOTIFY_OK;
1344 }
1345
1346 static struct notifier_block acpi_processor_latency_notifier = {
1347 .notifier_call = acpi_processor_latency_notify,
1348 };
1349
1350 #endif
1351
1352 #else /* CONFIG_CPU_IDLE */
1353
1354 /**
1355 * acpi_idle_bm_check - checks if bus master activity was detected
1356 */
1357 static int acpi_idle_bm_check(void)
1358 {
1359 u32 bm_status = 0;
1360
1361 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1362 if (bm_status)
1363 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1364 /*
1365 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1366 * the true state of bus mastering activity; forcing us to
1367 * manually check the BMIDEA bit of each IDE channel.
1368 */
1369 else if (errata.piix4.bmisx) {
1370 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1371 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1372 bm_status = 1;
1373 }
1374 return bm_status;
1375 }
1376
1377 /**
1378 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1379 * @pr: the processor
1380 * @target: the new target state
1381 */
1382 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1383 struct acpi_processor_cx *target)
1384 {
1385 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1386 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1387 pr->flags.bm_rld_set = 0;
1388 }
1389
1390 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1391 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1392 pr->flags.bm_rld_set = 1;
1393 }
1394 }
1395
1396 /**
1397 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1398 * @cx: cstate data
1399 *
1400 * Caller disables interrupt before call and enables interrupt after return.
1401 */
1402 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1403 {
1404 if (cx->entry_method == ACPI_CSTATE_FFH) {
1405 /* Call into architectural FFH based C-state */
1406 acpi_processor_ffh_cstate_enter(cx);
1407 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1408 acpi_safe_halt();
1409 } else {
1410 int unused;
1411 /* IO port based C-state */
1412 inb(cx->address);
1413 /* Dummy wait op - must do something useless after P_LVL2 read
1414 because chipsets cannot guarantee that STPCLK# signal
1415 gets asserted in time to freeze execution properly. */
1416 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1417 }
1418 }
1419
1420 /**
1421 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1422 * @dev: the target CPU
1423 * @state: the state data
1424 *
1425 * This is equivalent to the HALT instruction.
1426 */
1427 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1428 struct cpuidle_state *state)
1429 {
1430 u32 t1, t2;
1431 struct acpi_processor *pr;
1432 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1433
1434 pr = processors[smp_processor_id()];
1435
1436 if (unlikely(!pr))
1437 return 0;
1438
1439 local_irq_disable();
1440
1441 /* Do not access any ACPI IO ports in suspend path */
1442 if (acpi_idle_suspend) {
1443 acpi_safe_halt();
1444 local_irq_enable();
1445 return 0;
1446 }
1447
1448 if (pr->flags.bm_check)
1449 acpi_idle_update_bm_rld(pr, cx);
1450
1451 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1452 acpi_idle_do_entry(cx);
1453 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1454
1455 local_irq_enable();
1456 cx->usage++;
1457
1458 return ticks_elapsed_in_us(t1, t2);
1459 }
1460
1461 /**
1462 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1463 * @dev: the target CPU
1464 * @state: the state data
1465 */
1466 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1467 struct cpuidle_state *state)
1468 {
1469 struct acpi_processor *pr;
1470 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1471 u32 t1, t2;
1472 int sleep_ticks = 0;
1473
1474 pr = processors[smp_processor_id()];
1475
1476 if (unlikely(!pr))
1477 return 0;
1478
1479 if (acpi_idle_suspend)
1480 return(acpi_idle_enter_c1(dev, state));
1481
1482 local_irq_disable();
1483 current_thread_info()->status &= ~TS_POLLING;
1484 /*
1485 * TS_POLLING-cleared state must be visible before we test
1486 * NEED_RESCHED:
1487 */
1488 smp_mb();
1489
1490 if (unlikely(need_resched())) {
1491 current_thread_info()->status |= TS_POLLING;
1492 local_irq_enable();
1493 return 0;
1494 }
1495
1496 /*
1497 * Must be done before busmaster disable as we might need to
1498 * access HPET !
1499 */
1500 acpi_state_timer_broadcast(pr, cx, 1);
1501
1502 if (pr->flags.bm_check)
1503 acpi_idle_update_bm_rld(pr, cx);
1504
1505 if (cx->type == ACPI_STATE_C3)
1506 ACPI_FLUSH_CPU_CACHE();
1507
1508 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1509 /* Tell the scheduler that we are going deep-idle: */
1510 sched_clock_idle_sleep_event();
1511 acpi_idle_do_entry(cx);
1512 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1513
1514 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1515 /* TSC could halt in idle, so notify users */
1516 if (tsc_halts_in_c(cx->type))
1517 mark_tsc_unstable("TSC halts in idle");;
1518 #endif
1519 sleep_ticks = ticks_elapsed(t1, t2);
1520
1521 /* Tell the scheduler how much we idled: */
1522 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1523
1524 local_irq_enable();
1525 current_thread_info()->status |= TS_POLLING;
1526
1527 cx->usage++;
1528
1529 acpi_state_timer_broadcast(pr, cx, 0);
1530 cx->time += sleep_ticks;
1531 return ticks_elapsed_in_us(t1, t2);
1532 }
1533
1534 static int c3_cpu_count;
1535 static DEFINE_SPINLOCK(c3_lock);
1536
1537 /**
1538 * acpi_idle_enter_bm - enters C3 with proper BM handling
1539 * @dev: the target CPU
1540 * @state: the state data
1541 *
1542 * If BM is detected, the deepest non-C3 idle state is entered instead.
1543 */
1544 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1545 struct cpuidle_state *state)
1546 {
1547 struct acpi_processor *pr;
1548 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1549 u32 t1, t2;
1550 int sleep_ticks = 0;
1551
1552 pr = processors[smp_processor_id()];
1553
1554 if (unlikely(!pr))
1555 return 0;
1556
1557 if (acpi_idle_suspend)
1558 return(acpi_idle_enter_c1(dev, state));
1559
1560 if (acpi_idle_bm_check()) {
1561 if (dev->safe_state) {
1562 return dev->safe_state->enter(dev, dev->safe_state);
1563 } else {
1564 local_irq_disable();
1565 acpi_safe_halt();
1566 local_irq_enable();
1567 return 0;
1568 }
1569 }
1570
1571 local_irq_disable();
1572 current_thread_info()->status &= ~TS_POLLING;
1573 /*
1574 * TS_POLLING-cleared state must be visible before we test
1575 * NEED_RESCHED:
1576 */
1577 smp_mb();
1578
1579 if (unlikely(need_resched())) {
1580 current_thread_info()->status |= TS_POLLING;
1581 local_irq_enable();
1582 return 0;
1583 }
1584
1585 acpi_unlazy_tlb(smp_processor_id());
1586
1587 /* Tell the scheduler that we are going deep-idle: */
1588 sched_clock_idle_sleep_event();
1589 /*
1590 * Must be done before busmaster disable as we might need to
1591 * access HPET !
1592 */
1593 acpi_state_timer_broadcast(pr, cx, 1);
1594
1595 acpi_idle_update_bm_rld(pr, cx);
1596
1597 /*
1598 * disable bus master
1599 * bm_check implies we need ARB_DIS
1600 * !bm_check implies we need cache flush
1601 * bm_control implies whether we can do ARB_DIS
1602 *
1603 * That leaves a case where bm_check is set and bm_control is
1604 * not set. In that case we cannot do much, we enter C3
1605 * without doing anything.
1606 */
1607 if (pr->flags.bm_check && pr->flags.bm_control) {
1608 spin_lock(&c3_lock);
1609 c3_cpu_count++;
1610 /* Disable bus master arbitration when all CPUs are in C3 */
1611 if (c3_cpu_count == num_online_cpus())
1612 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1613 spin_unlock(&c3_lock);
1614 } else if (!pr->flags.bm_check) {
1615 ACPI_FLUSH_CPU_CACHE();
1616 }
1617
1618 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1619 acpi_idle_do_entry(cx);
1620 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1621
1622 /* Re-enable bus master arbitration */
1623 if (pr->flags.bm_check && pr->flags.bm_control) {
1624 spin_lock(&c3_lock);
1625 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1626 c3_cpu_count--;
1627 spin_unlock(&c3_lock);
1628 }
1629
1630 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1631 /* TSC could halt in idle, so notify users */
1632 if (tsc_halts_in_c(ACPI_STATE_C3))
1633 mark_tsc_unstable("TSC halts in idle");
1634 #endif
1635 sleep_ticks = ticks_elapsed(t1, t2);
1636 /* Tell the scheduler how much we idled: */
1637 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1638
1639 local_irq_enable();
1640 current_thread_info()->status |= TS_POLLING;
1641
1642 cx->usage++;
1643
1644 acpi_state_timer_broadcast(pr, cx, 0);
1645 cx->time += sleep_ticks;
1646 return ticks_elapsed_in_us(t1, t2);
1647 }
1648
1649 struct cpuidle_driver acpi_idle_driver = {
1650 .name = "acpi_idle",
1651 .owner = THIS_MODULE,
1652 };
1653
1654 /**
1655 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1656 * @pr: the ACPI processor
1657 */
1658 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1659 {
1660 int i, count = CPUIDLE_DRIVER_STATE_START;
1661 struct acpi_processor_cx *cx;
1662 struct cpuidle_state *state;
1663 struct cpuidle_device *dev = &pr->power.dev;
1664
1665 if (!pr->flags.power_setup_done)
1666 return -EINVAL;
1667
1668 if (pr->flags.power == 0) {
1669 return -EINVAL;
1670 }
1671
1672 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1673 dev->states[i].name[0] = '\0';
1674 dev->states[i].desc[0] = '\0';
1675 }
1676
1677 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1678 cx = &pr->power.states[i];
1679 state = &dev->states[count];
1680
1681 if (!cx->valid)
1682 continue;
1683
1684 #ifdef CONFIG_HOTPLUG_CPU
1685 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1686 !pr->flags.has_cst &&
1687 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1688 continue;
1689 #endif
1690 cpuidle_set_statedata(state, cx);
1691
1692 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1693 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1694 state->exit_latency = cx->latency;
1695 state->target_residency = cx->latency * latency_factor;
1696 state->power_usage = cx->power;
1697
1698 state->flags = 0;
1699 switch (cx->type) {
1700 case ACPI_STATE_C1:
1701 state->flags |= CPUIDLE_FLAG_SHALLOW;
1702 if (cx->entry_method == ACPI_CSTATE_FFH)
1703 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1704
1705 state->enter = acpi_idle_enter_c1;
1706 dev->safe_state = state;
1707 break;
1708
1709 case ACPI_STATE_C2:
1710 state->flags |= CPUIDLE_FLAG_BALANCED;
1711 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1712 state->enter = acpi_idle_enter_simple;
1713 dev->safe_state = state;
1714 break;
1715
1716 case ACPI_STATE_C3:
1717 state->flags |= CPUIDLE_FLAG_DEEP;
1718 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1719 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1720 state->enter = pr->flags.bm_check ?
1721 acpi_idle_enter_bm :
1722 acpi_idle_enter_simple;
1723 break;
1724 }
1725
1726 count++;
1727 if (count == CPUIDLE_STATE_MAX)
1728 break;
1729 }
1730
1731 dev->state_count = count;
1732
1733 if (!count)
1734 return -EINVAL;
1735
1736 return 0;
1737 }
1738
1739 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1740 {
1741 int ret;
1742
1743 if (boot_option_idle_override)
1744 return 0;
1745
1746 if (!pr)
1747 return -EINVAL;
1748
1749 if (nocst) {
1750 return -ENODEV;
1751 }
1752
1753 if (!pr->flags.power_setup_done)
1754 return -ENODEV;
1755
1756 cpuidle_pause_and_lock();
1757 cpuidle_disable_device(&pr->power.dev);
1758 acpi_processor_get_power_info(pr);
1759 acpi_processor_setup_cpuidle(pr);
1760 ret = cpuidle_enable_device(&pr->power.dev);
1761 cpuidle_resume_and_unlock();
1762
1763 return ret;
1764 }
1765
1766 #endif /* CONFIG_CPU_IDLE */
1767
1768 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1769 struct acpi_device *device)
1770 {
1771 acpi_status status = 0;
1772 static int first_run;
1773 struct proc_dir_entry *entry = NULL;
1774 unsigned int i;
1775
1776 if (boot_option_idle_override)
1777 return 0;
1778
1779 if (!first_run) {
1780 dmi_check_system(processor_power_dmi_table);
1781 max_cstate = acpi_processor_cstate_check(max_cstate);
1782 if (max_cstate < ACPI_C_STATES_MAX)
1783 printk(KERN_NOTICE
1784 "ACPI: processor limited to max C-state %d\n",
1785 max_cstate);
1786 first_run++;
1787 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1788 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1789 &acpi_processor_latency_notifier);
1790 #endif
1791 }
1792
1793 if (!pr)
1794 return -EINVAL;
1795
1796 if (acpi_gbl_FADT.cst_control && !nocst) {
1797 status =
1798 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1799 if (ACPI_FAILURE(status)) {
1800 ACPI_EXCEPTION((AE_INFO, status,
1801 "Notifying BIOS of _CST ability failed"));
1802 }
1803 }
1804
1805 acpi_processor_get_power_info(pr);
1806 pr->flags.power_setup_done = 1;
1807
1808 /*
1809 * Install the idle handler if processor power management is supported.
1810 * Note that we use previously set idle handler will be used on
1811 * platforms that only support C1.
1812 */
1813 if (pr->flags.power) {
1814 #ifdef CONFIG_CPU_IDLE
1815 acpi_processor_setup_cpuidle(pr);
1816 pr->power.dev.cpu = pr->id;
1817 if (cpuidle_register_device(&pr->power.dev))
1818 return -EIO;
1819 #endif
1820
1821 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1822 for (i = 1; i <= pr->power.count; i++)
1823 if (pr->power.states[i].valid)
1824 printk(" C%d[C%d]", i,
1825 pr->power.states[i].type);
1826 printk(")\n");
1827
1828 #ifndef CONFIG_CPU_IDLE
1829 if (pr->id == 0) {
1830 pm_idle_save = pm_idle;
1831 pm_idle = acpi_processor_idle;
1832 }
1833 #endif
1834 }
1835
1836 /* 'power' [R] */
1837 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1838 S_IRUGO, acpi_device_dir(device),
1839 &acpi_processor_power_fops,
1840 acpi_driver_data(device));
1841 if (!entry)
1842 return -EIO;
1843 return 0;
1844 }
1845
1846 int acpi_processor_power_exit(struct acpi_processor *pr,
1847 struct acpi_device *device)
1848 {
1849 if (boot_option_idle_override)
1850 return 0;
1851
1852 #ifdef CONFIG_CPU_IDLE
1853 if (pr->flags.power)
1854 cpuidle_unregister_device(&pr->power.dev);
1855 #endif
1856 pr->flags.power_setup_done = 0;
1857
1858 if (acpi_device_dir(device))
1859 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1860 acpi_device_dir(device));
1861
1862 #ifndef CONFIG_CPU_IDLE
1863
1864 /* Unregister the idle handler when processor #0 is removed. */
1865 if (pr->id == 0) {
1866 pm_idle = pm_idle_save;
1867
1868 /*
1869 * We are about to unload the current idle thread pm callback
1870 * (pm_idle), Wait for all processors to update cached/local
1871 * copies of pm_idle before proceeding.
1872 */
1873 cpu_idle_wait();
1874 #ifdef CONFIG_SMP
1875 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1876 &acpi_processor_latency_notifier);
1877 #endif
1878 }
1879 #endif
1880
1881 return 0;
1882 }