]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/processor_idle.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jk/spufs into...
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
94 */
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105
106 /*
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
109 *
110 * To skip this limit, boot/load with a large max_cstate limit.
111 */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 return 0;
116
117 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120
121 max_cstate = (long)id->driver_data;
122
123 return 0;
124 }
125
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 { set_max_cstate, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 { set_max_cstate, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 { set_max_cstate, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 (void *)2},
184 {},
185 };
186
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 if (t2 >= t1)
190 return (t2 - t1);
191 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 else
194 return ((0xFFFFFFFF - t1) + t2);
195 }
196
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 if (t2 >= t1)
200 return PM_TIMER_TICKS_TO_US(t2 - t1);
201 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 else
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206
207 /*
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
210 */
211 static void acpi_safe_halt(void)
212 {
213 current_thread_info()->status &= ~TS_POLLING;
214 /*
215 * TS_POLLING-cleared state must be visible before we
216 * test NEED_RESCHED:
217 */
218 smp_mb();
219 if (!need_resched())
220 safe_halt();
221 current_thread_info()->status |= TS_POLLING;
222 }
223
224 #ifndef CONFIG_CPU_IDLE
225
226 static void
227 acpi_processor_power_activate(struct acpi_processor *pr,
228 struct acpi_processor_cx *new)
229 {
230 struct acpi_processor_cx *old;
231
232 if (!pr || !new)
233 return;
234
235 old = pr->power.state;
236
237 if (old)
238 old->promotion.count = 0;
239 new->demotion.count = 0;
240
241 /* Cleanup from old state. */
242 if (old) {
243 switch (old->type) {
244 case ACPI_STATE_C3:
245 /* Disable bus master reload */
246 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
247 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
248 break;
249 }
250 }
251
252 /* Prepare to use new state. */
253 switch (new->type) {
254 case ACPI_STATE_C3:
255 /* Enable bus master reload */
256 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
257 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
258 break;
259 }
260
261 pr->power.state = new;
262
263 return;
264 }
265
266 static atomic_t c3_cpu_count;
267
268 /* Common C-state entry for C2, C3, .. */
269 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
270 {
271 if (cstate->entry_method == ACPI_CSTATE_FFH) {
272 /* Call into architectural FFH based C-state */
273 acpi_processor_ffh_cstate_enter(cstate);
274 } else {
275 int unused;
276 /* IO port based C-state */
277 inb(cstate->address);
278 /* Dummy wait op - must do something useless after P_LVL2 read
279 because chipsets cannot guarantee that STPCLK# signal
280 gets asserted in time to freeze execution properly. */
281 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
282 }
283 }
284 #endif /* !CONFIG_CPU_IDLE */
285
286 #ifdef ARCH_APICTIMER_STOPS_ON_C3
287
288 /*
289 * Some BIOS implementations switch to C3 in the published C2 state.
290 * This seems to be a common problem on AMD boxen, but other vendors
291 * are affected too. We pick the most conservative approach: we assume
292 * that the local APIC stops in both C2 and C3.
293 */
294 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
295 struct acpi_processor_cx *cx)
296 {
297 struct acpi_processor_power *pwr = &pr->power;
298 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
299
300 /*
301 * Check, if one of the previous states already marked the lapic
302 * unstable
303 */
304 if (pwr->timer_broadcast_on_state < state)
305 return;
306
307 if (cx->type >= type)
308 pr->power.timer_broadcast_on_state = state;
309 }
310
311 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
312 {
313 unsigned long reason;
314
315 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
316 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
317
318 clockevents_notify(reason, &pr->id);
319 }
320
321 /* Power(C) State timer broadcast control */
322 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
323 struct acpi_processor_cx *cx,
324 int broadcast)
325 {
326 int state = cx - pr->power.states;
327
328 if (state >= pr->power.timer_broadcast_on_state) {
329 unsigned long reason;
330
331 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
332 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
333 clockevents_notify(reason, &pr->id);
334 }
335 }
336
337 #else
338
339 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
340 struct acpi_processor_cx *cstate) { }
341 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
342 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
343 struct acpi_processor_cx *cx,
344 int broadcast)
345 {
346 }
347
348 #endif
349
350 /*
351 * Suspend / resume control
352 */
353 static int acpi_idle_suspend;
354
355 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
356 {
357 acpi_idle_suspend = 1;
358 return 0;
359 }
360
361 int acpi_processor_resume(struct acpi_device * device)
362 {
363 acpi_idle_suspend = 0;
364 return 0;
365 }
366
367 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
368 static int tsc_halts_in_c(int state)
369 {
370 switch (boot_cpu_data.x86_vendor) {
371 case X86_VENDOR_AMD:
372 /*
373 * AMD Fam10h TSC will tick in all
374 * C/P/S0/S1 states when this bit is set.
375 */
376 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
377 return 0;
378 /*FALL THROUGH*/
379 case X86_VENDOR_INTEL:
380 /* Several cases known where TSC halts in C2 too */
381 default:
382 return state > ACPI_STATE_C1;
383 }
384 }
385 #endif
386
387 #ifndef CONFIG_CPU_IDLE
388 static void acpi_processor_idle(void)
389 {
390 struct acpi_processor *pr = NULL;
391 struct acpi_processor_cx *cx = NULL;
392 struct acpi_processor_cx *next_state = NULL;
393 int sleep_ticks = 0;
394 u32 t1, t2 = 0;
395
396 /*
397 * Interrupts must be disabled during bus mastering calculations and
398 * for C2/C3 transitions.
399 */
400 local_irq_disable();
401
402 pr = processors[smp_processor_id()];
403 if (!pr) {
404 local_irq_enable();
405 return;
406 }
407
408 /*
409 * Check whether we truly need to go idle, or should
410 * reschedule:
411 */
412 if (unlikely(need_resched())) {
413 local_irq_enable();
414 return;
415 }
416
417 cx = pr->power.state;
418 if (!cx || acpi_idle_suspend) {
419 if (pm_idle_save)
420 pm_idle_save();
421 else
422 acpi_safe_halt();
423
424 local_irq_enable();
425 return;
426 }
427
428 /*
429 * Check BM Activity
430 * -----------------
431 * Check for bus mastering activity (if required), record, and check
432 * for demotion.
433 */
434 if (pr->flags.bm_check) {
435 u32 bm_status = 0;
436 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
437
438 if (diff > 31)
439 diff = 31;
440
441 pr->power.bm_activity <<= diff;
442
443 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
444 if (bm_status) {
445 pr->power.bm_activity |= 0x1;
446 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
447 }
448 /*
449 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
450 * the true state of bus mastering activity; forcing us to
451 * manually check the BMIDEA bit of each IDE channel.
452 */
453 else if (errata.piix4.bmisx) {
454 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
455 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
456 pr->power.bm_activity |= 0x1;
457 }
458
459 pr->power.bm_check_timestamp = jiffies;
460
461 /*
462 * If bus mastering is or was active this jiffy, demote
463 * to avoid a faulty transition. Note that the processor
464 * won't enter a low-power state during this call (to this
465 * function) but should upon the next.
466 *
467 * TBD: A better policy might be to fallback to the demotion
468 * state (use it for this quantum only) istead of
469 * demoting -- and rely on duration as our sole demotion
470 * qualification. This may, however, introduce DMA
471 * issues (e.g. floppy DMA transfer overrun/underrun).
472 */
473 if ((pr->power.bm_activity & 0x1) &&
474 cx->demotion.threshold.bm) {
475 local_irq_enable();
476 next_state = cx->demotion.state;
477 goto end;
478 }
479 }
480
481 #ifdef CONFIG_HOTPLUG_CPU
482 /*
483 * Check for P_LVL2_UP flag before entering C2 and above on
484 * an SMP system. We do it here instead of doing it at _CST/P_LVL
485 * detection phase, to work cleanly with logical CPU hotplug.
486 */
487 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
488 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
489 cx = &pr->power.states[ACPI_STATE_C1];
490 #endif
491
492 /*
493 * Sleep:
494 * ------
495 * Invoke the current Cx state to put the processor to sleep.
496 */
497 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
498 current_thread_info()->status &= ~TS_POLLING;
499 /*
500 * TS_POLLING-cleared state must be visible before we
501 * test NEED_RESCHED:
502 */
503 smp_mb();
504 if (need_resched()) {
505 current_thread_info()->status |= TS_POLLING;
506 local_irq_enable();
507 return;
508 }
509 }
510
511 switch (cx->type) {
512
513 case ACPI_STATE_C1:
514 /*
515 * Invoke C1.
516 * Use the appropriate idle routine, the one that would
517 * be used without acpi C-states.
518 */
519 if (pm_idle_save)
520 pm_idle_save();
521 else
522 acpi_safe_halt();
523
524 /*
525 * TBD: Can't get time duration while in C1, as resumes
526 * go to an ISR rather than here. Need to instrument
527 * base interrupt handler.
528 *
529 * Note: the TSC better not stop in C1, sched_clock() will
530 * skew otherwise.
531 */
532 sleep_ticks = 0xFFFFFFFF;
533 local_irq_enable();
534 break;
535
536 case ACPI_STATE_C2:
537 /* Get start time (ticks) */
538 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
539 /* Tell the scheduler that we are going deep-idle: */
540 sched_clock_idle_sleep_event();
541 /* Invoke C2 */
542 acpi_state_timer_broadcast(pr, cx, 1);
543 acpi_cstate_enter(cx);
544 /* Get end time (ticks) */
545 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
546
547 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
548 /* TSC halts in C2, so notify users */
549 if (tsc_halts_in_c(ACPI_STATE_C2))
550 mark_tsc_unstable("possible TSC halt in C2");
551 #endif
552 /* Compute time (ticks) that we were actually asleep */
553 sleep_ticks = ticks_elapsed(t1, t2);
554
555 /* Tell the scheduler how much we idled: */
556 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
557
558 /* Re-enable interrupts */
559 local_irq_enable();
560 /* Do not account our idle-switching overhead: */
561 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
562
563 current_thread_info()->status |= TS_POLLING;
564 acpi_state_timer_broadcast(pr, cx, 0);
565 break;
566
567 case ACPI_STATE_C3:
568 acpi_unlazy_tlb(smp_processor_id());
569 /*
570 * Must be done before busmaster disable as we might
571 * need to access HPET !
572 */
573 acpi_state_timer_broadcast(pr, cx, 1);
574 /*
575 * disable bus master
576 * bm_check implies we need ARB_DIS
577 * !bm_check implies we need cache flush
578 * bm_control implies whether we can do ARB_DIS
579 *
580 * That leaves a case where bm_check is set and bm_control is
581 * not set. In that case we cannot do much, we enter C3
582 * without doing anything.
583 */
584 if (pr->flags.bm_check && pr->flags.bm_control) {
585 if (atomic_inc_return(&c3_cpu_count) ==
586 num_online_cpus()) {
587 /*
588 * All CPUs are trying to go to C3
589 * Disable bus master arbitration
590 */
591 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
592 }
593 } else if (!pr->flags.bm_check) {
594 /* SMP with no shared cache... Invalidate cache */
595 ACPI_FLUSH_CPU_CACHE();
596 }
597
598 /* Get start time (ticks) */
599 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
600 /* Invoke C3 */
601 /* Tell the scheduler that we are going deep-idle: */
602 sched_clock_idle_sleep_event();
603 acpi_cstate_enter(cx);
604 /* Get end time (ticks) */
605 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
606 if (pr->flags.bm_check && pr->flags.bm_control) {
607 /* Enable bus master arbitration */
608 atomic_dec(&c3_cpu_count);
609 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
610 }
611
612 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
613 /* TSC halts in C3, so notify users */
614 if (tsc_halts_in_c(ACPI_STATE_C3))
615 mark_tsc_unstable("TSC halts in C3");
616 #endif
617 /* Compute time (ticks) that we were actually asleep */
618 sleep_ticks = ticks_elapsed(t1, t2);
619 /* Tell the scheduler how much we idled: */
620 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
621
622 /* Re-enable interrupts */
623 local_irq_enable();
624 /* Do not account our idle-switching overhead: */
625 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
626
627 current_thread_info()->status |= TS_POLLING;
628 acpi_state_timer_broadcast(pr, cx, 0);
629 break;
630
631 default:
632 local_irq_enable();
633 return;
634 }
635 cx->usage++;
636 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
637 cx->time += sleep_ticks;
638
639 next_state = pr->power.state;
640
641 #ifdef CONFIG_HOTPLUG_CPU
642 /* Don't do promotion/demotion */
643 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
644 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
645 next_state = cx;
646 goto end;
647 }
648 #endif
649
650 /*
651 * Promotion?
652 * ----------
653 * Track the number of longs (time asleep is greater than threshold)
654 * and promote when the count threshold is reached. Note that bus
655 * mastering activity may prevent promotions.
656 * Do not promote above max_cstate.
657 */
658 if (cx->promotion.state &&
659 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
660 if (sleep_ticks > cx->promotion.threshold.ticks &&
661 cx->promotion.state->latency <=
662 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
663 cx->promotion.count++;
664 cx->demotion.count = 0;
665 if (cx->promotion.count >=
666 cx->promotion.threshold.count) {
667 if (pr->flags.bm_check) {
668 if (!
669 (pr->power.bm_activity & cx->
670 promotion.threshold.bm)) {
671 next_state =
672 cx->promotion.state;
673 goto end;
674 }
675 } else {
676 next_state = cx->promotion.state;
677 goto end;
678 }
679 }
680 }
681 }
682
683 /*
684 * Demotion?
685 * ---------
686 * Track the number of shorts (time asleep is less than time threshold)
687 * and demote when the usage threshold is reached.
688 */
689 if (cx->demotion.state) {
690 if (sleep_ticks < cx->demotion.threshold.ticks) {
691 cx->demotion.count++;
692 cx->promotion.count = 0;
693 if (cx->demotion.count >= cx->demotion.threshold.count) {
694 next_state = cx->demotion.state;
695 goto end;
696 }
697 }
698 }
699
700 end:
701 /*
702 * Demote if current state exceeds max_cstate
703 * or if the latency of the current state is unacceptable
704 */
705 if ((pr->power.state - pr->power.states) > max_cstate ||
706 pr->power.state->latency >
707 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
708 if (cx->demotion.state)
709 next_state = cx->demotion.state;
710 }
711
712 /*
713 * New Cx State?
714 * -------------
715 * If we're going to start using a new Cx state we must clean up
716 * from the previous and prepare to use the new.
717 */
718 if (next_state != pr->power.state)
719 acpi_processor_power_activate(pr, next_state);
720 }
721
722 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
723 {
724 unsigned int i;
725 unsigned int state_is_set = 0;
726 struct acpi_processor_cx *lower = NULL;
727 struct acpi_processor_cx *higher = NULL;
728 struct acpi_processor_cx *cx;
729
730
731 if (!pr)
732 return -EINVAL;
733
734 /*
735 * This function sets the default Cx state policy (OS idle handler).
736 * Our scheme is to promote quickly to C2 but more conservatively
737 * to C3. We're favoring C2 for its characteristics of low latency
738 * (quick response), good power savings, and ability to allow bus
739 * mastering activity. Note that the Cx state policy is completely
740 * customizable and can be altered dynamically.
741 */
742
743 /* startup state */
744 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
745 cx = &pr->power.states[i];
746 if (!cx->valid)
747 continue;
748
749 if (!state_is_set)
750 pr->power.state = cx;
751 state_is_set++;
752 break;
753 }
754
755 if (!state_is_set)
756 return -ENODEV;
757
758 /* demotion */
759 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
760 cx = &pr->power.states[i];
761 if (!cx->valid)
762 continue;
763
764 if (lower) {
765 cx->demotion.state = lower;
766 cx->demotion.threshold.ticks = cx->latency_ticks;
767 cx->demotion.threshold.count = 1;
768 if (cx->type == ACPI_STATE_C3)
769 cx->demotion.threshold.bm = bm_history;
770 }
771
772 lower = cx;
773 }
774
775 /* promotion */
776 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
777 cx = &pr->power.states[i];
778 if (!cx->valid)
779 continue;
780
781 if (higher) {
782 cx->promotion.state = higher;
783 cx->promotion.threshold.ticks = cx->latency_ticks;
784 if (cx->type >= ACPI_STATE_C2)
785 cx->promotion.threshold.count = 4;
786 else
787 cx->promotion.threshold.count = 10;
788 if (higher->type == ACPI_STATE_C3)
789 cx->promotion.threshold.bm = bm_history;
790 }
791
792 higher = cx;
793 }
794
795 return 0;
796 }
797 #endif /* !CONFIG_CPU_IDLE */
798
799 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
800 {
801
802 if (!pr)
803 return -EINVAL;
804
805 if (!pr->pblk)
806 return -ENODEV;
807
808 /* if info is obtained from pblk/fadt, type equals state */
809 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
810 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
811
812 #ifndef CONFIG_HOTPLUG_CPU
813 /*
814 * Check for P_LVL2_UP flag before entering C2 and above on
815 * an SMP system.
816 */
817 if ((num_online_cpus() > 1) &&
818 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
819 return -ENODEV;
820 #endif
821
822 /* determine C2 and C3 address from pblk */
823 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
824 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
825
826 /* determine latencies from FADT */
827 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
828 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
829
830 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
831 "lvl2[0x%08x] lvl3[0x%08x]\n",
832 pr->power.states[ACPI_STATE_C2].address,
833 pr->power.states[ACPI_STATE_C3].address));
834
835 return 0;
836 }
837
838 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
839 {
840 if (!pr->power.states[ACPI_STATE_C1].valid) {
841 /* set the first C-State to C1 */
842 /* all processors need to support C1 */
843 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
844 pr->power.states[ACPI_STATE_C1].valid = 1;
845 }
846 /* the C0 state only exists as a filler in our array */
847 pr->power.states[ACPI_STATE_C0].valid = 1;
848 return 0;
849 }
850
851 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
852 {
853 acpi_status status = 0;
854 acpi_integer count;
855 int current_count;
856 int i;
857 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
858 union acpi_object *cst;
859
860
861 if (nocst)
862 return -ENODEV;
863
864 current_count = 0;
865
866 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
867 if (ACPI_FAILURE(status)) {
868 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
869 return -ENODEV;
870 }
871
872 cst = buffer.pointer;
873
874 /* There must be at least 2 elements */
875 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
876 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
877 status = -EFAULT;
878 goto end;
879 }
880
881 count = cst->package.elements[0].integer.value;
882
883 /* Validate number of power states. */
884 if (count < 1 || count != cst->package.count - 1) {
885 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
886 status = -EFAULT;
887 goto end;
888 }
889
890 /* Tell driver that at least _CST is supported. */
891 pr->flags.has_cst = 1;
892
893 for (i = 1; i <= count; i++) {
894 union acpi_object *element;
895 union acpi_object *obj;
896 struct acpi_power_register *reg;
897 struct acpi_processor_cx cx;
898
899 memset(&cx, 0, sizeof(cx));
900
901 element = &(cst->package.elements[i]);
902 if (element->type != ACPI_TYPE_PACKAGE)
903 continue;
904
905 if (element->package.count != 4)
906 continue;
907
908 obj = &(element->package.elements[0]);
909
910 if (obj->type != ACPI_TYPE_BUFFER)
911 continue;
912
913 reg = (struct acpi_power_register *)obj->buffer.pointer;
914
915 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
916 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
917 continue;
918
919 /* There should be an easy way to extract an integer... */
920 obj = &(element->package.elements[1]);
921 if (obj->type != ACPI_TYPE_INTEGER)
922 continue;
923
924 cx.type = obj->integer.value;
925 /*
926 * Some buggy BIOSes won't list C1 in _CST -
927 * Let acpi_processor_get_power_info_default() handle them later
928 */
929 if (i == 1 && cx.type != ACPI_STATE_C1)
930 current_count++;
931
932 cx.address = reg->address;
933 cx.index = current_count + 1;
934
935 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
936 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
937 if (acpi_processor_ffh_cstate_probe
938 (pr->id, &cx, reg) == 0) {
939 cx.entry_method = ACPI_CSTATE_FFH;
940 } else if (cx.type == ACPI_STATE_C1) {
941 /*
942 * C1 is a special case where FIXED_HARDWARE
943 * can be handled in non-MWAIT way as well.
944 * In that case, save this _CST entry info.
945 * Otherwise, ignore this info and continue.
946 */
947 cx.entry_method = ACPI_CSTATE_HALT;
948 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
949 } else {
950 continue;
951 }
952 } else {
953 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
954 cx.address);
955 }
956
957
958 obj = &(element->package.elements[2]);
959 if (obj->type != ACPI_TYPE_INTEGER)
960 continue;
961
962 cx.latency = obj->integer.value;
963
964 obj = &(element->package.elements[3]);
965 if (obj->type != ACPI_TYPE_INTEGER)
966 continue;
967
968 cx.power = obj->integer.value;
969
970 current_count++;
971 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
972
973 /*
974 * We support total ACPI_PROCESSOR_MAX_POWER - 1
975 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
976 */
977 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
978 printk(KERN_WARNING
979 "Limiting number of power states to max (%d)\n",
980 ACPI_PROCESSOR_MAX_POWER);
981 printk(KERN_WARNING
982 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
983 break;
984 }
985 }
986
987 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
988 current_count));
989
990 /* Validate number of power states discovered */
991 if (current_count < 2)
992 status = -EFAULT;
993
994 end:
995 kfree(buffer.pointer);
996
997 return status;
998 }
999
1000 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1001 {
1002
1003 if (!cx->address)
1004 return;
1005
1006 /*
1007 * C2 latency must be less than or equal to 100
1008 * microseconds.
1009 */
1010 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1011 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1012 "latency too large [%d]\n", cx->latency));
1013 return;
1014 }
1015
1016 /*
1017 * Otherwise we've met all of our C2 requirements.
1018 * Normalize the C2 latency to expidite policy
1019 */
1020 cx->valid = 1;
1021
1022 #ifndef CONFIG_CPU_IDLE
1023 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1024 #else
1025 cx->latency_ticks = cx->latency;
1026 #endif
1027
1028 return;
1029 }
1030
1031 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1032 struct acpi_processor_cx *cx)
1033 {
1034 static int bm_check_flag;
1035
1036
1037 if (!cx->address)
1038 return;
1039
1040 /*
1041 * C3 latency must be less than or equal to 1000
1042 * microseconds.
1043 */
1044 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1045 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1046 "latency too large [%d]\n", cx->latency));
1047 return;
1048 }
1049
1050 /*
1051 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1052 * DMA transfers are used by any ISA device to avoid livelock.
1053 * Note that we could disable Type-F DMA (as recommended by
1054 * the erratum), but this is known to disrupt certain ISA
1055 * devices thus we take the conservative approach.
1056 */
1057 else if (errata.piix4.fdma) {
1058 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1059 "C3 not supported on PIIX4 with Type-F DMA\n"));
1060 return;
1061 }
1062
1063 /* All the logic here assumes flags.bm_check is same across all CPUs */
1064 if (!bm_check_flag) {
1065 /* Determine whether bm_check is needed based on CPU */
1066 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1067 bm_check_flag = pr->flags.bm_check;
1068 } else {
1069 pr->flags.bm_check = bm_check_flag;
1070 }
1071
1072 if (pr->flags.bm_check) {
1073 if (!pr->flags.bm_control) {
1074 if (pr->flags.has_cst != 1) {
1075 /* bus mastering control is necessary */
1076 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1077 "C3 support requires BM control\n"));
1078 return;
1079 } else {
1080 /* Here we enter C3 without bus mastering */
1081 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082 "C3 support without BM control\n"));
1083 }
1084 }
1085 } else {
1086 /*
1087 * WBINVD should be set in fadt, for C3 state to be
1088 * supported on when bm_check is not required.
1089 */
1090 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1091 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1092 "Cache invalidation should work properly"
1093 " for C3 to be enabled on SMP systems\n"));
1094 return;
1095 }
1096 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1097 }
1098
1099 /*
1100 * Otherwise we've met all of our C3 requirements.
1101 * Normalize the C3 latency to expidite policy. Enable
1102 * checking of bus mastering status (bm_check) so we can
1103 * use this in our C3 policy
1104 */
1105 cx->valid = 1;
1106
1107 #ifndef CONFIG_CPU_IDLE
1108 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1109 #else
1110 cx->latency_ticks = cx->latency;
1111 #endif
1112
1113 return;
1114 }
1115
1116 static int acpi_processor_power_verify(struct acpi_processor *pr)
1117 {
1118 unsigned int i;
1119 unsigned int working = 0;
1120
1121 pr->power.timer_broadcast_on_state = INT_MAX;
1122
1123 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1124 struct acpi_processor_cx *cx = &pr->power.states[i];
1125
1126 switch (cx->type) {
1127 case ACPI_STATE_C1:
1128 cx->valid = 1;
1129 break;
1130
1131 case ACPI_STATE_C2:
1132 acpi_processor_power_verify_c2(cx);
1133 if (cx->valid)
1134 acpi_timer_check_state(i, pr, cx);
1135 break;
1136
1137 case ACPI_STATE_C3:
1138 acpi_processor_power_verify_c3(pr, cx);
1139 if (cx->valid)
1140 acpi_timer_check_state(i, pr, cx);
1141 break;
1142 }
1143
1144 if (cx->valid)
1145 working++;
1146 }
1147
1148 acpi_propagate_timer_broadcast(pr);
1149
1150 return (working);
1151 }
1152
1153 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1154 {
1155 unsigned int i;
1156 int result;
1157
1158
1159 /* NOTE: the idle thread may not be running while calling
1160 * this function */
1161
1162 /* Zero initialize all the C-states info. */
1163 memset(pr->power.states, 0, sizeof(pr->power.states));
1164
1165 result = acpi_processor_get_power_info_cst(pr);
1166 if (result == -ENODEV)
1167 result = acpi_processor_get_power_info_fadt(pr);
1168
1169 if (result)
1170 return result;
1171
1172 acpi_processor_get_power_info_default(pr);
1173
1174 pr->power.count = acpi_processor_power_verify(pr);
1175
1176 #ifndef CONFIG_CPU_IDLE
1177 /*
1178 * Set Default Policy
1179 * ------------------
1180 * Now that we know which states are supported, set the default
1181 * policy. Note that this policy can be changed dynamically
1182 * (e.g. encourage deeper sleeps to conserve battery life when
1183 * not on AC).
1184 */
1185 result = acpi_processor_set_power_policy(pr);
1186 if (result)
1187 return result;
1188 #endif
1189
1190 /*
1191 * if one state of type C2 or C3 is available, mark this
1192 * CPU as being "idle manageable"
1193 */
1194 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1195 if (pr->power.states[i].valid) {
1196 pr->power.count = i;
1197 if (pr->power.states[i].type >= ACPI_STATE_C2)
1198 pr->flags.power = 1;
1199 }
1200 }
1201
1202 return 0;
1203 }
1204
1205 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1206 {
1207 struct acpi_processor *pr = seq->private;
1208 unsigned int i;
1209
1210
1211 if (!pr)
1212 goto end;
1213
1214 seq_printf(seq, "active state: C%zd\n"
1215 "max_cstate: C%d\n"
1216 "bus master activity: %08x\n"
1217 "maximum allowed latency: %d usec\n",
1218 pr->power.state ? pr->power.state - pr->power.states : 0,
1219 max_cstate, (unsigned)pr->power.bm_activity,
1220 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1221
1222 seq_puts(seq, "states:\n");
1223
1224 for (i = 1; i <= pr->power.count; i++) {
1225 seq_printf(seq, " %cC%d: ",
1226 (&pr->power.states[i] ==
1227 pr->power.state ? '*' : ' '), i);
1228
1229 if (!pr->power.states[i].valid) {
1230 seq_puts(seq, "<not supported>\n");
1231 continue;
1232 }
1233
1234 switch (pr->power.states[i].type) {
1235 case ACPI_STATE_C1:
1236 seq_printf(seq, "type[C1] ");
1237 break;
1238 case ACPI_STATE_C2:
1239 seq_printf(seq, "type[C2] ");
1240 break;
1241 case ACPI_STATE_C3:
1242 seq_printf(seq, "type[C3] ");
1243 break;
1244 default:
1245 seq_printf(seq, "type[--] ");
1246 break;
1247 }
1248
1249 if (pr->power.states[i].promotion.state)
1250 seq_printf(seq, "promotion[C%zd] ",
1251 (pr->power.states[i].promotion.state -
1252 pr->power.states));
1253 else
1254 seq_puts(seq, "promotion[--] ");
1255
1256 if (pr->power.states[i].demotion.state)
1257 seq_printf(seq, "demotion[C%zd] ",
1258 (pr->power.states[i].demotion.state -
1259 pr->power.states));
1260 else
1261 seq_puts(seq, "demotion[--] ");
1262
1263 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1264 pr->power.states[i].latency,
1265 pr->power.states[i].usage,
1266 (unsigned long long)pr->power.states[i].time);
1267 }
1268
1269 end:
1270 return 0;
1271 }
1272
1273 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1274 {
1275 return single_open(file, acpi_processor_power_seq_show,
1276 PDE(inode)->data);
1277 }
1278
1279 static const struct file_operations acpi_processor_power_fops = {
1280 .open = acpi_processor_power_open_fs,
1281 .read = seq_read,
1282 .llseek = seq_lseek,
1283 .release = single_release,
1284 };
1285
1286 #ifndef CONFIG_CPU_IDLE
1287
1288 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1289 {
1290 int result = 0;
1291
1292
1293 if (!pr)
1294 return -EINVAL;
1295
1296 if (nocst) {
1297 return -ENODEV;
1298 }
1299
1300 if (!pr->flags.power_setup_done)
1301 return -ENODEV;
1302
1303 /* Fall back to the default idle loop */
1304 pm_idle = pm_idle_save;
1305 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1306
1307 pr->flags.power = 0;
1308 result = acpi_processor_get_power_info(pr);
1309 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1310 pm_idle = acpi_processor_idle;
1311
1312 return result;
1313 }
1314
1315 #ifdef CONFIG_SMP
1316 static void smp_callback(void *v)
1317 {
1318 /* we already woke the CPU up, nothing more to do */
1319 }
1320
1321 /*
1322 * This function gets called when a part of the kernel has a new latency
1323 * requirement. This means we need to get all processors out of their C-state,
1324 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1325 * wakes them all right up.
1326 */
1327 static int acpi_processor_latency_notify(struct notifier_block *b,
1328 unsigned long l, void *v)
1329 {
1330 smp_call_function(smp_callback, NULL, 0, 1);
1331 return NOTIFY_OK;
1332 }
1333
1334 static struct notifier_block acpi_processor_latency_notifier = {
1335 .notifier_call = acpi_processor_latency_notify,
1336 };
1337
1338 #endif
1339
1340 #else /* CONFIG_CPU_IDLE */
1341
1342 /**
1343 * acpi_idle_bm_check - checks if bus master activity was detected
1344 */
1345 static int acpi_idle_bm_check(void)
1346 {
1347 u32 bm_status = 0;
1348
1349 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1350 if (bm_status)
1351 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1352 /*
1353 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1354 * the true state of bus mastering activity; forcing us to
1355 * manually check the BMIDEA bit of each IDE channel.
1356 */
1357 else if (errata.piix4.bmisx) {
1358 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1359 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1360 bm_status = 1;
1361 }
1362 return bm_status;
1363 }
1364
1365 /**
1366 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1367 * @pr: the processor
1368 * @target: the new target state
1369 */
1370 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1371 struct acpi_processor_cx *target)
1372 {
1373 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1374 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1375 pr->flags.bm_rld_set = 0;
1376 }
1377
1378 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1379 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1380 pr->flags.bm_rld_set = 1;
1381 }
1382 }
1383
1384 /**
1385 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1386 * @cx: cstate data
1387 *
1388 * Caller disables interrupt before call and enables interrupt after return.
1389 */
1390 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1391 {
1392 if (cx->entry_method == ACPI_CSTATE_FFH) {
1393 /* Call into architectural FFH based C-state */
1394 acpi_processor_ffh_cstate_enter(cx);
1395 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1396 acpi_safe_halt();
1397 } else {
1398 int unused;
1399 /* IO port based C-state */
1400 inb(cx->address);
1401 /* Dummy wait op - must do something useless after P_LVL2 read
1402 because chipsets cannot guarantee that STPCLK# signal
1403 gets asserted in time to freeze execution properly. */
1404 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1405 }
1406 }
1407
1408 /**
1409 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1410 * @dev: the target CPU
1411 * @state: the state data
1412 *
1413 * This is equivalent to the HALT instruction.
1414 */
1415 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1416 struct cpuidle_state *state)
1417 {
1418 u32 t1, t2;
1419 struct acpi_processor *pr;
1420 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1421
1422 pr = processors[smp_processor_id()];
1423
1424 if (unlikely(!pr))
1425 return 0;
1426
1427 local_irq_disable();
1428
1429 /* Do not access any ACPI IO ports in suspend path */
1430 if (acpi_idle_suspend) {
1431 acpi_safe_halt();
1432 local_irq_enable();
1433 return 0;
1434 }
1435
1436 if (pr->flags.bm_check)
1437 acpi_idle_update_bm_rld(pr, cx);
1438
1439 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1440 acpi_idle_do_entry(cx);
1441 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1442
1443 local_irq_enable();
1444 cx->usage++;
1445
1446 return ticks_elapsed_in_us(t1, t2);
1447 }
1448
1449 /**
1450 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1451 * @dev: the target CPU
1452 * @state: the state data
1453 */
1454 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1455 struct cpuidle_state *state)
1456 {
1457 struct acpi_processor *pr;
1458 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1459 u32 t1, t2;
1460 int sleep_ticks = 0;
1461
1462 pr = processors[smp_processor_id()];
1463
1464 if (unlikely(!pr))
1465 return 0;
1466
1467 if (acpi_idle_suspend)
1468 return(acpi_idle_enter_c1(dev, state));
1469
1470 local_irq_disable();
1471 current_thread_info()->status &= ~TS_POLLING;
1472 /*
1473 * TS_POLLING-cleared state must be visible before we test
1474 * NEED_RESCHED:
1475 */
1476 smp_mb();
1477
1478 if (unlikely(need_resched())) {
1479 current_thread_info()->status |= TS_POLLING;
1480 local_irq_enable();
1481 return 0;
1482 }
1483
1484 acpi_unlazy_tlb(smp_processor_id());
1485 /*
1486 * Must be done before busmaster disable as we might need to
1487 * access HPET !
1488 */
1489 acpi_state_timer_broadcast(pr, cx, 1);
1490
1491 if (pr->flags.bm_check)
1492 acpi_idle_update_bm_rld(pr, cx);
1493
1494 if (cx->type == ACPI_STATE_C3)
1495 ACPI_FLUSH_CPU_CACHE();
1496
1497 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1498 /* Tell the scheduler that we are going deep-idle: */
1499 sched_clock_idle_sleep_event();
1500 acpi_idle_do_entry(cx);
1501 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1502
1503 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1504 /* TSC could halt in idle, so notify users */
1505 if (tsc_halts_in_c(cx->type))
1506 mark_tsc_unstable("TSC halts in idle");;
1507 #endif
1508 sleep_ticks = ticks_elapsed(t1, t2);
1509
1510 /* Tell the scheduler how much we idled: */
1511 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1512
1513 local_irq_enable();
1514 current_thread_info()->status |= TS_POLLING;
1515
1516 cx->usage++;
1517
1518 acpi_state_timer_broadcast(pr, cx, 0);
1519 cx->time += sleep_ticks;
1520 return ticks_elapsed_in_us(t1, t2);
1521 }
1522
1523 static int c3_cpu_count;
1524 static DEFINE_SPINLOCK(c3_lock);
1525
1526 /**
1527 * acpi_idle_enter_bm - enters C3 with proper BM handling
1528 * @dev: the target CPU
1529 * @state: the state data
1530 *
1531 * If BM is detected, the deepest non-C3 idle state is entered instead.
1532 */
1533 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1534 struct cpuidle_state *state)
1535 {
1536 struct acpi_processor *pr;
1537 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1538 u32 t1, t2;
1539 int sleep_ticks = 0;
1540
1541 pr = processors[smp_processor_id()];
1542
1543 if (unlikely(!pr))
1544 return 0;
1545
1546 if (acpi_idle_suspend)
1547 return(acpi_idle_enter_c1(dev, state));
1548
1549 if (acpi_idle_bm_check()) {
1550 if (dev->safe_state) {
1551 return dev->safe_state->enter(dev, dev->safe_state);
1552 } else {
1553 local_irq_disable();
1554 acpi_safe_halt();
1555 local_irq_enable();
1556 return 0;
1557 }
1558 }
1559
1560 local_irq_disable();
1561 current_thread_info()->status &= ~TS_POLLING;
1562 /*
1563 * TS_POLLING-cleared state must be visible before we test
1564 * NEED_RESCHED:
1565 */
1566 smp_mb();
1567
1568 if (unlikely(need_resched())) {
1569 current_thread_info()->status |= TS_POLLING;
1570 local_irq_enable();
1571 return 0;
1572 }
1573
1574 /* Tell the scheduler that we are going deep-idle: */
1575 sched_clock_idle_sleep_event();
1576 /*
1577 * Must be done before busmaster disable as we might need to
1578 * access HPET !
1579 */
1580 acpi_state_timer_broadcast(pr, cx, 1);
1581
1582 acpi_idle_update_bm_rld(pr, cx);
1583
1584 /*
1585 * disable bus master
1586 * bm_check implies we need ARB_DIS
1587 * !bm_check implies we need cache flush
1588 * bm_control implies whether we can do ARB_DIS
1589 *
1590 * That leaves a case where bm_check is set and bm_control is
1591 * not set. In that case we cannot do much, we enter C3
1592 * without doing anything.
1593 */
1594 if (pr->flags.bm_check && pr->flags.bm_control) {
1595 spin_lock(&c3_lock);
1596 c3_cpu_count++;
1597 /* Disable bus master arbitration when all CPUs are in C3 */
1598 if (c3_cpu_count == num_online_cpus())
1599 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1600 spin_unlock(&c3_lock);
1601 } else if (!pr->flags.bm_check) {
1602 ACPI_FLUSH_CPU_CACHE();
1603 }
1604
1605 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1606 acpi_idle_do_entry(cx);
1607 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1608
1609 /* Re-enable bus master arbitration */
1610 if (pr->flags.bm_check && pr->flags.bm_control) {
1611 spin_lock(&c3_lock);
1612 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1613 c3_cpu_count--;
1614 spin_unlock(&c3_lock);
1615 }
1616
1617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1618 /* TSC could halt in idle, so notify users */
1619 if (tsc_halts_in_c(ACPI_STATE_C3))
1620 mark_tsc_unstable("TSC halts in idle");
1621 #endif
1622 sleep_ticks = ticks_elapsed(t1, t2);
1623 /* Tell the scheduler how much we idled: */
1624 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1625
1626 local_irq_enable();
1627 current_thread_info()->status |= TS_POLLING;
1628
1629 cx->usage++;
1630
1631 acpi_state_timer_broadcast(pr, cx, 0);
1632 cx->time += sleep_ticks;
1633 return ticks_elapsed_in_us(t1, t2);
1634 }
1635
1636 struct cpuidle_driver acpi_idle_driver = {
1637 .name = "acpi_idle",
1638 .owner = THIS_MODULE,
1639 };
1640
1641 /**
1642 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1643 * @pr: the ACPI processor
1644 */
1645 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1646 {
1647 int i, count = CPUIDLE_DRIVER_STATE_START;
1648 struct acpi_processor_cx *cx;
1649 struct cpuidle_state *state;
1650 struct cpuidle_device *dev = &pr->power.dev;
1651
1652 if (!pr->flags.power_setup_done)
1653 return -EINVAL;
1654
1655 if (pr->flags.power == 0) {
1656 return -EINVAL;
1657 }
1658
1659 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1660 dev->states[i].name[0] = '\0';
1661 dev->states[i].desc[0] = '\0';
1662 }
1663
1664 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1665 cx = &pr->power.states[i];
1666 state = &dev->states[count];
1667
1668 if (!cx->valid)
1669 continue;
1670
1671 #ifdef CONFIG_HOTPLUG_CPU
1672 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1673 !pr->flags.has_cst &&
1674 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1675 continue;
1676 #endif
1677 cpuidle_set_statedata(state, cx);
1678
1679 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1680 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1681 state->exit_latency = cx->latency;
1682 state->target_residency = cx->latency * latency_factor;
1683 state->power_usage = cx->power;
1684
1685 state->flags = 0;
1686 switch (cx->type) {
1687 case ACPI_STATE_C1:
1688 state->flags |= CPUIDLE_FLAG_SHALLOW;
1689 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1690 state->enter = acpi_idle_enter_c1;
1691 dev->safe_state = state;
1692 break;
1693
1694 case ACPI_STATE_C2:
1695 state->flags |= CPUIDLE_FLAG_BALANCED;
1696 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1697 state->enter = acpi_idle_enter_simple;
1698 dev->safe_state = state;
1699 break;
1700
1701 case ACPI_STATE_C3:
1702 state->flags |= CPUIDLE_FLAG_DEEP;
1703 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1704 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1705 state->enter = pr->flags.bm_check ?
1706 acpi_idle_enter_bm :
1707 acpi_idle_enter_simple;
1708 break;
1709 }
1710
1711 count++;
1712 if (count == CPUIDLE_STATE_MAX)
1713 break;
1714 }
1715
1716 dev->state_count = count;
1717
1718 if (!count)
1719 return -EINVAL;
1720
1721 return 0;
1722 }
1723
1724 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1725 {
1726 int ret;
1727
1728 if (!pr)
1729 return -EINVAL;
1730
1731 if (nocst) {
1732 return -ENODEV;
1733 }
1734
1735 if (!pr->flags.power_setup_done)
1736 return -ENODEV;
1737
1738 cpuidle_pause_and_lock();
1739 cpuidle_disable_device(&pr->power.dev);
1740 acpi_processor_get_power_info(pr);
1741 acpi_processor_setup_cpuidle(pr);
1742 ret = cpuidle_enable_device(&pr->power.dev);
1743 cpuidle_resume_and_unlock();
1744
1745 return ret;
1746 }
1747
1748 #endif /* CONFIG_CPU_IDLE */
1749
1750 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1751 struct acpi_device *device)
1752 {
1753 acpi_status status = 0;
1754 static int first_run;
1755 struct proc_dir_entry *entry = NULL;
1756 unsigned int i;
1757
1758
1759 if (!first_run) {
1760 dmi_check_system(processor_power_dmi_table);
1761 max_cstate = acpi_processor_cstate_check(max_cstate);
1762 if (max_cstate < ACPI_C_STATES_MAX)
1763 printk(KERN_NOTICE
1764 "ACPI: processor limited to max C-state %d\n",
1765 max_cstate);
1766 first_run++;
1767 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1768 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1769 &acpi_processor_latency_notifier);
1770 #endif
1771 }
1772
1773 if (!pr)
1774 return -EINVAL;
1775
1776 if (acpi_gbl_FADT.cst_control && !nocst) {
1777 status =
1778 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1779 if (ACPI_FAILURE(status)) {
1780 ACPI_EXCEPTION((AE_INFO, status,
1781 "Notifying BIOS of _CST ability failed"));
1782 }
1783 }
1784
1785 acpi_processor_get_power_info(pr);
1786 pr->flags.power_setup_done = 1;
1787
1788 /*
1789 * Install the idle handler if processor power management is supported.
1790 * Note that we use previously set idle handler will be used on
1791 * platforms that only support C1.
1792 */
1793 if ((pr->flags.power) && (!boot_option_idle_override)) {
1794 #ifdef CONFIG_CPU_IDLE
1795 acpi_processor_setup_cpuidle(pr);
1796 pr->power.dev.cpu = pr->id;
1797 if (cpuidle_register_device(&pr->power.dev))
1798 return -EIO;
1799 #endif
1800
1801 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1802 for (i = 1; i <= pr->power.count; i++)
1803 if (pr->power.states[i].valid)
1804 printk(" C%d[C%d]", i,
1805 pr->power.states[i].type);
1806 printk(")\n");
1807
1808 #ifndef CONFIG_CPU_IDLE
1809 if (pr->id == 0) {
1810 pm_idle_save = pm_idle;
1811 pm_idle = acpi_processor_idle;
1812 }
1813 #endif
1814 }
1815
1816 /* 'power' [R] */
1817 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1818 S_IRUGO, acpi_device_dir(device));
1819 if (!entry)
1820 return -EIO;
1821 else {
1822 entry->proc_fops = &acpi_processor_power_fops;
1823 entry->data = acpi_driver_data(device);
1824 entry->owner = THIS_MODULE;
1825 }
1826
1827 return 0;
1828 }
1829
1830 int acpi_processor_power_exit(struct acpi_processor *pr,
1831 struct acpi_device *device)
1832 {
1833 #ifdef CONFIG_CPU_IDLE
1834 if ((pr->flags.power) && (!boot_option_idle_override))
1835 cpuidle_unregister_device(&pr->power.dev);
1836 #endif
1837 pr->flags.power_setup_done = 0;
1838
1839 if (acpi_device_dir(device))
1840 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1841 acpi_device_dir(device));
1842
1843 #ifndef CONFIG_CPU_IDLE
1844
1845 /* Unregister the idle handler when processor #0 is removed. */
1846 if (pr->id == 0) {
1847 pm_idle = pm_idle_save;
1848
1849 /*
1850 * We are about to unload the current idle thread pm callback
1851 * (pm_idle), Wait for all processors to update cached/local
1852 * copies of pm_idle before proceeding.
1853 */
1854 cpu_idle_wait();
1855 #ifdef CONFIG_SMP
1856 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1857 &acpi_processor_latency_notifier);
1858 #endif
1859 }
1860 #endif
1861
1862 return 0;
1863 }