]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/processor_idle.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86 * For now disable this. Probably a bug somewhere else.
87 *
88 * To skip this limit, boot/load with a large max_cstate limit.
89 */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 return 0;
94
95 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99 max_cstate = (long)id->driver_data;
100
101 return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105 callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 { set_max_cstate, "Clevo 5600D", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 (void *)2},
111 {},
112 };
113
114
115 /*
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
118 */
119 static void acpi_safe_halt(void)
120 {
121 current_thread_info()->status &= ~TS_POLLING;
122 /*
123 * TS_POLLING-cleared state must be visible before we
124 * test NEED_RESCHED:
125 */
126 smp_mb();
127 if (!need_resched()) {
128 safe_halt();
129 local_irq_disable();
130 }
131 current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137 * Some BIOS implementations switch to C3 in the published C2 state.
138 * This seems to be a common problem on AMD boxen, but other vendors
139 * are affected too. We pick the most conservative approach: we assume
140 * that the local APIC stops in both C2 and C3.
141 */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143 struct acpi_processor_cx *cx)
144 {
145 struct acpi_processor_power *pwr = &pr->power;
146 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149 return;
150
151 /*
152 * Check, if one of the previous states already marked the lapic
153 * unstable
154 */
155 if (pwr->timer_broadcast_on_state < state)
156 return;
157
158 if (cx->type >= type)
159 pr->power.timer_broadcast_on_state = state;
160 }
161
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
163 {
164 unsigned long reason;
165
166 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
168
169 clockevents_notify(reason, &pr->id);
170 }
171
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174 struct acpi_processor_cx *cx,
175 int broadcast)
176 {
177 int state = cx - pr->power.states;
178
179 if (state >= pr->power.timer_broadcast_on_state) {
180 unsigned long reason;
181
182 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184 clockevents_notify(reason, &pr->id);
185 }
186 }
187
188 #else
189
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
196 {
197 }
198
199 #endif
200
201 /*
202 * Suspend / resume control
203 */
204 static int acpi_idle_suspend;
205 static u32 saved_bm_rld;
206
207 static void acpi_idle_bm_rld_save(void)
208 {
209 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
210 }
211 static void acpi_idle_bm_rld_restore(void)
212 {
213 u32 resumed_bm_rld;
214
215 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
216
217 if (resumed_bm_rld != saved_bm_rld)
218 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
219 }
220
221 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
222 {
223 if (acpi_idle_suspend == 1)
224 return 0;
225
226 acpi_idle_bm_rld_save();
227 acpi_idle_suspend = 1;
228 return 0;
229 }
230
231 int acpi_processor_resume(struct acpi_device * device)
232 {
233 if (acpi_idle_suspend == 0)
234 return 0;
235
236 acpi_idle_bm_rld_restore();
237 acpi_idle_suspend = 0;
238 return 0;
239 }
240
241 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
242 static void tsc_check_state(int state)
243 {
244 switch (boot_cpu_data.x86_vendor) {
245 case X86_VENDOR_AMD:
246 case X86_VENDOR_INTEL:
247 /*
248 * AMD Fam10h TSC will tick in all
249 * C/P/S0/S1 states when this bit is set.
250 */
251 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
252 return;
253
254 /*FALL THROUGH*/
255 default:
256 /* TSC could halt in idle, so notify users */
257 if (state > ACPI_STATE_C1)
258 mark_tsc_unstable("TSC halts in idle");
259 }
260 }
261 #else
262 static void tsc_check_state(int state) { return; }
263 #endif
264
265 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
266 {
267
268 if (!pr)
269 return -EINVAL;
270
271 if (!pr->pblk)
272 return -ENODEV;
273
274 /* if info is obtained from pblk/fadt, type equals state */
275 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
276 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
277
278 #ifndef CONFIG_HOTPLUG_CPU
279 /*
280 * Check for P_LVL2_UP flag before entering C2 and above on
281 * an SMP system.
282 */
283 if ((num_online_cpus() > 1) &&
284 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
285 return -ENODEV;
286 #endif
287
288 /* determine C2 and C3 address from pblk */
289 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
290 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
291
292 /* determine latencies from FADT */
293 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
294 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
295
296 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
297 "lvl2[0x%08x] lvl3[0x%08x]\n",
298 pr->power.states[ACPI_STATE_C2].address,
299 pr->power.states[ACPI_STATE_C3].address));
300
301 return 0;
302 }
303
304 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
305 {
306 if (!pr->power.states[ACPI_STATE_C1].valid) {
307 /* set the first C-State to C1 */
308 /* all processors need to support C1 */
309 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
310 pr->power.states[ACPI_STATE_C1].valid = 1;
311 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
312 }
313 /* the C0 state only exists as a filler in our array */
314 pr->power.states[ACPI_STATE_C0].valid = 1;
315 return 0;
316 }
317
318 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
319 {
320 acpi_status status = 0;
321 acpi_integer count;
322 int current_count;
323 int i;
324 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
325 union acpi_object *cst;
326
327
328 if (nocst)
329 return -ENODEV;
330
331 current_count = 0;
332
333 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
334 if (ACPI_FAILURE(status)) {
335 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
336 return -ENODEV;
337 }
338
339 cst = buffer.pointer;
340
341 /* There must be at least 2 elements */
342 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
343 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
344 status = -EFAULT;
345 goto end;
346 }
347
348 count = cst->package.elements[0].integer.value;
349
350 /* Validate number of power states. */
351 if (count < 1 || count != cst->package.count - 1) {
352 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
353 status = -EFAULT;
354 goto end;
355 }
356
357 /* Tell driver that at least _CST is supported. */
358 pr->flags.has_cst = 1;
359
360 for (i = 1; i <= count; i++) {
361 union acpi_object *element;
362 union acpi_object *obj;
363 struct acpi_power_register *reg;
364 struct acpi_processor_cx cx;
365
366 memset(&cx, 0, sizeof(cx));
367
368 element = &(cst->package.elements[i]);
369 if (element->type != ACPI_TYPE_PACKAGE)
370 continue;
371
372 if (element->package.count != 4)
373 continue;
374
375 obj = &(element->package.elements[0]);
376
377 if (obj->type != ACPI_TYPE_BUFFER)
378 continue;
379
380 reg = (struct acpi_power_register *)obj->buffer.pointer;
381
382 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
383 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
384 continue;
385
386 /* There should be an easy way to extract an integer... */
387 obj = &(element->package.elements[1]);
388 if (obj->type != ACPI_TYPE_INTEGER)
389 continue;
390
391 cx.type = obj->integer.value;
392 /*
393 * Some buggy BIOSes won't list C1 in _CST -
394 * Let acpi_processor_get_power_info_default() handle them later
395 */
396 if (i == 1 && cx.type != ACPI_STATE_C1)
397 current_count++;
398
399 cx.address = reg->address;
400 cx.index = current_count + 1;
401
402 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
403 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
404 if (acpi_processor_ffh_cstate_probe
405 (pr->id, &cx, reg) == 0) {
406 cx.entry_method = ACPI_CSTATE_FFH;
407 } else if (cx.type == ACPI_STATE_C1) {
408 /*
409 * C1 is a special case where FIXED_HARDWARE
410 * can be handled in non-MWAIT way as well.
411 * In that case, save this _CST entry info.
412 * Otherwise, ignore this info and continue.
413 */
414 cx.entry_method = ACPI_CSTATE_HALT;
415 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
416 } else {
417 continue;
418 }
419 if (cx.type == ACPI_STATE_C1 &&
420 (idle_halt || idle_nomwait)) {
421 /*
422 * In most cases the C1 space_id obtained from
423 * _CST object is FIXED_HARDWARE access mode.
424 * But when the option of idle=halt is added,
425 * the entry_method type should be changed from
426 * CSTATE_FFH to CSTATE_HALT.
427 * When the option of idle=nomwait is added,
428 * the C1 entry_method type should be
429 * CSTATE_HALT.
430 */
431 cx.entry_method = ACPI_CSTATE_HALT;
432 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
433 }
434 } else {
435 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
436 cx.address);
437 }
438
439 if (cx.type == ACPI_STATE_C1) {
440 cx.valid = 1;
441 }
442
443 obj = &(element->package.elements[2]);
444 if (obj->type != ACPI_TYPE_INTEGER)
445 continue;
446
447 cx.latency = obj->integer.value;
448
449 obj = &(element->package.elements[3]);
450 if (obj->type != ACPI_TYPE_INTEGER)
451 continue;
452
453 cx.power = obj->integer.value;
454
455 current_count++;
456 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
457
458 /*
459 * We support total ACPI_PROCESSOR_MAX_POWER - 1
460 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
461 */
462 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
463 printk(KERN_WARNING
464 "Limiting number of power states to max (%d)\n",
465 ACPI_PROCESSOR_MAX_POWER);
466 printk(KERN_WARNING
467 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
468 break;
469 }
470 }
471
472 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
473 current_count));
474
475 /* Validate number of power states discovered */
476 if (current_count < 2)
477 status = -EFAULT;
478
479 end:
480 kfree(buffer.pointer);
481
482 return status;
483 }
484
485 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
486 {
487
488 if (!cx->address)
489 return;
490
491 /*
492 * C2 latency must be less than or equal to 100
493 * microseconds.
494 */
495 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
496 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
497 "latency too large [%d]\n", cx->latency));
498 return;
499 }
500
501 /*
502 * Otherwise we've met all of our C2 requirements.
503 * Normalize the C2 latency to expidite policy
504 */
505 cx->valid = 1;
506
507 cx->latency_ticks = cx->latency;
508
509 return;
510 }
511
512 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
513 struct acpi_processor_cx *cx)
514 {
515 static int bm_check_flag;
516
517
518 if (!cx->address)
519 return;
520
521 /*
522 * C3 latency must be less than or equal to 1000
523 * microseconds.
524 */
525 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
526 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
527 "latency too large [%d]\n", cx->latency));
528 return;
529 }
530
531 /*
532 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
533 * DMA transfers are used by any ISA device to avoid livelock.
534 * Note that we could disable Type-F DMA (as recommended by
535 * the erratum), but this is known to disrupt certain ISA
536 * devices thus we take the conservative approach.
537 */
538 else if (errata.piix4.fdma) {
539 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540 "C3 not supported on PIIX4 with Type-F DMA\n"));
541 return;
542 }
543
544 /* All the logic here assumes flags.bm_check is same across all CPUs */
545 if (!bm_check_flag) {
546 /* Determine whether bm_check is needed based on CPU */
547 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
548 bm_check_flag = pr->flags.bm_check;
549 } else {
550 pr->flags.bm_check = bm_check_flag;
551 }
552
553 if (pr->flags.bm_check) {
554 if (!pr->flags.bm_control) {
555 if (pr->flags.has_cst != 1) {
556 /* bus mastering control is necessary */
557 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
558 "C3 support requires BM control\n"));
559 return;
560 } else {
561 /* Here we enter C3 without bus mastering */
562 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
563 "C3 support without BM control\n"));
564 }
565 }
566 } else {
567 /*
568 * WBINVD should be set in fadt, for C3 state to be
569 * supported on when bm_check is not required.
570 */
571 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
572 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 "Cache invalidation should work properly"
574 " for C3 to be enabled on SMP systems\n"));
575 return;
576 }
577 }
578
579 /*
580 * Otherwise we've met all of our C3 requirements.
581 * Normalize the C3 latency to expidite policy. Enable
582 * checking of bus mastering status (bm_check) so we can
583 * use this in our C3 policy
584 */
585 cx->valid = 1;
586
587 cx->latency_ticks = cx->latency;
588 /*
589 * On older chipsets, BM_RLD needs to be set
590 * in order for Bus Master activity to wake the
591 * system from C3. Newer chipsets handle DMA
592 * during C3 automatically and BM_RLD is a NOP.
593 * In either case, the proper way to
594 * handle BM_RLD is to set it and leave it set.
595 */
596 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
597
598 return;
599 }
600
601 static int acpi_processor_power_verify(struct acpi_processor *pr)
602 {
603 unsigned int i;
604 unsigned int working = 0;
605
606 pr->power.timer_broadcast_on_state = INT_MAX;
607
608 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
609 struct acpi_processor_cx *cx = &pr->power.states[i];
610
611 switch (cx->type) {
612 case ACPI_STATE_C1:
613 cx->valid = 1;
614 break;
615
616 case ACPI_STATE_C2:
617 acpi_processor_power_verify_c2(cx);
618 if (cx->valid)
619 acpi_timer_check_state(i, pr, cx);
620 break;
621
622 case ACPI_STATE_C3:
623 acpi_processor_power_verify_c3(pr, cx);
624 if (cx->valid)
625 acpi_timer_check_state(i, pr, cx);
626 break;
627 }
628 if (cx->valid)
629 tsc_check_state(cx->type);
630
631 if (cx->valid)
632 working++;
633 }
634
635 acpi_propagate_timer_broadcast(pr);
636
637 return (working);
638 }
639
640 static int acpi_processor_get_power_info(struct acpi_processor *pr)
641 {
642 unsigned int i;
643 int result;
644
645
646 /* NOTE: the idle thread may not be running while calling
647 * this function */
648
649 /* Zero initialize all the C-states info. */
650 memset(pr->power.states, 0, sizeof(pr->power.states));
651
652 result = acpi_processor_get_power_info_cst(pr);
653 if (result == -ENODEV)
654 result = acpi_processor_get_power_info_fadt(pr);
655
656 if (result)
657 return result;
658
659 acpi_processor_get_power_info_default(pr);
660
661 pr->power.count = acpi_processor_power_verify(pr);
662
663 /*
664 * if one state of type C2 or C3 is available, mark this
665 * CPU as being "idle manageable"
666 */
667 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
668 if (pr->power.states[i].valid) {
669 pr->power.count = i;
670 if (pr->power.states[i].type >= ACPI_STATE_C2)
671 pr->flags.power = 1;
672 }
673 }
674
675 return 0;
676 }
677
678 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
679 {
680 struct acpi_processor *pr = seq->private;
681 unsigned int i;
682
683
684 if (!pr)
685 goto end;
686
687 seq_printf(seq, "active state: C%zd\n"
688 "max_cstate: C%d\n"
689 "maximum allowed latency: %d usec\n",
690 pr->power.state ? pr->power.state - pr->power.states : 0,
691 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
692
693 seq_puts(seq, "states:\n");
694
695 for (i = 1; i <= pr->power.count; i++) {
696 seq_printf(seq, " %cC%d: ",
697 (&pr->power.states[i] ==
698 pr->power.state ? '*' : ' '), i);
699
700 if (!pr->power.states[i].valid) {
701 seq_puts(seq, "<not supported>\n");
702 continue;
703 }
704
705 switch (pr->power.states[i].type) {
706 case ACPI_STATE_C1:
707 seq_printf(seq, "type[C1] ");
708 break;
709 case ACPI_STATE_C2:
710 seq_printf(seq, "type[C2] ");
711 break;
712 case ACPI_STATE_C3:
713 seq_printf(seq, "type[C3] ");
714 break;
715 default:
716 seq_printf(seq, "type[--] ");
717 break;
718 }
719
720 if (pr->power.states[i].promotion.state)
721 seq_printf(seq, "promotion[C%zd] ",
722 (pr->power.states[i].promotion.state -
723 pr->power.states));
724 else
725 seq_puts(seq, "promotion[--] ");
726
727 if (pr->power.states[i].demotion.state)
728 seq_printf(seq, "demotion[C%zd] ",
729 (pr->power.states[i].demotion.state -
730 pr->power.states));
731 else
732 seq_puts(seq, "demotion[--] ");
733
734 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
735 pr->power.states[i].latency,
736 pr->power.states[i].usage,
737 (unsigned long long)pr->power.states[i].time);
738 }
739
740 end:
741 return 0;
742 }
743
744 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
745 {
746 return single_open(file, acpi_processor_power_seq_show,
747 PDE(inode)->data);
748 }
749
750 static const struct file_operations acpi_processor_power_fops = {
751 .owner = THIS_MODULE,
752 .open = acpi_processor_power_open_fs,
753 .read = seq_read,
754 .llseek = seq_lseek,
755 .release = single_release,
756 };
757
758
759 /**
760 * acpi_idle_bm_check - checks if bus master activity was detected
761 */
762 static int acpi_idle_bm_check(void)
763 {
764 u32 bm_status = 0;
765
766 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
767 if (bm_status)
768 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
769 /*
770 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
771 * the true state of bus mastering activity; forcing us to
772 * manually check the BMIDEA bit of each IDE channel.
773 */
774 else if (errata.piix4.bmisx) {
775 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
776 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
777 bm_status = 1;
778 }
779 return bm_status;
780 }
781
782 /**
783 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
784 * @cx: cstate data
785 *
786 * Caller disables interrupt before call and enables interrupt after return.
787 */
788 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
789 {
790 /* Don't trace irqs off for idle */
791 stop_critical_timings();
792 if (cx->entry_method == ACPI_CSTATE_FFH) {
793 /* Call into architectural FFH based C-state */
794 acpi_processor_ffh_cstate_enter(cx);
795 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
796 acpi_safe_halt();
797 } else {
798 int unused;
799 /* IO port based C-state */
800 inb(cx->address);
801 /* Dummy wait op - must do something useless after P_LVL2 read
802 because chipsets cannot guarantee that STPCLK# signal
803 gets asserted in time to freeze execution properly. */
804 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
805 }
806 start_critical_timings();
807 }
808
809 /**
810 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
811 * @dev: the target CPU
812 * @state: the state data
813 *
814 * This is equivalent to the HALT instruction.
815 */
816 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
817 struct cpuidle_state *state)
818 {
819 ktime_t kt1, kt2;
820 s64 idle_time;
821 struct acpi_processor *pr;
822 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
823
824 pr = __get_cpu_var(processors);
825
826 if (unlikely(!pr))
827 return 0;
828
829 local_irq_disable();
830
831 /* Do not access any ACPI IO ports in suspend path */
832 if (acpi_idle_suspend) {
833 acpi_safe_halt();
834 local_irq_enable();
835 return 0;
836 }
837
838 kt1 = ktime_get_real();
839 acpi_idle_do_entry(cx);
840 kt2 = ktime_get_real();
841 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
842
843 local_irq_enable();
844 cx->usage++;
845
846 return idle_time;
847 }
848
849 /**
850 * acpi_idle_enter_simple - enters an ACPI state without BM handling
851 * @dev: the target CPU
852 * @state: the state data
853 */
854 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
855 struct cpuidle_state *state)
856 {
857 struct acpi_processor *pr;
858 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
859 ktime_t kt1, kt2;
860 s64 idle_time;
861 s64 sleep_ticks = 0;
862
863 pr = __get_cpu_var(processors);
864
865 if (unlikely(!pr))
866 return 0;
867
868 if (acpi_idle_suspend)
869 return(acpi_idle_enter_c1(dev, state));
870
871 local_irq_disable();
872 current_thread_info()->status &= ~TS_POLLING;
873 /*
874 * TS_POLLING-cleared state must be visible before we test
875 * NEED_RESCHED:
876 */
877 smp_mb();
878
879 if (unlikely(need_resched())) {
880 current_thread_info()->status |= TS_POLLING;
881 local_irq_enable();
882 return 0;
883 }
884
885 /*
886 * Must be done before busmaster disable as we might need to
887 * access HPET !
888 */
889 acpi_state_timer_broadcast(pr, cx, 1);
890
891 if (cx->type == ACPI_STATE_C3)
892 ACPI_FLUSH_CPU_CACHE();
893
894 kt1 = ktime_get_real();
895 /* Tell the scheduler that we are going deep-idle: */
896 sched_clock_idle_sleep_event();
897 acpi_idle_do_entry(cx);
898 kt2 = ktime_get_real();
899 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
900
901 sleep_ticks = us_to_pm_timer_ticks(idle_time);
902
903 /* Tell the scheduler how much we idled: */
904 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
905
906 local_irq_enable();
907 current_thread_info()->status |= TS_POLLING;
908
909 cx->usage++;
910
911 acpi_state_timer_broadcast(pr, cx, 0);
912 cx->time += sleep_ticks;
913 return idle_time;
914 }
915
916 static int c3_cpu_count;
917 static DEFINE_SPINLOCK(c3_lock);
918
919 /**
920 * acpi_idle_enter_bm - enters C3 with proper BM handling
921 * @dev: the target CPU
922 * @state: the state data
923 *
924 * If BM is detected, the deepest non-C3 idle state is entered instead.
925 */
926 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
927 struct cpuidle_state *state)
928 {
929 struct acpi_processor *pr;
930 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
931 ktime_t kt1, kt2;
932 s64 idle_time;
933 s64 sleep_ticks = 0;
934
935
936 pr = __get_cpu_var(processors);
937
938 if (unlikely(!pr))
939 return 0;
940
941 if (acpi_idle_suspend)
942 return(acpi_idle_enter_c1(dev, state));
943
944 if (acpi_idle_bm_check()) {
945 if (dev->safe_state) {
946 dev->last_state = dev->safe_state;
947 return dev->safe_state->enter(dev, dev->safe_state);
948 } else {
949 local_irq_disable();
950 acpi_safe_halt();
951 local_irq_enable();
952 return 0;
953 }
954 }
955
956 local_irq_disable();
957 current_thread_info()->status &= ~TS_POLLING;
958 /*
959 * TS_POLLING-cleared state must be visible before we test
960 * NEED_RESCHED:
961 */
962 smp_mb();
963
964 if (unlikely(need_resched())) {
965 current_thread_info()->status |= TS_POLLING;
966 local_irq_enable();
967 return 0;
968 }
969
970 acpi_unlazy_tlb(smp_processor_id());
971
972 /* Tell the scheduler that we are going deep-idle: */
973 sched_clock_idle_sleep_event();
974 /*
975 * Must be done before busmaster disable as we might need to
976 * access HPET !
977 */
978 acpi_state_timer_broadcast(pr, cx, 1);
979
980 kt1 = ktime_get_real();
981 /*
982 * disable bus master
983 * bm_check implies we need ARB_DIS
984 * !bm_check implies we need cache flush
985 * bm_control implies whether we can do ARB_DIS
986 *
987 * That leaves a case where bm_check is set and bm_control is
988 * not set. In that case we cannot do much, we enter C3
989 * without doing anything.
990 */
991 if (pr->flags.bm_check && pr->flags.bm_control) {
992 spin_lock(&c3_lock);
993 c3_cpu_count++;
994 /* Disable bus master arbitration when all CPUs are in C3 */
995 if (c3_cpu_count == num_online_cpus())
996 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
997 spin_unlock(&c3_lock);
998 } else if (!pr->flags.bm_check) {
999 ACPI_FLUSH_CPU_CACHE();
1000 }
1001
1002 acpi_idle_do_entry(cx);
1003
1004 /* Re-enable bus master arbitration */
1005 if (pr->flags.bm_check && pr->flags.bm_control) {
1006 spin_lock(&c3_lock);
1007 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1008 c3_cpu_count--;
1009 spin_unlock(&c3_lock);
1010 }
1011 kt2 = ktime_get_real();
1012 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1013
1014 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1015 /* Tell the scheduler how much we idled: */
1016 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1017
1018 local_irq_enable();
1019 current_thread_info()->status |= TS_POLLING;
1020
1021 cx->usage++;
1022
1023 acpi_state_timer_broadcast(pr, cx, 0);
1024 cx->time += sleep_ticks;
1025 return idle_time;
1026 }
1027
1028 struct cpuidle_driver acpi_idle_driver = {
1029 .name = "acpi_idle",
1030 .owner = THIS_MODULE,
1031 };
1032
1033 /**
1034 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1035 * @pr: the ACPI processor
1036 */
1037 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1038 {
1039 int i, count = CPUIDLE_DRIVER_STATE_START;
1040 struct acpi_processor_cx *cx;
1041 struct cpuidle_state *state;
1042 struct cpuidle_device *dev = &pr->power.dev;
1043
1044 if (!pr->flags.power_setup_done)
1045 return -EINVAL;
1046
1047 if (pr->flags.power == 0) {
1048 return -EINVAL;
1049 }
1050
1051 dev->cpu = pr->id;
1052 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1053 dev->states[i].name[0] = '\0';
1054 dev->states[i].desc[0] = '\0';
1055 }
1056
1057 if (max_cstate == 0)
1058 max_cstate = 1;
1059
1060 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1061 cx = &pr->power.states[i];
1062 state = &dev->states[count];
1063
1064 if (!cx->valid)
1065 continue;
1066
1067 #ifdef CONFIG_HOTPLUG_CPU
1068 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1069 !pr->flags.has_cst &&
1070 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1071 continue;
1072 #endif
1073 cpuidle_set_statedata(state, cx);
1074
1075 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1076 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1077 state->exit_latency = cx->latency;
1078 state->target_residency = cx->latency * latency_factor;
1079 state->power_usage = cx->power;
1080
1081 state->flags = 0;
1082 switch (cx->type) {
1083 case ACPI_STATE_C1:
1084 state->flags |= CPUIDLE_FLAG_SHALLOW;
1085 if (cx->entry_method == ACPI_CSTATE_FFH)
1086 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1087
1088 state->enter = acpi_idle_enter_c1;
1089 dev->safe_state = state;
1090 break;
1091
1092 case ACPI_STATE_C2:
1093 state->flags |= CPUIDLE_FLAG_BALANCED;
1094 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1095 state->enter = acpi_idle_enter_simple;
1096 dev->safe_state = state;
1097 break;
1098
1099 case ACPI_STATE_C3:
1100 state->flags |= CPUIDLE_FLAG_DEEP;
1101 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1102 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1103 state->enter = pr->flags.bm_check ?
1104 acpi_idle_enter_bm :
1105 acpi_idle_enter_simple;
1106 break;
1107 }
1108
1109 count++;
1110 if (count == CPUIDLE_STATE_MAX)
1111 break;
1112 }
1113
1114 dev->state_count = count;
1115
1116 if (!count)
1117 return -EINVAL;
1118
1119 return 0;
1120 }
1121
1122 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1123 {
1124 int ret = 0;
1125
1126 if (boot_option_idle_override)
1127 return 0;
1128
1129 if (!pr)
1130 return -EINVAL;
1131
1132 if (nocst) {
1133 return -ENODEV;
1134 }
1135
1136 if (!pr->flags.power_setup_done)
1137 return -ENODEV;
1138
1139 cpuidle_pause_and_lock();
1140 cpuidle_disable_device(&pr->power.dev);
1141 acpi_processor_get_power_info(pr);
1142 if (pr->flags.power) {
1143 acpi_processor_setup_cpuidle(pr);
1144 ret = cpuidle_enable_device(&pr->power.dev);
1145 }
1146 cpuidle_resume_and_unlock();
1147
1148 return ret;
1149 }
1150
1151 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1152 struct acpi_device *device)
1153 {
1154 acpi_status status = 0;
1155 static int first_run;
1156 struct proc_dir_entry *entry = NULL;
1157 unsigned int i;
1158
1159 if (boot_option_idle_override)
1160 return 0;
1161
1162 if (!first_run) {
1163 if (idle_halt) {
1164 /*
1165 * When the boot option of "idle=halt" is added, halt
1166 * is used for CPU IDLE.
1167 * In such case C2/C3 is meaningless. So the max_cstate
1168 * is set to one.
1169 */
1170 max_cstate = 1;
1171 }
1172 dmi_check_system(processor_power_dmi_table);
1173 max_cstate = acpi_processor_cstate_check(max_cstate);
1174 if (max_cstate < ACPI_C_STATES_MAX)
1175 printk(KERN_NOTICE
1176 "ACPI: processor limited to max C-state %d\n",
1177 max_cstate);
1178 first_run++;
1179 }
1180
1181 if (!pr)
1182 return -EINVAL;
1183
1184 if (acpi_gbl_FADT.cst_control && !nocst) {
1185 status =
1186 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1187 if (ACPI_FAILURE(status)) {
1188 ACPI_EXCEPTION((AE_INFO, status,
1189 "Notifying BIOS of _CST ability failed"));
1190 }
1191 }
1192
1193 acpi_processor_get_power_info(pr);
1194 pr->flags.power_setup_done = 1;
1195
1196 /*
1197 * Install the idle handler if processor power management is supported.
1198 * Note that we use previously set idle handler will be used on
1199 * platforms that only support C1.
1200 */
1201 if (pr->flags.power) {
1202 acpi_processor_setup_cpuidle(pr);
1203 if (cpuidle_register_device(&pr->power.dev))
1204 return -EIO;
1205
1206 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1207 for (i = 1; i <= pr->power.count; i++)
1208 if (pr->power.states[i].valid)
1209 printk(" C%d[C%d]", i,
1210 pr->power.states[i].type);
1211 printk(")\n");
1212 }
1213
1214 /* 'power' [R] */
1215 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1216 S_IRUGO, acpi_device_dir(device),
1217 &acpi_processor_power_fops,
1218 acpi_driver_data(device));
1219 if (!entry)
1220 return -EIO;
1221 return 0;
1222 }
1223
1224 int acpi_processor_power_exit(struct acpi_processor *pr,
1225 struct acpi_device *device)
1226 {
1227 if (boot_option_idle_override)
1228 return 0;
1229
1230 cpuidle_unregister_device(&pr->power.dev);
1231 pr->flags.power_setup_done = 0;
1232
1233 if (acpi_device_dir(device))
1234 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1235 acpi_device_dir(device));
1236
1237 return 0;
1238 }