]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/acpi/processor_idle.c
Auto merge with /home/aegl/GIT/linus
[mirror_ubuntu-zesty-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
43
44 #include <acpi/acpi_bus.h>
45 #include <acpi/processor.h>
46
47 #define ACPI_PROCESSOR_COMPONENT 0x01000000
48 #define ACPI_PROCESSOR_CLASS "processor"
49 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
50 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
51 ACPI_MODULE_NAME ("acpi_processor")
52
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54
55 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
56 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
58
59 static void (*pm_idle_save)(void);
60 module_param(max_cstate, uint, 0644);
61
62 static unsigned int nocst = 0;
63 module_param(nocst, uint, 0000);
64
65 /*
66 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
67 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
68 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
69 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
70 * reduce history for more aggressive entry into C3
71 */
72 static unsigned int bm_history = (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
73 module_param(bm_history, uint, 0644);
74 /* --------------------------------------------------------------------------
75 Power Management
76 -------------------------------------------------------------------------- */
77
78 /*
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
81 *
82 * To skip this limit, boot/load with a large max_cstate limit.
83 */
84 static int no_c2c3(struct dmi_system_id *id)
85 {
86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 return 0;
88
89 printk(KERN_NOTICE PREFIX "%s detected - C2,C3 disabled."
90 " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 ACPI_PROCESSOR_MAX_POWER + 1);
92
93 max_cstate = 1;
94
95 return 0;
96 }
97
98
99
100
101 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
102 { no_c2c3, "IBM ThinkPad R40e", {
103 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
104 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }},
105 { no_c2c3, "Medion 41700", {
106 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
107 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J") }},
108 {},
109 };
110
111
112 static inline u32
113 ticks_elapsed (
114 u32 t1,
115 u32 t2)
116 {
117 if (t2 >= t1)
118 return (t2 - t1);
119 else if (!acpi_fadt.tmr_val_ext)
120 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
121 else
122 return ((0xFFFFFFFF - t1) + t2);
123 }
124
125
126 static void
127 acpi_processor_power_activate (
128 struct acpi_processor *pr,
129 struct acpi_processor_cx *new)
130 {
131 struct acpi_processor_cx *old;
132
133 if (!pr || !new)
134 return;
135
136 old = pr->power.state;
137
138 if (old)
139 old->promotion.count = 0;
140 new->demotion.count = 0;
141
142 /* Cleanup from old state. */
143 if (old) {
144 switch (old->type) {
145 case ACPI_STATE_C3:
146 /* Disable bus master reload */
147 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
148 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
149 break;
150 }
151 }
152
153 /* Prepare to use new state. */
154 switch (new->type) {
155 case ACPI_STATE_C3:
156 /* Enable bus master reload */
157 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
158 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
159 break;
160 }
161
162 pr->power.state = new;
163
164 return;
165 }
166
167
168 static atomic_t c3_cpu_count;
169
170
171 static void acpi_processor_idle (void)
172 {
173 struct acpi_processor *pr = NULL;
174 struct acpi_processor_cx *cx = NULL;
175 struct acpi_processor_cx *next_state = NULL;
176 int sleep_ticks = 0;
177 u32 t1, t2 = 0;
178
179 pr = processors[raw_smp_processor_id()];
180 if (!pr)
181 return;
182
183 /*
184 * Interrupts must be disabled during bus mastering calculations and
185 * for C2/C3 transitions.
186 */
187 local_irq_disable();
188
189 /*
190 * Check whether we truly need to go idle, or should
191 * reschedule:
192 */
193 if (unlikely(need_resched())) {
194 local_irq_enable();
195 return;
196 }
197
198 cx = pr->power.state;
199 if (!cx)
200 goto easy_out;
201
202 /*
203 * Check BM Activity
204 * -----------------
205 * Check for bus mastering activity (if required), record, and check
206 * for demotion.
207 */
208 if (pr->flags.bm_check) {
209 u32 bm_status = 0;
210 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
211
212 if (diff > 32)
213 diff = 32;
214
215 while (diff) {
216 /* if we didn't get called, assume there was busmaster activity */
217 diff--;
218 if (diff)
219 pr->power.bm_activity |= 0x1;
220 pr->power.bm_activity <<= 1;
221 }
222
223 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
224 &bm_status, ACPI_MTX_DO_NOT_LOCK);
225 if (bm_status) {
226 pr->power.bm_activity++;
227 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
228 1, ACPI_MTX_DO_NOT_LOCK);
229 }
230 /*
231 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
232 * the true state of bus mastering activity; forcing us to
233 * manually check the BMIDEA bit of each IDE channel.
234 */
235 else if (errata.piix4.bmisx) {
236 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
237 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
238 pr->power.bm_activity++;
239 }
240
241 pr->power.bm_check_timestamp = jiffies;
242
243 /*
244 * Apply bus mastering demotion policy. Automatically demote
245 * to avoid a faulty transition. Note that the processor
246 * won't enter a low-power state during this call (to this
247 * funciton) but should upon the next.
248 *
249 * TBD: A better policy might be to fallback to the demotion
250 * state (use it for this quantum only) istead of
251 * demoting -- and rely on duration as our sole demotion
252 * qualification. This may, however, introduce DMA
253 * issues (e.g. floppy DMA transfer overrun/underrun).
254 */
255 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
256 local_irq_enable();
257 next_state = cx->demotion.state;
258 goto end;
259 }
260 }
261
262 cx->usage++;
263
264 /*
265 * Sleep:
266 * ------
267 * Invoke the current Cx state to put the processor to sleep.
268 */
269 switch (cx->type) {
270
271 case ACPI_STATE_C1:
272 /*
273 * Invoke C1.
274 * Use the appropriate idle routine, the one that would
275 * be used without acpi C-states.
276 */
277 if (pm_idle_save)
278 pm_idle_save();
279 else
280 safe_halt();
281 /*
282 * TBD: Can't get time duration while in C1, as resumes
283 * go to an ISR rather than here. Need to instrument
284 * base interrupt handler.
285 */
286 sleep_ticks = 0xFFFFFFFF;
287 break;
288
289 case ACPI_STATE_C2:
290 /* Get start time (ticks) */
291 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
292 /* Invoke C2 */
293 inb(cx->address);
294 /* Dummy op - must do something useless after P_LVL2 read */
295 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
296 /* Get end time (ticks) */
297 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
298 /* Re-enable interrupts */
299 local_irq_enable();
300 /* Compute time (ticks) that we were actually asleep */
301 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
302 break;
303
304 case ACPI_STATE_C3:
305
306 if (pr->flags.bm_check) {
307 if (atomic_inc_return(&c3_cpu_count) ==
308 num_online_cpus()) {
309 /*
310 * All CPUs are trying to go to C3
311 * Disable bus master arbitration
312 */
313 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
314 ACPI_MTX_DO_NOT_LOCK);
315 }
316 } else {
317 /* SMP with no shared cache... Invalidate cache */
318 ACPI_FLUSH_CPU_CACHE();
319 }
320
321 /* Get start time (ticks) */
322 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
323 /* Invoke C3 */
324 inb(cx->address);
325 /* Dummy op - must do something useless after P_LVL3 read */
326 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
327 /* Get end time (ticks) */
328 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
329 if (pr->flags.bm_check) {
330 /* Enable bus master arbitration */
331 atomic_dec(&c3_cpu_count);
332 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
333 }
334
335 /* Re-enable interrupts */
336 local_irq_enable();
337 /* Compute time (ticks) that we were actually asleep */
338 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
339 break;
340
341 default:
342 local_irq_enable();
343 return;
344 }
345
346 next_state = pr->power.state;
347
348 /*
349 * Promotion?
350 * ----------
351 * Track the number of longs (time asleep is greater than threshold)
352 * and promote when the count threshold is reached. Note that bus
353 * mastering activity may prevent promotions.
354 * Do not promote above max_cstate.
355 */
356 if (cx->promotion.state &&
357 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
358 if (sleep_ticks > cx->promotion.threshold.ticks) {
359 cx->promotion.count++;
360 cx->demotion.count = 0;
361 if (cx->promotion.count >= cx->promotion.threshold.count) {
362 if (pr->flags.bm_check) {
363 if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
364 next_state = cx->promotion.state;
365 goto end;
366 }
367 }
368 else {
369 next_state = cx->promotion.state;
370 goto end;
371 }
372 }
373 }
374 }
375
376 /*
377 * Demotion?
378 * ---------
379 * Track the number of shorts (time asleep is less than time threshold)
380 * and demote when the usage threshold is reached.
381 */
382 if (cx->demotion.state) {
383 if (sleep_ticks < cx->demotion.threshold.ticks) {
384 cx->demotion.count++;
385 cx->promotion.count = 0;
386 if (cx->demotion.count >= cx->demotion.threshold.count) {
387 next_state = cx->demotion.state;
388 goto end;
389 }
390 }
391 }
392
393 end:
394 /*
395 * Demote if current state exceeds max_cstate
396 */
397 if ((pr->power.state - pr->power.states) > max_cstate) {
398 if (cx->demotion.state)
399 next_state = cx->demotion.state;
400 }
401
402 /*
403 * New Cx State?
404 * -------------
405 * If we're going to start using a new Cx state we must clean up
406 * from the previous and prepare to use the new.
407 */
408 if (next_state != pr->power.state)
409 acpi_processor_power_activate(pr, next_state);
410
411 return;
412
413 easy_out:
414 /* do C1 instead of busy loop */
415 if (pm_idle_save)
416 pm_idle_save();
417 else
418 safe_halt();
419 return;
420 }
421
422
423 static int
424 acpi_processor_set_power_policy (
425 struct acpi_processor *pr)
426 {
427 unsigned int i;
428 unsigned int state_is_set = 0;
429 struct acpi_processor_cx *lower = NULL;
430 struct acpi_processor_cx *higher = NULL;
431 struct acpi_processor_cx *cx;
432
433 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
434
435 if (!pr)
436 return_VALUE(-EINVAL);
437
438 /*
439 * This function sets the default Cx state policy (OS idle handler).
440 * Our scheme is to promote quickly to C2 but more conservatively
441 * to C3. We're favoring C2 for its characteristics of low latency
442 * (quick response), good power savings, and ability to allow bus
443 * mastering activity. Note that the Cx state policy is completely
444 * customizable and can be altered dynamically.
445 */
446
447 /* startup state */
448 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
449 cx = &pr->power.states[i];
450 if (!cx->valid)
451 continue;
452
453 if (!state_is_set)
454 pr->power.state = cx;
455 state_is_set++;
456 break;
457 }
458
459 if (!state_is_set)
460 return_VALUE(-ENODEV);
461
462 /* demotion */
463 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
464 cx = &pr->power.states[i];
465 if (!cx->valid)
466 continue;
467
468 if (lower) {
469 cx->demotion.state = lower;
470 cx->demotion.threshold.ticks = cx->latency_ticks;
471 cx->demotion.threshold.count = 1;
472 if (cx->type == ACPI_STATE_C3)
473 cx->demotion.threshold.bm = bm_history;
474 }
475
476 lower = cx;
477 }
478
479 /* promotion */
480 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
481 cx = &pr->power.states[i];
482 if (!cx->valid)
483 continue;
484
485 if (higher) {
486 cx->promotion.state = higher;
487 cx->promotion.threshold.ticks = cx->latency_ticks;
488 if (cx->type >= ACPI_STATE_C2)
489 cx->promotion.threshold.count = 4;
490 else
491 cx->promotion.threshold.count = 10;
492 if (higher->type == ACPI_STATE_C3)
493 cx->promotion.threshold.bm = bm_history;
494 }
495
496 higher = cx;
497 }
498
499 return_VALUE(0);
500 }
501
502
503 static int acpi_processor_get_power_info_fadt (struct acpi_processor *pr)
504 {
505 int i;
506
507 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
508
509 if (!pr)
510 return_VALUE(-EINVAL);
511
512 if (!pr->pblk)
513 return_VALUE(-ENODEV);
514
515 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
516 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
517
518 /* if info is obtained from pblk/fadt, type equals state */
519 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
520 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
521 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
522
523 /* the C0 state only exists as a filler in our array,
524 * and all processors need to support C1 */
525 pr->power.states[ACPI_STATE_C0].valid = 1;
526 pr->power.states[ACPI_STATE_C1].valid = 1;
527
528 /* determine C2 and C3 address from pblk */
529 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
530 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
531
532 /* determine latencies from FADT */
533 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
534 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
535
536 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
537 "lvl2[0x%08x] lvl3[0x%08x]\n",
538 pr->power.states[ACPI_STATE_C2].address,
539 pr->power.states[ACPI_STATE_C3].address));
540
541 return_VALUE(0);
542 }
543
544
545 static int acpi_processor_get_power_info_default_c1 (struct acpi_processor *pr)
546 {
547 int i;
548
549 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
550
551 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
552 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
553
554 /* if info is obtained from pblk/fadt, type equals state */
555 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
556 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
557 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
558
559 /* the C0 state only exists as a filler in our array,
560 * and all processors need to support C1 */
561 pr->power.states[ACPI_STATE_C0].valid = 1;
562 pr->power.states[ACPI_STATE_C1].valid = 1;
563
564 return_VALUE(0);
565 }
566
567
568 static int acpi_processor_get_power_info_cst (struct acpi_processor *pr)
569 {
570 acpi_status status = 0;
571 acpi_integer count;
572 int i;
573 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
574 union acpi_object *cst;
575
576 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
577
578 if (nocst)
579 return_VALUE(-ENODEV);
580
581 pr->power.count = 0;
582 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
583 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
584
585 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
586 if (ACPI_FAILURE(status)) {
587 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
588 return_VALUE(-ENODEV);
589 }
590
591 cst = (union acpi_object *) buffer.pointer;
592
593 /* There must be at least 2 elements */
594 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
595 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "not enough elements in _CST\n"));
596 status = -EFAULT;
597 goto end;
598 }
599
600 count = cst->package.elements[0].integer.value;
601
602 /* Validate number of power states. */
603 if (count < 1 || count != cst->package.count - 1) {
604 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "count given by _CST is not valid\n"));
605 status = -EFAULT;
606 goto end;
607 }
608
609 /* We support up to ACPI_PROCESSOR_MAX_POWER. */
610 if (count > ACPI_PROCESSOR_MAX_POWER) {
611 printk(KERN_WARNING "Limiting number of power states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER);
612 printk(KERN_WARNING "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
613 count = ACPI_PROCESSOR_MAX_POWER;
614 }
615
616 /* Tell driver that at least _CST is supported. */
617 pr->flags.has_cst = 1;
618
619 for (i = 1; i <= count; i++) {
620 union acpi_object *element;
621 union acpi_object *obj;
622 struct acpi_power_register *reg;
623 struct acpi_processor_cx cx;
624
625 memset(&cx, 0, sizeof(cx));
626
627 element = (union acpi_object *) &(cst->package.elements[i]);
628 if (element->type != ACPI_TYPE_PACKAGE)
629 continue;
630
631 if (element->package.count != 4)
632 continue;
633
634 obj = (union acpi_object *) &(element->package.elements[0]);
635
636 if (obj->type != ACPI_TYPE_BUFFER)
637 continue;
638
639 reg = (struct acpi_power_register *) obj->buffer.pointer;
640
641 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
642 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
643 continue;
644
645 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
646 0 : reg->address;
647
648 /* There should be an easy way to extract an integer... */
649 obj = (union acpi_object *) &(element->package.elements[1]);
650 if (obj->type != ACPI_TYPE_INTEGER)
651 continue;
652
653 cx.type = obj->integer.value;
654
655 if ((cx.type != ACPI_STATE_C1) &&
656 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
657 continue;
658
659 if ((cx.type < ACPI_STATE_C1) ||
660 (cx.type > ACPI_STATE_C3))
661 continue;
662
663 obj = (union acpi_object *) &(element->package.elements[2]);
664 if (obj->type != ACPI_TYPE_INTEGER)
665 continue;
666
667 cx.latency = obj->integer.value;
668
669 obj = (union acpi_object *) &(element->package.elements[3]);
670 if (obj->type != ACPI_TYPE_INTEGER)
671 continue;
672
673 cx.power = obj->integer.value;
674
675 (pr->power.count)++;
676 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
677 }
678
679 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", pr->power.count));
680
681 /* Validate number of power states discovered */
682 if (pr->power.count < 2)
683 status = -ENODEV;
684
685 end:
686 acpi_os_free(buffer.pointer);
687
688 return_VALUE(status);
689 }
690
691
692 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
693 {
694 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
695
696 if (!cx->address)
697 return_VOID;
698
699 /*
700 * C2 latency must be less than or equal to 100
701 * microseconds.
702 */
703 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
704 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
705 "latency too large [%d]\n",
706 cx->latency));
707 return_VOID;
708 }
709
710 /*
711 * Otherwise we've met all of our C2 requirements.
712 * Normalize the C2 latency to expidite policy
713 */
714 cx->valid = 1;
715 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
716
717 return_VOID;
718 }
719
720
721 static void acpi_processor_power_verify_c3(
722 struct acpi_processor *pr,
723 struct acpi_processor_cx *cx)
724 {
725 static int bm_check_flag;
726
727 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
728
729 if (!cx->address)
730 return_VOID;
731
732 /*
733 * C3 latency must be less than or equal to 1000
734 * microseconds.
735 */
736 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
737 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
738 "latency too large [%d]\n",
739 cx->latency));
740 return_VOID;
741 }
742
743 /*
744 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
745 * DMA transfers are used by any ISA device to avoid livelock.
746 * Note that we could disable Type-F DMA (as recommended by
747 * the erratum), but this is known to disrupt certain ISA
748 * devices thus we take the conservative approach.
749 */
750 else if (errata.piix4.fdma) {
751 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
752 "C3 not supported on PIIX4 with Type-F DMA\n"));
753 return_VOID;
754 }
755
756 /* All the logic here assumes flags.bm_check is same across all CPUs */
757 if (!bm_check_flag) {
758 /* Determine whether bm_check is needed based on CPU */
759 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
760 bm_check_flag = pr->flags.bm_check;
761 } else {
762 pr->flags.bm_check = bm_check_flag;
763 }
764
765 if (pr->flags.bm_check) {
766 printk("Disabling BM access before entering C3\n");
767 /* bus mastering control is necessary */
768 if (!pr->flags.bm_control) {
769 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
770 "C3 support requires bus mastering control\n"));
771 return_VOID;
772 }
773 } else {
774 printk("Invalidating cache before entering C3\n");
775 /*
776 * WBINVD should be set in fadt, for C3 state to be
777 * supported on when bm_check is not required.
778 */
779 if (acpi_fadt.wb_invd != 1) {
780 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
781 "Cache invalidation should work properly"
782 " for C3 to be enabled on SMP systems\n"));
783 return_VOID;
784 }
785 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
786 0, ACPI_MTX_DO_NOT_LOCK);
787 }
788
789 /*
790 * Otherwise we've met all of our C3 requirements.
791 * Normalize the C3 latency to expidite policy. Enable
792 * checking of bus mastering status (bm_check) so we can
793 * use this in our C3 policy
794 */
795 cx->valid = 1;
796 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
797
798 return_VOID;
799 }
800
801
802 static int acpi_processor_power_verify(struct acpi_processor *pr)
803 {
804 unsigned int i;
805 unsigned int working = 0;
806
807 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
808 struct acpi_processor_cx *cx = &pr->power.states[i];
809
810 switch (cx->type) {
811 case ACPI_STATE_C1:
812 cx->valid = 1;
813 break;
814
815 case ACPI_STATE_C2:
816 acpi_processor_power_verify_c2(cx);
817 break;
818
819 case ACPI_STATE_C3:
820 acpi_processor_power_verify_c3(pr, cx);
821 break;
822 }
823
824 if (cx->valid)
825 working++;
826 }
827
828 return (working);
829 }
830
831 static int acpi_processor_get_power_info (
832 struct acpi_processor *pr)
833 {
834 unsigned int i;
835 int result;
836
837 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
838
839 /* NOTE: the idle thread may not be running while calling
840 * this function */
841
842 result = acpi_processor_get_power_info_cst(pr);
843 if ((result) || (acpi_processor_power_verify(pr) < 2)) {
844 result = acpi_processor_get_power_info_fadt(pr);
845 if (result)
846 result = acpi_processor_get_power_info_default_c1(pr);
847 }
848
849 /*
850 * Set Default Policy
851 * ------------------
852 * Now that we know which states are supported, set the default
853 * policy. Note that this policy can be changed dynamically
854 * (e.g. encourage deeper sleeps to conserve battery life when
855 * not on AC).
856 */
857 result = acpi_processor_set_power_policy(pr);
858 if (result)
859 return_VALUE(result);
860
861 /*
862 * if one state of type C2 or C3 is available, mark this
863 * CPU as being "idle manageable"
864 */
865 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
866 if (pr->power.states[i].valid) {
867 pr->power.count = i;
868 pr->flags.power = 1;
869 }
870 }
871
872 return_VALUE(0);
873 }
874
875 int acpi_processor_cst_has_changed (struct acpi_processor *pr)
876 {
877 int result = 0;
878
879 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
880
881 if (!pr)
882 return_VALUE(-EINVAL);
883
884 if ( nocst) {
885 return_VALUE(-ENODEV);
886 }
887
888 if (!pr->flags.power_setup_done)
889 return_VALUE(-ENODEV);
890
891 /* Fall back to the default idle loop */
892 pm_idle = pm_idle_save;
893 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
894
895 pr->flags.power = 0;
896 result = acpi_processor_get_power_info(pr);
897 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
898 pm_idle = acpi_processor_idle;
899
900 return_VALUE(result);
901 }
902
903 /* proc interface */
904
905 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
906 {
907 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
908 unsigned int i;
909
910 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
911
912 if (!pr)
913 goto end;
914
915 seq_printf(seq, "active state: C%zd\n"
916 "max_cstate: C%d\n"
917 "bus master activity: %08x\n",
918 pr->power.state ? pr->power.state - pr->power.states : 0,
919 max_cstate,
920 (unsigned)pr->power.bm_activity);
921
922 seq_puts(seq, "states:\n");
923
924 for (i = 1; i <= pr->power.count; i++) {
925 seq_printf(seq, " %cC%d: ",
926 (&pr->power.states[i] == pr->power.state?'*':' '), i);
927
928 if (!pr->power.states[i].valid) {
929 seq_puts(seq, "<not supported>\n");
930 continue;
931 }
932
933 switch (pr->power.states[i].type) {
934 case ACPI_STATE_C1:
935 seq_printf(seq, "type[C1] ");
936 break;
937 case ACPI_STATE_C2:
938 seq_printf(seq, "type[C2] ");
939 break;
940 case ACPI_STATE_C3:
941 seq_printf(seq, "type[C3] ");
942 break;
943 default:
944 seq_printf(seq, "type[--] ");
945 break;
946 }
947
948 if (pr->power.states[i].promotion.state)
949 seq_printf(seq, "promotion[C%zd] ",
950 (pr->power.states[i].promotion.state -
951 pr->power.states));
952 else
953 seq_puts(seq, "promotion[--] ");
954
955 if (pr->power.states[i].demotion.state)
956 seq_printf(seq, "demotion[C%zd] ",
957 (pr->power.states[i].demotion.state -
958 pr->power.states));
959 else
960 seq_puts(seq, "demotion[--] ");
961
962 seq_printf(seq, "latency[%03d] usage[%08d]\n",
963 pr->power.states[i].latency,
964 pr->power.states[i].usage);
965 }
966
967 end:
968 return_VALUE(0);
969 }
970
971 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
972 {
973 return single_open(file, acpi_processor_power_seq_show,
974 PDE(inode)->data);
975 }
976
977 static struct file_operations acpi_processor_power_fops = {
978 .open = acpi_processor_power_open_fs,
979 .read = seq_read,
980 .llseek = seq_lseek,
981 .release = single_release,
982 };
983
984 int acpi_processor_power_init(struct acpi_processor *pr, struct acpi_device *device)
985 {
986 acpi_status status = 0;
987 static int first_run = 0;
988 struct proc_dir_entry *entry = NULL;
989 unsigned int i;
990
991 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
992
993 if (!first_run) {
994 dmi_check_system(processor_power_dmi_table);
995 if (max_cstate < ACPI_C_STATES_MAX)
996 printk(KERN_NOTICE "ACPI: processor limited to max C-state %d\n", max_cstate);
997 first_run++;
998 }
999
1000 if (!pr)
1001 return_VALUE(-EINVAL);
1002
1003 if (acpi_fadt.cst_cnt && !nocst) {
1004 status = acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1005 if (ACPI_FAILURE(status)) {
1006 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1007 "Notifying BIOS of _CST ability failed\n"));
1008 }
1009 }
1010
1011 acpi_processor_power_init_pdc(&(pr->power), pr->id);
1012 acpi_processor_set_pdc(pr, pr->power.pdc);
1013 acpi_processor_get_power_info(pr);
1014
1015 /*
1016 * Install the idle handler if processor power management is supported.
1017 * Note that we use previously set idle handler will be used on
1018 * platforms that only support C1.
1019 */
1020 if ((pr->flags.power) && (!boot_option_idle_override)) {
1021 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1022 for (i = 1; i <= pr->power.count; i++)
1023 if (pr->power.states[i].valid)
1024 printk(" C%d[C%d]", i, pr->power.states[i].type);
1025 printk(")\n");
1026
1027 if (pr->id == 0) {
1028 pm_idle_save = pm_idle;
1029 pm_idle = acpi_processor_idle;
1030 }
1031 }
1032
1033 /* 'power' [R] */
1034 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1035 S_IRUGO, acpi_device_dir(device));
1036 if (!entry)
1037 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1038 "Unable to create '%s' fs entry\n",
1039 ACPI_PROCESSOR_FILE_POWER));
1040 else {
1041 entry->proc_fops = &acpi_processor_power_fops;
1042 entry->data = acpi_driver_data(device);
1043 entry->owner = THIS_MODULE;
1044 }
1045
1046 pr->flags.power_setup_done = 1;
1047
1048 return_VALUE(0);
1049 }
1050
1051 int acpi_processor_power_exit(struct acpi_processor *pr, struct acpi_device *device)
1052 {
1053 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1054
1055 pr->flags.power_setup_done = 0;
1056
1057 if (acpi_device_dir(device))
1058 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device));
1059
1060 /* Unregister the idle handler when processor #0 is removed. */
1061 if (pr->id == 0) {
1062 pm_idle = pm_idle_save;
1063
1064 /*
1065 * We are about to unload the current idle thread pm callback
1066 * (pm_idle), Wait for all processors to update cached/local
1067 * copies of pm_idle before proceeding.
1068 */
1069 cpu_idle_wait();
1070 }
1071
1072 return_VALUE(0);
1073 }