]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/acpi/processor_idle.c
Merge ../to-linus
[mirror_ubuntu-zesty-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
43
44 #include <acpi/acpi_bus.h>
45 #include <acpi/processor.h>
46
47 #define ACPI_PROCESSOR_COMPONENT 0x01000000
48 #define ACPI_PROCESSOR_CLASS "processor"
49 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
50 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
51 ACPI_MODULE_NAME ("acpi_processor")
52
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54
55 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
56 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
58
59 static void (*pm_idle_save)(void);
60 module_param(max_cstate, uint, 0644);
61
62 static unsigned int nocst = 0;
63 module_param(nocst, uint, 0000);
64
65 /*
66 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
67 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
68 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
69 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
70 * reduce history for more aggressive entry into C3
71 */
72 static unsigned int bm_history = (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
73 module_param(bm_history, uint, 0644);
74 /* --------------------------------------------------------------------------
75 Power Management
76 -------------------------------------------------------------------------- */
77
78 /*
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
81 *
82 * To skip this limit, boot/load with a large max_cstate limit.
83 */
84 static int set_max_cstate(struct dmi_system_id *id)
85 {
86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 return 0;
88
89 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
90 " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92
93 max_cstate = (long)id->driver_data;
94
95 return 0;
96 }
97
98
99 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
100 { set_max_cstate, "IBM ThinkPad R40e", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
103 { set_max_cstate, "Medion 41700", {
104 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
105 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J") }, (void*)1},
106 { set_max_cstate, "Clevo 5600D", {
107 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
108 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307") },
109 (void*)2},
110 {},
111 };
112
113
114 static inline u32
115 ticks_elapsed (
116 u32 t1,
117 u32 t2)
118 {
119 if (t2 >= t1)
120 return (t2 - t1);
121 else if (!acpi_fadt.tmr_val_ext)
122 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
123 else
124 return ((0xFFFFFFFF - t1) + t2);
125 }
126
127
128 static void
129 acpi_processor_power_activate (
130 struct acpi_processor *pr,
131 struct acpi_processor_cx *new)
132 {
133 struct acpi_processor_cx *old;
134
135 if (!pr || !new)
136 return;
137
138 old = pr->power.state;
139
140 if (old)
141 old->promotion.count = 0;
142 new->demotion.count = 0;
143
144 /* Cleanup from old state. */
145 if (old) {
146 switch (old->type) {
147 case ACPI_STATE_C3:
148 /* Disable bus master reload */
149 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
150 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
151 break;
152 }
153 }
154
155 /* Prepare to use new state. */
156 switch (new->type) {
157 case ACPI_STATE_C3:
158 /* Enable bus master reload */
159 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
161 break;
162 }
163
164 pr->power.state = new;
165
166 return;
167 }
168
169
170 static atomic_t c3_cpu_count;
171
172
173 static void acpi_processor_idle (void)
174 {
175 struct acpi_processor *pr = NULL;
176 struct acpi_processor_cx *cx = NULL;
177 struct acpi_processor_cx *next_state = NULL;
178 int sleep_ticks = 0;
179 u32 t1, t2 = 0;
180
181 pr = processors[_smp_processor_id()];
182 if (!pr)
183 return;
184
185 /*
186 * Interrupts must be disabled during bus mastering calculations and
187 * for C2/C3 transitions.
188 */
189 local_irq_disable();
190
191 /*
192 * Check whether we truly need to go idle, or should
193 * reschedule:
194 */
195 if (unlikely(need_resched())) {
196 local_irq_enable();
197 return;
198 }
199
200 cx = pr->power.state;
201 if (!cx)
202 goto easy_out;
203
204 /*
205 * Check BM Activity
206 * -----------------
207 * Check for bus mastering activity (if required), record, and check
208 * for demotion.
209 */
210 if (pr->flags.bm_check) {
211 u32 bm_status = 0;
212 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
213
214 if (diff > 32)
215 diff = 32;
216
217 while (diff) {
218 /* if we didn't get called, assume there was busmaster activity */
219 diff--;
220 if (diff)
221 pr->power.bm_activity |= 0x1;
222 pr->power.bm_activity <<= 1;
223 }
224
225 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
226 &bm_status, ACPI_MTX_DO_NOT_LOCK);
227 if (bm_status) {
228 pr->power.bm_activity++;
229 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
230 1, ACPI_MTX_DO_NOT_LOCK);
231 }
232 /*
233 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
234 * the true state of bus mastering activity; forcing us to
235 * manually check the BMIDEA bit of each IDE channel.
236 */
237 else if (errata.piix4.bmisx) {
238 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
239 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
240 pr->power.bm_activity++;
241 }
242
243 pr->power.bm_check_timestamp = jiffies;
244
245 /*
246 * Apply bus mastering demotion policy. Automatically demote
247 * to avoid a faulty transition. Note that the processor
248 * won't enter a low-power state during this call (to this
249 * funciton) but should upon the next.
250 *
251 * TBD: A better policy might be to fallback to the demotion
252 * state (use it for this quantum only) istead of
253 * demoting -- and rely on duration as our sole demotion
254 * qualification. This may, however, introduce DMA
255 * issues (e.g. floppy DMA transfer overrun/underrun).
256 */
257 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
258 local_irq_enable();
259 next_state = cx->demotion.state;
260 goto end;
261 }
262 }
263
264 cx->usage++;
265
266 /*
267 * Sleep:
268 * ------
269 * Invoke the current Cx state to put the processor to sleep.
270 */
271 switch (cx->type) {
272
273 case ACPI_STATE_C1:
274 /*
275 * Invoke C1.
276 * Use the appropriate idle routine, the one that would
277 * be used without acpi C-states.
278 */
279 if (pm_idle_save)
280 pm_idle_save();
281 else
282 safe_halt();
283 /*
284 * TBD: Can't get time duration while in C1, as resumes
285 * go to an ISR rather than here. Need to instrument
286 * base interrupt handler.
287 */
288 sleep_ticks = 0xFFFFFFFF;
289 break;
290
291 case ACPI_STATE_C2:
292 /* Get start time (ticks) */
293 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
294 /* Invoke C2 */
295 inb(cx->address);
296 /* Dummy op - must do something useless after P_LVL2 read */
297 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
298 /* Get end time (ticks) */
299 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
300 /* Re-enable interrupts */
301 local_irq_enable();
302 /* Compute time (ticks) that we were actually asleep */
303 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
304 break;
305
306 case ACPI_STATE_C3:
307
308 if (pr->flags.bm_check) {
309 if (atomic_inc_return(&c3_cpu_count) ==
310 num_online_cpus()) {
311 /*
312 * All CPUs are trying to go to C3
313 * Disable bus master arbitration
314 */
315 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
316 ACPI_MTX_DO_NOT_LOCK);
317 }
318 } else {
319 /* SMP with no shared cache... Invalidate cache */
320 ACPI_FLUSH_CPU_CACHE();
321 }
322
323 /* Get start time (ticks) */
324 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
325 /* Invoke C3 */
326 inb(cx->address);
327 /* Dummy op - must do something useless after P_LVL3 read */
328 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
329 /* Get end time (ticks) */
330 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
331 if (pr->flags.bm_check) {
332 /* Enable bus master arbitration */
333 atomic_dec(&c3_cpu_count);
334 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
335 }
336
337 /* Re-enable interrupts */
338 local_irq_enable();
339 /* Compute time (ticks) that we were actually asleep */
340 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
341 break;
342
343 default:
344 local_irq_enable();
345 return;
346 }
347
348 next_state = pr->power.state;
349
350 /*
351 * Promotion?
352 * ----------
353 * Track the number of longs (time asleep is greater than threshold)
354 * and promote when the count threshold is reached. Note that bus
355 * mastering activity may prevent promotions.
356 * Do not promote above max_cstate.
357 */
358 if (cx->promotion.state &&
359 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
360 if (sleep_ticks > cx->promotion.threshold.ticks) {
361 cx->promotion.count++;
362 cx->demotion.count = 0;
363 if (cx->promotion.count >= cx->promotion.threshold.count) {
364 if (pr->flags.bm_check) {
365 if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
366 next_state = cx->promotion.state;
367 goto end;
368 }
369 }
370 else {
371 next_state = cx->promotion.state;
372 goto end;
373 }
374 }
375 }
376 }
377
378 /*
379 * Demotion?
380 * ---------
381 * Track the number of shorts (time asleep is less than time threshold)
382 * and demote when the usage threshold is reached.
383 */
384 if (cx->demotion.state) {
385 if (sleep_ticks < cx->demotion.threshold.ticks) {
386 cx->demotion.count++;
387 cx->promotion.count = 0;
388 if (cx->demotion.count >= cx->demotion.threshold.count) {
389 next_state = cx->demotion.state;
390 goto end;
391 }
392 }
393 }
394
395 end:
396 /*
397 * Demote if current state exceeds max_cstate
398 */
399 if ((pr->power.state - pr->power.states) > max_cstate) {
400 if (cx->demotion.state)
401 next_state = cx->demotion.state;
402 }
403
404 /*
405 * New Cx State?
406 * -------------
407 * If we're going to start using a new Cx state we must clean up
408 * from the previous and prepare to use the new.
409 */
410 if (next_state != pr->power.state)
411 acpi_processor_power_activate(pr, next_state);
412
413 return;
414
415 easy_out:
416 /* do C1 instead of busy loop */
417 if (pm_idle_save)
418 pm_idle_save();
419 else
420 safe_halt();
421 return;
422 }
423
424
425 static int
426 acpi_processor_set_power_policy (
427 struct acpi_processor *pr)
428 {
429 unsigned int i;
430 unsigned int state_is_set = 0;
431 struct acpi_processor_cx *lower = NULL;
432 struct acpi_processor_cx *higher = NULL;
433 struct acpi_processor_cx *cx;
434
435 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
436
437 if (!pr)
438 return_VALUE(-EINVAL);
439
440 /*
441 * This function sets the default Cx state policy (OS idle handler).
442 * Our scheme is to promote quickly to C2 but more conservatively
443 * to C3. We're favoring C2 for its characteristics of low latency
444 * (quick response), good power savings, and ability to allow bus
445 * mastering activity. Note that the Cx state policy is completely
446 * customizable and can be altered dynamically.
447 */
448
449 /* startup state */
450 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
451 cx = &pr->power.states[i];
452 if (!cx->valid)
453 continue;
454
455 if (!state_is_set)
456 pr->power.state = cx;
457 state_is_set++;
458 break;
459 }
460
461 if (!state_is_set)
462 return_VALUE(-ENODEV);
463
464 /* demotion */
465 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
466 cx = &pr->power.states[i];
467 if (!cx->valid)
468 continue;
469
470 if (lower) {
471 cx->demotion.state = lower;
472 cx->demotion.threshold.ticks = cx->latency_ticks;
473 cx->demotion.threshold.count = 1;
474 if (cx->type == ACPI_STATE_C3)
475 cx->demotion.threshold.bm = bm_history;
476 }
477
478 lower = cx;
479 }
480
481 /* promotion */
482 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
483 cx = &pr->power.states[i];
484 if (!cx->valid)
485 continue;
486
487 if (higher) {
488 cx->promotion.state = higher;
489 cx->promotion.threshold.ticks = cx->latency_ticks;
490 if (cx->type >= ACPI_STATE_C2)
491 cx->promotion.threshold.count = 4;
492 else
493 cx->promotion.threshold.count = 10;
494 if (higher->type == ACPI_STATE_C3)
495 cx->promotion.threshold.bm = bm_history;
496 }
497
498 higher = cx;
499 }
500
501 return_VALUE(0);
502 }
503
504
505 static int acpi_processor_get_power_info_fadt (struct acpi_processor *pr)
506 {
507 int i;
508
509 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
510
511 if (!pr)
512 return_VALUE(-EINVAL);
513
514 if (!pr->pblk)
515 return_VALUE(-ENODEV);
516
517 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
518 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
519
520 /* if info is obtained from pblk/fadt, type equals state */
521 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
522 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
523 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
524
525 /* the C0 state only exists as a filler in our array,
526 * and all processors need to support C1 */
527 pr->power.states[ACPI_STATE_C0].valid = 1;
528 pr->power.states[ACPI_STATE_C1].valid = 1;
529
530 /* determine C2 and C3 address from pblk */
531 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
532 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
533
534 /* determine latencies from FADT */
535 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
536 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
537
538 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539 "lvl2[0x%08x] lvl3[0x%08x]\n",
540 pr->power.states[ACPI_STATE_C2].address,
541 pr->power.states[ACPI_STATE_C3].address));
542
543 return_VALUE(0);
544 }
545
546
547 static int acpi_processor_get_power_info_default_c1 (struct acpi_processor *pr)
548 {
549 int i;
550
551 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
552
553 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
554 memset(&(pr->power.states[i]), 0,
555 sizeof(struct acpi_processor_cx));
556
557 /* if info is obtained from pblk/fadt, type equals state */
558 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
559 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
560 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
561
562 /* the C0 state only exists as a filler in our array,
563 * and all processors need to support C1 */
564 pr->power.states[ACPI_STATE_C0].valid = 1;
565 pr->power.states[ACPI_STATE_C1].valid = 1;
566
567 return_VALUE(0);
568 }
569
570
571 static int acpi_processor_get_power_info_cst (struct acpi_processor *pr)
572 {
573 acpi_status status = 0;
574 acpi_integer count;
575 int i;
576 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
577 union acpi_object *cst;
578
579 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
580
581 if (nocst)
582 return_VALUE(-ENODEV);
583
584 pr->power.count = 0;
585 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
586 memset(&(pr->power.states[i]), 0,
587 sizeof(struct acpi_processor_cx));
588
589 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
590 if (ACPI_FAILURE(status)) {
591 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
592 return_VALUE(-ENODEV);
593 }
594
595 cst = (union acpi_object *) buffer.pointer;
596
597 /* There must be at least 2 elements */
598 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
599 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "not enough elements in _CST\n"));
600 status = -EFAULT;
601 goto end;
602 }
603
604 count = cst->package.elements[0].integer.value;
605
606 /* Validate number of power states. */
607 if (count < 1 || count != cst->package.count - 1) {
608 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "count given by _CST is not valid\n"));
609 status = -EFAULT;
610 goto end;
611 }
612
613 /* We support up to ACPI_PROCESSOR_MAX_POWER. */
614 if (count > ACPI_PROCESSOR_MAX_POWER) {
615 printk(KERN_WARNING "Limiting number of power states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER);
616 printk(KERN_WARNING "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
617 count = ACPI_PROCESSOR_MAX_POWER;
618 }
619
620 /* Tell driver that at least _CST is supported. */
621 pr->flags.has_cst = 1;
622
623 for (i = 1; i <= count; i++) {
624 union acpi_object *element;
625 union acpi_object *obj;
626 struct acpi_power_register *reg;
627 struct acpi_processor_cx cx;
628
629 memset(&cx, 0, sizeof(cx));
630
631 element = (union acpi_object *) &(cst->package.elements[i]);
632 if (element->type != ACPI_TYPE_PACKAGE)
633 continue;
634
635 if (element->package.count != 4)
636 continue;
637
638 obj = (union acpi_object *) &(element->package.elements[0]);
639
640 if (obj->type != ACPI_TYPE_BUFFER)
641 continue;
642
643 reg = (struct acpi_power_register *) obj->buffer.pointer;
644
645 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
646 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
647 continue;
648
649 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
650 0 : reg->address;
651
652 /* There should be an easy way to extract an integer... */
653 obj = (union acpi_object *) &(element->package.elements[1]);
654 if (obj->type != ACPI_TYPE_INTEGER)
655 continue;
656
657 cx.type = obj->integer.value;
658
659 if ((cx.type != ACPI_STATE_C1) &&
660 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
661 continue;
662
663 if ((cx.type < ACPI_STATE_C1) ||
664 (cx.type > ACPI_STATE_C3))
665 continue;
666
667 obj = (union acpi_object *) &(element->package.elements[2]);
668 if (obj->type != ACPI_TYPE_INTEGER)
669 continue;
670
671 cx.latency = obj->integer.value;
672
673 obj = (union acpi_object *) &(element->package.elements[3]);
674 if (obj->type != ACPI_TYPE_INTEGER)
675 continue;
676
677 cx.power = obj->integer.value;
678
679 (pr->power.count)++;
680 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
681 }
682
683 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", pr->power.count));
684
685 /* Validate number of power states discovered */
686 if (pr->power.count < 2)
687 status = -ENODEV;
688
689 end:
690 acpi_os_free(buffer.pointer);
691
692 return_VALUE(status);
693 }
694
695
696 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
697 {
698 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
699
700 if (!cx->address)
701 return_VOID;
702
703 /*
704 * C2 latency must be less than or equal to 100
705 * microseconds.
706 */
707 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
708 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
709 "latency too large [%d]\n",
710 cx->latency));
711 return_VOID;
712 }
713
714 /*
715 * Otherwise we've met all of our C2 requirements.
716 * Normalize the C2 latency to expidite policy
717 */
718 cx->valid = 1;
719 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
720
721 return_VOID;
722 }
723
724
725 static void acpi_processor_power_verify_c3(
726 struct acpi_processor *pr,
727 struct acpi_processor_cx *cx)
728 {
729 static int bm_check_flag;
730
731 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
732
733 if (!cx->address)
734 return_VOID;
735
736 /*
737 * C3 latency must be less than or equal to 1000
738 * microseconds.
739 */
740 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
741 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
742 "latency too large [%d]\n",
743 cx->latency));
744 return_VOID;
745 }
746
747 /*
748 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
749 * DMA transfers are used by any ISA device to avoid livelock.
750 * Note that we could disable Type-F DMA (as recommended by
751 * the erratum), but this is known to disrupt certain ISA
752 * devices thus we take the conservative approach.
753 */
754 else if (errata.piix4.fdma) {
755 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
756 "C3 not supported on PIIX4 with Type-F DMA\n"));
757 return_VOID;
758 }
759
760 /* All the logic here assumes flags.bm_check is same across all CPUs */
761 if (!bm_check_flag) {
762 /* Determine whether bm_check is needed based on CPU */
763 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
764 bm_check_flag = pr->flags.bm_check;
765 } else {
766 pr->flags.bm_check = bm_check_flag;
767 }
768
769 if (pr->flags.bm_check) {
770 /* bus mastering control is necessary */
771 if (!pr->flags.bm_control) {
772 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
773 "C3 support requires bus mastering control\n"));
774 return_VOID;
775 }
776 } else {
777 /*
778 * WBINVD should be set in fadt, for C3 state to be
779 * supported on when bm_check is not required.
780 */
781 if (acpi_fadt.wb_invd != 1) {
782 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
783 "Cache invalidation should work properly"
784 " for C3 to be enabled on SMP systems\n"));
785 return_VOID;
786 }
787 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
788 0, ACPI_MTX_DO_NOT_LOCK);
789 }
790
791 /*
792 * Otherwise we've met all of our C3 requirements.
793 * Normalize the C3 latency to expidite policy. Enable
794 * checking of bus mastering status (bm_check) so we can
795 * use this in our C3 policy
796 */
797 cx->valid = 1;
798 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
799
800 return_VOID;
801 }
802
803
804 static int acpi_processor_power_verify(struct acpi_processor *pr)
805 {
806 unsigned int i;
807 unsigned int working = 0;
808
809 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
810 struct acpi_processor_cx *cx = &pr->power.states[i];
811
812 switch (cx->type) {
813 case ACPI_STATE_C1:
814 cx->valid = 1;
815 break;
816
817 case ACPI_STATE_C2:
818 acpi_processor_power_verify_c2(cx);
819 break;
820
821 case ACPI_STATE_C3:
822 acpi_processor_power_verify_c3(pr, cx);
823 break;
824 }
825
826 if (cx->valid)
827 working++;
828 }
829
830 return (working);
831 }
832
833 static int acpi_processor_get_power_info (
834 struct acpi_processor *pr)
835 {
836 unsigned int i;
837 int result;
838
839 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
840
841 /* NOTE: the idle thread may not be running while calling
842 * this function */
843
844 result = acpi_processor_get_power_info_cst(pr);
845 if ((result) || (acpi_processor_power_verify(pr) < 2)) {
846 result = acpi_processor_get_power_info_fadt(pr);
847 if ((result) || (acpi_processor_power_verify(pr) < 2))
848 result = acpi_processor_get_power_info_default_c1(pr);
849 }
850
851 /*
852 * Set Default Policy
853 * ------------------
854 * Now that we know which states are supported, set the default
855 * policy. Note that this policy can be changed dynamically
856 * (e.g. encourage deeper sleeps to conserve battery life when
857 * not on AC).
858 */
859 result = acpi_processor_set_power_policy(pr);
860 if (result)
861 return_VALUE(result);
862
863 /*
864 * if one state of type C2 or C3 is available, mark this
865 * CPU as being "idle manageable"
866 */
867 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
868 if (pr->power.states[i].valid) {
869 pr->power.count = i;
870 pr->flags.power = 1;
871 }
872 }
873
874 return_VALUE(0);
875 }
876
877 int acpi_processor_cst_has_changed (struct acpi_processor *pr)
878 {
879 int result = 0;
880
881 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
882
883 if (!pr)
884 return_VALUE(-EINVAL);
885
886 if ( nocst) {
887 return_VALUE(-ENODEV);
888 }
889
890 if (!pr->flags.power_setup_done)
891 return_VALUE(-ENODEV);
892
893 /* Fall back to the default idle loop */
894 pm_idle = pm_idle_save;
895 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
896
897 pr->flags.power = 0;
898 result = acpi_processor_get_power_info(pr);
899 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
900 pm_idle = acpi_processor_idle;
901
902 return_VALUE(result);
903 }
904
905 /* proc interface */
906
907 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
908 {
909 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
910 unsigned int i;
911
912 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
913
914 if (!pr)
915 goto end;
916
917 seq_printf(seq, "active state: C%zd\n"
918 "max_cstate: C%d\n"
919 "bus master activity: %08x\n",
920 pr->power.state ? pr->power.state - pr->power.states : 0,
921 max_cstate,
922 (unsigned)pr->power.bm_activity);
923
924 seq_puts(seq, "states:\n");
925
926 for (i = 1; i <= pr->power.count; i++) {
927 seq_printf(seq, " %cC%d: ",
928 (&pr->power.states[i] == pr->power.state?'*':' '), i);
929
930 if (!pr->power.states[i].valid) {
931 seq_puts(seq, "<not supported>\n");
932 continue;
933 }
934
935 switch (pr->power.states[i].type) {
936 case ACPI_STATE_C1:
937 seq_printf(seq, "type[C1] ");
938 break;
939 case ACPI_STATE_C2:
940 seq_printf(seq, "type[C2] ");
941 break;
942 case ACPI_STATE_C3:
943 seq_printf(seq, "type[C3] ");
944 break;
945 default:
946 seq_printf(seq, "type[--] ");
947 break;
948 }
949
950 if (pr->power.states[i].promotion.state)
951 seq_printf(seq, "promotion[C%zd] ",
952 (pr->power.states[i].promotion.state -
953 pr->power.states));
954 else
955 seq_puts(seq, "promotion[--] ");
956
957 if (pr->power.states[i].demotion.state)
958 seq_printf(seq, "demotion[C%zd] ",
959 (pr->power.states[i].demotion.state -
960 pr->power.states));
961 else
962 seq_puts(seq, "demotion[--] ");
963
964 seq_printf(seq, "latency[%03d] usage[%08d]\n",
965 pr->power.states[i].latency,
966 pr->power.states[i].usage);
967 }
968
969 end:
970 return_VALUE(0);
971 }
972
973 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
974 {
975 return single_open(file, acpi_processor_power_seq_show,
976 PDE(inode)->data);
977 }
978
979 static struct file_operations acpi_processor_power_fops = {
980 .open = acpi_processor_power_open_fs,
981 .read = seq_read,
982 .llseek = seq_lseek,
983 .release = single_release,
984 };
985
986 int acpi_processor_power_init(struct acpi_processor *pr, struct acpi_device *device)
987 {
988 acpi_status status = 0;
989 static int first_run = 0;
990 struct proc_dir_entry *entry = NULL;
991 unsigned int i;
992
993 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
994
995 if (!first_run) {
996 dmi_check_system(processor_power_dmi_table);
997 if (max_cstate < ACPI_C_STATES_MAX)
998 printk(KERN_NOTICE "ACPI: processor limited to max C-state %d\n", max_cstate);
999 first_run++;
1000 }
1001
1002 if (!pr)
1003 return_VALUE(-EINVAL);
1004
1005 if (acpi_fadt.cst_cnt && !nocst) {
1006 status = acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1007 if (ACPI_FAILURE(status)) {
1008 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1009 "Notifying BIOS of _CST ability failed\n"));
1010 }
1011 }
1012
1013 acpi_processor_power_init_pdc(&(pr->power), pr->id);
1014 acpi_processor_set_pdc(pr, pr->power.pdc);
1015 acpi_processor_get_power_info(pr);
1016
1017 /*
1018 * Install the idle handler if processor power management is supported.
1019 * Note that we use previously set idle handler will be used on
1020 * platforms that only support C1.
1021 */
1022 if ((pr->flags.power) && (!boot_option_idle_override)) {
1023 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1024 for (i = 1; i <= pr->power.count; i++)
1025 if (pr->power.states[i].valid)
1026 printk(" C%d[C%d]", i, pr->power.states[i].type);
1027 printk(")\n");
1028
1029 if (pr->id == 0) {
1030 pm_idle_save = pm_idle;
1031 pm_idle = acpi_processor_idle;
1032 }
1033 }
1034
1035 /* 'power' [R] */
1036 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1037 S_IRUGO, acpi_device_dir(device));
1038 if (!entry)
1039 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1040 "Unable to create '%s' fs entry\n",
1041 ACPI_PROCESSOR_FILE_POWER));
1042 else {
1043 entry->proc_fops = &acpi_processor_power_fops;
1044 entry->data = acpi_driver_data(device);
1045 entry->owner = THIS_MODULE;
1046 }
1047
1048 pr->flags.power_setup_done = 1;
1049
1050 return_VALUE(0);
1051 }
1052
1053 int acpi_processor_power_exit(struct acpi_processor *pr, struct acpi_device *device)
1054 {
1055 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1056
1057 pr->flags.power_setup_done = 0;
1058
1059 if (acpi_device_dir(device))
1060 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device));
1061
1062 /* Unregister the idle handler when processor #0 is removed. */
1063 if (pr->id == 0) {
1064 pm_idle = pm_idle_save;
1065
1066 /*
1067 * We are about to unload the current idle thread pm callback
1068 * (pm_idle), Wait for all processors to update cached/local
1069 * copies of pm_idle before proceeding.
1070 */
1071 cpu_idle_wait();
1072 }
1073
1074 return_VALUE(0);
1075 }