]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/acpi/scan.c
drm/amd: Add USBC connector ID
[mirror_ubuntu-jammy-kernel.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22
23 #include "internal.h"
24
25 extern struct acpi_device *acpi_root;
26
27 #define ACPI_BUS_CLASS "system_bus"
28 #define ACPI_BUS_HID "LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME "System Bus"
30
31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
32
33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51 static u64 spcr_uart_addr;
52
53 void acpi_scan_lock_acquire(void)
54 {
55 mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59 void acpi_scan_lock_release(void)
60 {
61 mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65 void acpi_lock_hp_context(void)
66 {
67 mutex_lock(&acpi_hp_context_lock);
68 }
69
70 void acpi_unlock_hp_context(void)
71 {
72 mutex_unlock(&acpi_hp_context_lock);
73 }
74
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79 {
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95 }
96
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99 {
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108 }
109
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133 }
134
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137 {
138 struct acpi_device *device = NULL;
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (acpi_bus_get_device(handle, &device))
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178 }
179
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182 {
183 struct acpi_device *device = NULL;
184 struct acpi_device_physical_node *pn;
185
186 if (acpi_bus_get_device(handle, &device))
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200 }
201
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246 }
247
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291 }
292
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301 }
302
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334 }
335
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 struct acpi_scan_handler *handler = adev->handler;
339 struct acpi_device *child;
340 int error;
341
342 acpi_bus_get_status(adev);
343 if (!(adev->status.present || adev->status.functional)) {
344 acpi_scan_device_not_present(adev);
345 return 0;
346 }
347 if (handler && handler->hotplug.scan_dependent)
348 return handler->hotplug.scan_dependent(adev);
349
350 error = acpi_bus_scan(adev->handle);
351 if (error) {
352 dev_warn(&adev->dev, "Namespace scan failure\n");
353 return error;
354 }
355 list_for_each_entry(child, &adev->children, node) {
356 error = acpi_scan_bus_check(child);
357 if (error)
358 return error;
359 }
360 return 0;
361 }
362
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 switch (type) {
366 case ACPI_NOTIFY_BUS_CHECK:
367 return acpi_scan_bus_check(adev);
368 case ACPI_NOTIFY_DEVICE_CHECK:
369 return acpi_scan_device_check(adev);
370 case ACPI_NOTIFY_EJECT_REQUEST:
371 case ACPI_OST_EC_OSPM_EJECT:
372 if (adev->handler && !adev->handler->hotplug.enabled) {
373 dev_info(&adev->dev, "Eject disabled\n");
374 return -EPERM;
375 }
376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 return acpi_scan_hot_remove(adev);
379 }
380 return -EINVAL;
381 }
382
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 int error = -ENODEV;
387
388 lock_device_hotplug();
389 mutex_lock(&acpi_scan_lock);
390
391 /*
392 * The device object's ACPI handle cannot become invalid as long as we
393 * are holding acpi_scan_lock, but it might have become invalid before
394 * that lock was acquired.
395 */
396 if (adev->handle == INVALID_ACPI_HANDLE)
397 goto err_out;
398
399 if (adev->flags.is_dock_station) {
400 error = dock_notify(adev, src);
401 } else if (adev->flags.hotplug_notify) {
402 error = acpi_generic_hotplug_event(adev, src);
403 } else {
404 int (*notify)(struct acpi_device *, u32);
405
406 acpi_lock_hp_context();
407 notify = adev->hp ? adev->hp->notify : NULL;
408 acpi_unlock_hp_context();
409 /*
410 * There may be additional notify handlers for device objects
411 * without the .event() callback, so ignore them here.
412 */
413 if (notify)
414 error = notify(adev, src);
415 else
416 goto out;
417 }
418 switch (error) {
419 case 0:
420 ost_code = ACPI_OST_SC_SUCCESS;
421 break;
422 case -EPERM:
423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 break;
425 case -EBUSY:
426 ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 break;
428 default:
429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 break;
431 }
432
433 err_out:
434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435
436 out:
437 acpi_bus_put_acpi_device(adev);
438 mutex_unlock(&acpi_scan_lock);
439 unlock_device_hotplug();
440 }
441
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 int i;
445
446 if (device->wakeup.flags.valid)
447 acpi_power_resources_list_free(&device->wakeup.resources);
448
449 if (!device->power.flags.power_resources)
450 return;
451
452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 struct acpi_device_power_state *ps = &device->power.states[i];
454 acpi_power_resources_list_free(&ps->resources);
455 }
456 }
457
458 static void acpi_device_release(struct device *dev)
459 {
460 struct acpi_device *acpi_dev = to_acpi_device(dev);
461
462 acpi_free_properties(acpi_dev);
463 acpi_free_pnp_ids(&acpi_dev->pnp);
464 acpi_free_power_resources_lists(acpi_dev);
465 kfree(acpi_dev);
466 }
467
468 static void acpi_device_del(struct acpi_device *device)
469 {
470 struct acpi_device_bus_id *acpi_device_bus_id;
471
472 mutex_lock(&acpi_device_lock);
473 if (device->parent)
474 list_del(&device->node);
475
476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 if (!strcmp(acpi_device_bus_id->bus_id,
478 acpi_device_hid(device))) {
479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 list_del(&acpi_device_bus_id->node);
482 kfree_const(acpi_device_bus_id->bus_id);
483 kfree(acpi_device_bus_id);
484 }
485 break;
486 }
487
488 list_del(&device->wakeup_list);
489 mutex_unlock(&acpi_device_lock);
490
491 acpi_power_add_remove_device(device, false);
492 acpi_device_remove_files(device);
493 if (device->remove)
494 device->remove(device);
495
496 device_del(&device->dev);
497 }
498
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 for (;;) {
507 struct acpi_device *adev;
508
509 mutex_lock(&acpi_device_del_lock);
510
511 if (list_empty(&acpi_device_del_list)) {
512 mutex_unlock(&acpi_device_del_lock);
513 break;
514 }
515 adev = list_first_entry(&acpi_device_del_list,
516 struct acpi_device, del_list);
517 list_del(&adev->del_list);
518
519 mutex_unlock(&acpi_device_del_lock);
520
521 blocking_notifier_call_chain(&acpi_reconfig_chain,
522 ACPI_RECONFIG_DEVICE_REMOVE, adev);
523
524 acpi_device_del(adev);
525 /*
526 * Drop references to all power resources that might have been
527 * used by the device.
528 */
529 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 acpi_dev_put(adev);
531 }
532 }
533
534 /**
535 * acpi_scan_drop_device - Drop an ACPI device object.
536 * @handle: Handle of an ACPI namespace node, not used.
537 * @context: Address of the ACPI device object to drop.
538 *
539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540 * namespace node the device object pointed to by @context is attached to.
541 *
542 * The unregistration is carried out asynchronously to avoid running
543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544 * ensure the correct ordering (the device objects must be unregistered in the
545 * same order in which the corresponding namespace nodes are deleted).
546 */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 static DECLARE_WORK(work, acpi_device_del_work_fn);
550 struct acpi_device *adev = context;
551
552 mutex_lock(&acpi_device_del_lock);
553
554 /*
555 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 * won't run after any hotplug work items submitted subsequently. That
557 * prevents attempts to register device objects identical to those being
558 * deleted from happening concurrently (such attempts result from
559 * hotplug events handled via the ACPI hotplug workqueue). It also will
560 * run after all of the work items submitted previously, which helps
561 * those work items to ensure that they are not accessing stale device
562 * objects.
563 */
564 if (list_empty(&acpi_device_del_list))
565 acpi_queue_hotplug_work(&work);
566
567 list_add_tail(&adev->del_list, &acpi_device_del_list);
568 /* Make acpi_ns_validate_handle() return NULL for this handle. */
569 adev->handle = INVALID_ACPI_HANDLE;
570
571 mutex_unlock(&acpi_device_del_lock);
572 }
573
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 void (*callback)(void *))
576 {
577 struct acpi_device *adev = NULL;
578 acpi_status status;
579
580 status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 (void **)&adev, callback);
582 if (ACPI_FAILURE(status) || !adev) {
583 acpi_handle_debug(handle, "No context!\n");
584 return NULL;
585 }
586 return adev;
587 }
588
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 if (!device)
592 return -EINVAL;
593
594 *device = handle_to_device(handle, NULL);
595 if (!*device)
596 return -ENODEV;
597
598 return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601
602 static void get_acpi_device(void *dev)
603 {
604 acpi_dev_get(dev);
605 }
606
607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 return handle_to_device(handle, get_acpi_device);
610 }
611
612 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
613 {
614 struct acpi_device_bus_id *acpi_device_bus_id;
615
616 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
617 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
618 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
619 return acpi_device_bus_id;
620 }
621 return NULL;
622 }
623
624 static int acpi_device_set_name(struct acpi_device *device,
625 struct acpi_device_bus_id *acpi_device_bus_id)
626 {
627 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
628 int result;
629
630 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
631 if (result < 0)
632 return result;
633
634 device->pnp.instance_no = result;
635 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
636 return 0;
637 }
638
639 static int acpi_tie_acpi_dev(struct acpi_device *adev)
640 {
641 acpi_handle handle = adev->handle;
642 acpi_status status;
643
644 if (!handle)
645 return 0;
646
647 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
648 if (ACPI_FAILURE(status)) {
649 acpi_handle_err(handle, "Unable to attach device data\n");
650 return -ENODEV;
651 }
652
653 return 0;
654 }
655
656 static int __acpi_device_add(struct acpi_device *device,
657 void (*release)(struct device *))
658 {
659 struct acpi_device_bus_id *acpi_device_bus_id;
660 int result;
661
662 /*
663 * Linkage
664 * -------
665 * Link this device to its parent and siblings.
666 */
667 INIT_LIST_HEAD(&device->children);
668 INIT_LIST_HEAD(&device->node);
669 INIT_LIST_HEAD(&device->wakeup_list);
670 INIT_LIST_HEAD(&device->physical_node_list);
671 INIT_LIST_HEAD(&device->del_list);
672 mutex_init(&device->physical_node_lock);
673
674 mutex_lock(&acpi_device_lock);
675
676 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
677 if (acpi_device_bus_id) {
678 result = acpi_device_set_name(device, acpi_device_bus_id);
679 if (result)
680 goto err_unlock;
681 } else {
682 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
683 GFP_KERNEL);
684 if (!acpi_device_bus_id) {
685 result = -ENOMEM;
686 goto err_unlock;
687 }
688 acpi_device_bus_id->bus_id =
689 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
690 if (!acpi_device_bus_id->bus_id) {
691 kfree(acpi_device_bus_id);
692 result = -ENOMEM;
693 goto err_unlock;
694 }
695
696 ida_init(&acpi_device_bus_id->instance_ida);
697
698 result = acpi_device_set_name(device, acpi_device_bus_id);
699 if (result) {
700 kfree_const(acpi_device_bus_id->bus_id);
701 kfree(acpi_device_bus_id);
702 goto err_unlock;
703 }
704
705 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
706 }
707
708 if (device->parent)
709 list_add_tail(&device->node, &device->parent->children);
710
711 if (device->wakeup.flags.valid)
712 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
713
714 mutex_unlock(&acpi_device_lock);
715
716 if (device->parent)
717 device->dev.parent = &device->parent->dev;
718
719 device->dev.bus = &acpi_bus_type;
720 device->dev.release = release;
721 result = device_add(&device->dev);
722 if (result) {
723 dev_err(&device->dev, "Error registering device\n");
724 goto err;
725 }
726
727 result = acpi_device_setup_files(device);
728 if (result)
729 pr_err("Error creating sysfs interface for device %s\n",
730 dev_name(&device->dev));
731
732 return 0;
733
734 err:
735 mutex_lock(&acpi_device_lock);
736
737 if (device->parent)
738 list_del(&device->node);
739
740 list_del(&device->wakeup_list);
741
742 err_unlock:
743 mutex_unlock(&acpi_device_lock);
744
745 acpi_detach_data(device->handle, acpi_scan_drop_device);
746
747 return result;
748 }
749
750 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
751 {
752 int ret;
753
754 ret = acpi_tie_acpi_dev(adev);
755 if (ret)
756 return ret;
757
758 return __acpi_device_add(adev, release);
759 }
760
761 /* --------------------------------------------------------------------------
762 Device Enumeration
763 -------------------------------------------------------------------------- */
764 static bool acpi_info_matches_ids(struct acpi_device_info *info,
765 const char * const ids[])
766 {
767 struct acpi_pnp_device_id_list *cid_list = NULL;
768 int i, index;
769
770 if (!(info->valid & ACPI_VALID_HID))
771 return false;
772
773 index = match_string(ids, -1, info->hardware_id.string);
774 if (index >= 0)
775 return true;
776
777 if (info->valid & ACPI_VALID_CID)
778 cid_list = &info->compatible_id_list;
779
780 if (!cid_list)
781 return false;
782
783 for (i = 0; i < cid_list->count; i++) {
784 index = match_string(ids, -1, cid_list->ids[i].string);
785 if (index >= 0)
786 return true;
787 }
788
789 return false;
790 }
791
792 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
793 static const char * const acpi_ignore_dep_ids[] = {
794 "PNP0D80", /* Windows-compatible System Power Management Controller */
795 "INT33BD", /* Intel Baytrail Mailbox Device */
796 NULL
797 };
798
799 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
800 {
801 struct acpi_device *device = NULL;
802 acpi_status status;
803
804 /*
805 * Fixed hardware devices do not appear in the namespace and do not
806 * have handles, but we fabricate acpi_devices for them, so we have
807 * to deal with them specially.
808 */
809 if (!handle)
810 return acpi_root;
811
812 do {
813 status = acpi_get_parent(handle, &handle);
814 if (ACPI_FAILURE(status))
815 return status == AE_NULL_ENTRY ? NULL : acpi_root;
816 } while (acpi_bus_get_device(handle, &device));
817 return device;
818 }
819
820 acpi_status
821 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
822 {
823 acpi_status status;
824 acpi_handle tmp;
825 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
826 union acpi_object *obj;
827
828 status = acpi_get_handle(handle, "_EJD", &tmp);
829 if (ACPI_FAILURE(status))
830 return status;
831
832 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
833 if (ACPI_SUCCESS(status)) {
834 obj = buffer.pointer;
835 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
836 ejd);
837 kfree(buffer.pointer);
838 }
839 return status;
840 }
841 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
842
843 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
844 {
845 acpi_handle handle = dev->handle;
846 struct acpi_device_wakeup *wakeup = &dev->wakeup;
847 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
848 union acpi_object *package = NULL;
849 union acpi_object *element = NULL;
850 acpi_status status;
851 int err = -ENODATA;
852
853 INIT_LIST_HEAD(&wakeup->resources);
854
855 /* _PRW */
856 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
857 if (ACPI_FAILURE(status)) {
858 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
859 acpi_format_exception(status));
860 return err;
861 }
862
863 package = (union acpi_object *)buffer.pointer;
864
865 if (!package || package->package.count < 2)
866 goto out;
867
868 element = &(package->package.elements[0]);
869 if (!element)
870 goto out;
871
872 if (element->type == ACPI_TYPE_PACKAGE) {
873 if ((element->package.count < 2) ||
874 (element->package.elements[0].type !=
875 ACPI_TYPE_LOCAL_REFERENCE)
876 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
877 goto out;
878
879 wakeup->gpe_device =
880 element->package.elements[0].reference.handle;
881 wakeup->gpe_number =
882 (u32) element->package.elements[1].integer.value;
883 } else if (element->type == ACPI_TYPE_INTEGER) {
884 wakeup->gpe_device = NULL;
885 wakeup->gpe_number = element->integer.value;
886 } else {
887 goto out;
888 }
889
890 element = &(package->package.elements[1]);
891 if (element->type != ACPI_TYPE_INTEGER)
892 goto out;
893
894 wakeup->sleep_state = element->integer.value;
895
896 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
897 if (err)
898 goto out;
899
900 if (!list_empty(&wakeup->resources)) {
901 int sleep_state;
902
903 err = acpi_power_wakeup_list_init(&wakeup->resources,
904 &sleep_state);
905 if (err) {
906 acpi_handle_warn(handle, "Retrieving current states "
907 "of wakeup power resources failed\n");
908 acpi_power_resources_list_free(&wakeup->resources);
909 goto out;
910 }
911 if (sleep_state < wakeup->sleep_state) {
912 acpi_handle_warn(handle, "Overriding _PRW sleep state "
913 "(S%d) by S%d from power resources\n",
914 (int)wakeup->sleep_state, sleep_state);
915 wakeup->sleep_state = sleep_state;
916 }
917 }
918
919 out:
920 kfree(buffer.pointer);
921 return err;
922 }
923
924 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
925 {
926 static const struct acpi_device_id button_device_ids[] = {
927 {"PNP0C0C", 0}, /* Power button */
928 {"PNP0C0D", 0}, /* Lid */
929 {"PNP0C0E", 0}, /* Sleep button */
930 {"", 0},
931 };
932 struct acpi_device_wakeup *wakeup = &device->wakeup;
933 acpi_status status;
934
935 wakeup->flags.notifier_present = 0;
936
937 /* Power button, Lid switch always enable wakeup */
938 if (!acpi_match_device_ids(device, button_device_ids)) {
939 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
940 /* Do not use Lid/sleep button for S5 wakeup */
941 if (wakeup->sleep_state == ACPI_STATE_S5)
942 wakeup->sleep_state = ACPI_STATE_S4;
943 }
944 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
945 device_set_wakeup_capable(&device->dev, true);
946 return true;
947 }
948
949 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
950 wakeup->gpe_number);
951 return ACPI_SUCCESS(status);
952 }
953
954 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
955 {
956 int err;
957
958 /* Presence of _PRW indicates wake capable */
959 if (!acpi_has_method(device->handle, "_PRW"))
960 return;
961
962 err = acpi_bus_extract_wakeup_device_power_package(device);
963 if (err) {
964 dev_err(&device->dev, "Unable to extract wakeup power resources");
965 return;
966 }
967
968 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
969 device->wakeup.prepare_count = 0;
970 /*
971 * Call _PSW/_DSW object to disable its ability to wake the sleeping
972 * system for the ACPI device with the _PRW object.
973 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
974 * So it is necessary to call _DSW object first. Only when it is not
975 * present will the _PSW object used.
976 */
977 err = acpi_device_sleep_wake(device, 0, 0, 0);
978 if (err)
979 pr_debug("error in _DSW or _PSW evaluation\n");
980 }
981
982 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
983 {
984 struct acpi_device_power_state *ps = &device->power.states[state];
985 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
986 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
987 acpi_status status;
988
989 INIT_LIST_HEAD(&ps->resources);
990
991 /* Evaluate "_PRx" to get referenced power resources */
992 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
993 if (ACPI_SUCCESS(status)) {
994 union acpi_object *package = buffer.pointer;
995
996 if (buffer.length && package
997 && package->type == ACPI_TYPE_PACKAGE
998 && package->package.count)
999 acpi_extract_power_resources(package, 0, &ps->resources);
1000
1001 ACPI_FREE(buffer.pointer);
1002 }
1003
1004 /* Evaluate "_PSx" to see if we can do explicit sets */
1005 pathname[2] = 'S';
1006 if (acpi_has_method(device->handle, pathname))
1007 ps->flags.explicit_set = 1;
1008
1009 /* State is valid if there are means to put the device into it. */
1010 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1011 ps->flags.valid = 1;
1012
1013 ps->power = -1; /* Unknown - driver assigned */
1014 ps->latency = -1; /* Unknown - driver assigned */
1015 }
1016
1017 static void acpi_bus_get_power_flags(struct acpi_device *device)
1018 {
1019 u32 i;
1020
1021 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1022 if (!acpi_has_method(device->handle, "_PS0") &&
1023 !acpi_has_method(device->handle, "_PR0"))
1024 return;
1025
1026 device->flags.power_manageable = 1;
1027
1028 /*
1029 * Power Management Flags
1030 */
1031 if (acpi_has_method(device->handle, "_PSC"))
1032 device->power.flags.explicit_get = 1;
1033
1034 if (acpi_has_method(device->handle, "_IRC"))
1035 device->power.flags.inrush_current = 1;
1036
1037 if (acpi_has_method(device->handle, "_DSW"))
1038 device->power.flags.dsw_present = 1;
1039
1040 /*
1041 * Enumerate supported power management states
1042 */
1043 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1044 acpi_bus_init_power_state(device, i);
1045
1046 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1047
1048 /* Set the defaults for D0 and D3hot (always supported). */
1049 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1050 device->power.states[ACPI_STATE_D0].power = 100;
1051 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1052
1053 /*
1054 * Use power resources only if the D0 list of them is populated, because
1055 * some platforms may provide _PR3 only to indicate D3cold support and
1056 * in those cases the power resources list returned by it may be bogus.
1057 */
1058 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1059 device->power.flags.power_resources = 1;
1060 /*
1061 * D3cold is supported if the D3hot list of power resources is
1062 * not empty.
1063 */
1064 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1065 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1066 }
1067
1068 if (acpi_bus_init_power(device))
1069 device->flags.power_manageable = 0;
1070 }
1071
1072 static void acpi_bus_get_flags(struct acpi_device *device)
1073 {
1074 /* Presence of _STA indicates 'dynamic_status' */
1075 if (acpi_has_method(device->handle, "_STA"))
1076 device->flags.dynamic_status = 1;
1077
1078 /* Presence of _RMV indicates 'removable' */
1079 if (acpi_has_method(device->handle, "_RMV"))
1080 device->flags.removable = 1;
1081
1082 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1083 if (acpi_has_method(device->handle, "_EJD") ||
1084 acpi_has_method(device->handle, "_EJ0"))
1085 device->flags.ejectable = 1;
1086 }
1087
1088 static void acpi_device_get_busid(struct acpi_device *device)
1089 {
1090 char bus_id[5] = { '?', 0 };
1091 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1092 int i = 0;
1093
1094 /*
1095 * Bus ID
1096 * ------
1097 * The device's Bus ID is simply the object name.
1098 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1099 */
1100 if (ACPI_IS_ROOT_DEVICE(device)) {
1101 strcpy(device->pnp.bus_id, "ACPI");
1102 return;
1103 }
1104
1105 switch (device->device_type) {
1106 case ACPI_BUS_TYPE_POWER_BUTTON:
1107 strcpy(device->pnp.bus_id, "PWRF");
1108 break;
1109 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1110 strcpy(device->pnp.bus_id, "SLPF");
1111 break;
1112 case ACPI_BUS_TYPE_ECDT_EC:
1113 strcpy(device->pnp.bus_id, "ECDT");
1114 break;
1115 default:
1116 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1117 /* Clean up trailing underscores (if any) */
1118 for (i = 3; i > 1; i--) {
1119 if (bus_id[i] == '_')
1120 bus_id[i] = '\0';
1121 else
1122 break;
1123 }
1124 strcpy(device->pnp.bus_id, bus_id);
1125 break;
1126 }
1127 }
1128
1129 /*
1130 * acpi_ata_match - see if an acpi object is an ATA device
1131 *
1132 * If an acpi object has one of the ACPI ATA methods defined,
1133 * then we can safely call it an ATA device.
1134 */
1135 bool acpi_ata_match(acpi_handle handle)
1136 {
1137 return acpi_has_method(handle, "_GTF") ||
1138 acpi_has_method(handle, "_GTM") ||
1139 acpi_has_method(handle, "_STM") ||
1140 acpi_has_method(handle, "_SDD");
1141 }
1142
1143 /*
1144 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1145 *
1146 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1147 * then we can safely call it an ejectable drive bay
1148 */
1149 bool acpi_bay_match(acpi_handle handle)
1150 {
1151 acpi_handle phandle;
1152
1153 if (!acpi_has_method(handle, "_EJ0"))
1154 return false;
1155 if (acpi_ata_match(handle))
1156 return true;
1157 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1158 return false;
1159
1160 return acpi_ata_match(phandle);
1161 }
1162
1163 bool acpi_device_is_battery(struct acpi_device *adev)
1164 {
1165 struct acpi_hardware_id *hwid;
1166
1167 list_for_each_entry(hwid, &adev->pnp.ids, list)
1168 if (!strcmp("PNP0C0A", hwid->id))
1169 return true;
1170
1171 return false;
1172 }
1173
1174 static bool is_ejectable_bay(struct acpi_device *adev)
1175 {
1176 acpi_handle handle = adev->handle;
1177
1178 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1179 return true;
1180
1181 return acpi_bay_match(handle);
1182 }
1183
1184 /*
1185 * acpi_dock_match - see if an acpi object has a _DCK method
1186 */
1187 bool acpi_dock_match(acpi_handle handle)
1188 {
1189 return acpi_has_method(handle, "_DCK");
1190 }
1191
1192 static acpi_status
1193 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1194 void **return_value)
1195 {
1196 long *cap = context;
1197
1198 if (acpi_has_method(handle, "_BCM") &&
1199 acpi_has_method(handle, "_BCL")) {
1200 acpi_handle_debug(handle, "Found generic backlight support\n");
1201 *cap |= ACPI_VIDEO_BACKLIGHT;
1202 /* We have backlight support, no need to scan further */
1203 return AE_CTRL_TERMINATE;
1204 }
1205 return 0;
1206 }
1207
1208 /* Returns true if the ACPI object is a video device which can be
1209 * handled by video.ko.
1210 * The device will get a Linux specific CID added in scan.c to
1211 * identify the device as an ACPI graphics device
1212 * Be aware that the graphics device may not be physically present
1213 * Use acpi_video_get_capabilities() to detect general ACPI video
1214 * capabilities of present cards
1215 */
1216 long acpi_is_video_device(acpi_handle handle)
1217 {
1218 long video_caps = 0;
1219
1220 /* Is this device able to support video switching ? */
1221 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1222 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1223
1224 /* Is this device able to retrieve a video ROM ? */
1225 if (acpi_has_method(handle, "_ROM"))
1226 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1227
1228 /* Is this device able to configure which video head to be POSTed ? */
1229 if (acpi_has_method(handle, "_VPO") &&
1230 acpi_has_method(handle, "_GPD") &&
1231 acpi_has_method(handle, "_SPD"))
1232 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1233
1234 /* Only check for backlight functionality if one of the above hit. */
1235 if (video_caps)
1236 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1237 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1238 &video_caps, NULL);
1239
1240 return video_caps;
1241 }
1242 EXPORT_SYMBOL(acpi_is_video_device);
1243
1244 const char *acpi_device_hid(struct acpi_device *device)
1245 {
1246 struct acpi_hardware_id *hid;
1247
1248 if (list_empty(&device->pnp.ids))
1249 return dummy_hid;
1250
1251 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1252 return hid->id;
1253 }
1254 EXPORT_SYMBOL(acpi_device_hid);
1255
1256 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1257 {
1258 struct acpi_hardware_id *id;
1259
1260 id = kmalloc(sizeof(*id), GFP_KERNEL);
1261 if (!id)
1262 return;
1263
1264 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1265 if (!id->id) {
1266 kfree(id);
1267 return;
1268 }
1269
1270 list_add_tail(&id->list, &pnp->ids);
1271 pnp->type.hardware_id = 1;
1272 }
1273
1274 /*
1275 * Old IBM workstations have a DSDT bug wherein the SMBus object
1276 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1277 * prefix. Work around this.
1278 */
1279 static bool acpi_ibm_smbus_match(acpi_handle handle)
1280 {
1281 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1282 struct acpi_buffer path = { sizeof(node_name), node_name };
1283
1284 if (!dmi_name_in_vendors("IBM"))
1285 return false;
1286
1287 /* Look for SMBS object */
1288 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1289 strcmp("SMBS", path.pointer))
1290 return false;
1291
1292 /* Does it have the necessary (but misnamed) methods? */
1293 if (acpi_has_method(handle, "SBI") &&
1294 acpi_has_method(handle, "SBR") &&
1295 acpi_has_method(handle, "SBW"))
1296 return true;
1297
1298 return false;
1299 }
1300
1301 static bool acpi_object_is_system_bus(acpi_handle handle)
1302 {
1303 acpi_handle tmp;
1304
1305 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1306 tmp == handle)
1307 return true;
1308 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1309 tmp == handle)
1310 return true;
1311
1312 return false;
1313 }
1314
1315 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1316 int device_type)
1317 {
1318 struct acpi_device_info *info = NULL;
1319 struct acpi_pnp_device_id_list *cid_list;
1320 int i;
1321
1322 switch (device_type) {
1323 case ACPI_BUS_TYPE_DEVICE:
1324 if (handle == ACPI_ROOT_OBJECT) {
1325 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1326 break;
1327 }
1328
1329 acpi_get_object_info(handle, &info);
1330 if (!info) {
1331 pr_err("%s: Error reading device info\n", __func__);
1332 return;
1333 }
1334
1335 if (info->valid & ACPI_VALID_HID) {
1336 acpi_add_id(pnp, info->hardware_id.string);
1337 pnp->type.platform_id = 1;
1338 }
1339 if (info->valid & ACPI_VALID_CID) {
1340 cid_list = &info->compatible_id_list;
1341 for (i = 0; i < cid_list->count; i++)
1342 acpi_add_id(pnp, cid_list->ids[i].string);
1343 }
1344 if (info->valid & ACPI_VALID_ADR) {
1345 pnp->bus_address = info->address;
1346 pnp->type.bus_address = 1;
1347 }
1348 if (info->valid & ACPI_VALID_UID)
1349 pnp->unique_id = kstrdup(info->unique_id.string,
1350 GFP_KERNEL);
1351 if (info->valid & ACPI_VALID_CLS)
1352 acpi_add_id(pnp, info->class_code.string);
1353
1354 kfree(info);
1355
1356 /*
1357 * Some devices don't reliably have _HIDs & _CIDs, so add
1358 * synthetic HIDs to make sure drivers can find them.
1359 */
1360 if (acpi_is_video_device(handle))
1361 acpi_add_id(pnp, ACPI_VIDEO_HID);
1362 else if (acpi_bay_match(handle))
1363 acpi_add_id(pnp, ACPI_BAY_HID);
1364 else if (acpi_dock_match(handle))
1365 acpi_add_id(pnp, ACPI_DOCK_HID);
1366 else if (acpi_ibm_smbus_match(handle))
1367 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1368 else if (list_empty(&pnp->ids) &&
1369 acpi_object_is_system_bus(handle)) {
1370 /* \_SB, \_TZ, LNXSYBUS */
1371 acpi_add_id(pnp, ACPI_BUS_HID);
1372 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1373 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1374 }
1375
1376 break;
1377 case ACPI_BUS_TYPE_POWER:
1378 acpi_add_id(pnp, ACPI_POWER_HID);
1379 break;
1380 case ACPI_BUS_TYPE_PROCESSOR:
1381 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1382 break;
1383 case ACPI_BUS_TYPE_THERMAL:
1384 acpi_add_id(pnp, ACPI_THERMAL_HID);
1385 break;
1386 case ACPI_BUS_TYPE_POWER_BUTTON:
1387 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1388 break;
1389 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1390 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1391 break;
1392 case ACPI_BUS_TYPE_ECDT_EC:
1393 acpi_add_id(pnp, ACPI_ECDT_HID);
1394 break;
1395 }
1396 }
1397
1398 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1399 {
1400 struct acpi_hardware_id *id, *tmp;
1401
1402 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1403 kfree_const(id->id);
1404 kfree(id);
1405 }
1406 kfree(pnp->unique_id);
1407 }
1408
1409 /**
1410 * acpi_dma_supported - Check DMA support for the specified device.
1411 * @adev: The pointer to acpi device
1412 *
1413 * Return false if DMA is not supported. Otherwise, return true
1414 */
1415 bool acpi_dma_supported(const struct acpi_device *adev)
1416 {
1417 if (!adev)
1418 return false;
1419
1420 if (adev->flags.cca_seen)
1421 return true;
1422
1423 /*
1424 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1425 * DMA on "Intel platforms". Presumably that includes all x86 and
1426 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1427 */
1428 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1429 return true;
1430
1431 return false;
1432 }
1433
1434 /**
1435 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1436 * @adev: The pointer to acpi device
1437 *
1438 * Return enum dev_dma_attr.
1439 */
1440 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1441 {
1442 if (!acpi_dma_supported(adev))
1443 return DEV_DMA_NOT_SUPPORTED;
1444
1445 if (adev->flags.coherent_dma)
1446 return DEV_DMA_COHERENT;
1447 else
1448 return DEV_DMA_NON_COHERENT;
1449 }
1450
1451 /**
1452 * acpi_dma_get_range() - Get device DMA parameters.
1453 *
1454 * @dev: device to configure
1455 * @dma_addr: pointer device DMA address result
1456 * @offset: pointer to the DMA offset result
1457 * @size: pointer to DMA range size result
1458 *
1459 * Evaluate DMA regions and return respectively DMA region start, offset
1460 * and size in dma_addr, offset and size on parsing success; it does not
1461 * update the passed in values on failure.
1462 *
1463 * Return 0 on success, < 0 on failure.
1464 */
1465 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1466 u64 *size)
1467 {
1468 struct acpi_device *adev;
1469 LIST_HEAD(list);
1470 struct resource_entry *rentry;
1471 int ret;
1472 struct device *dma_dev = dev;
1473 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1474
1475 /*
1476 * Walk the device tree chasing an ACPI companion with a _DMA
1477 * object while we go. Stop if we find a device with an ACPI
1478 * companion containing a _DMA method.
1479 */
1480 do {
1481 adev = ACPI_COMPANION(dma_dev);
1482 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1483 break;
1484
1485 dma_dev = dma_dev->parent;
1486 } while (dma_dev);
1487
1488 if (!dma_dev)
1489 return -ENODEV;
1490
1491 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1492 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1493 return -EINVAL;
1494 }
1495
1496 ret = acpi_dev_get_dma_resources(adev, &list);
1497 if (ret > 0) {
1498 list_for_each_entry(rentry, &list, node) {
1499 if (dma_offset && rentry->offset != dma_offset) {
1500 ret = -EINVAL;
1501 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1502 goto out;
1503 }
1504 dma_offset = rentry->offset;
1505
1506 /* Take lower and upper limits */
1507 if (rentry->res->start < dma_start)
1508 dma_start = rentry->res->start;
1509 if (rentry->res->end > dma_end)
1510 dma_end = rentry->res->end;
1511 }
1512
1513 if (dma_start >= dma_end) {
1514 ret = -EINVAL;
1515 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1516 goto out;
1517 }
1518
1519 *dma_addr = dma_start - dma_offset;
1520 len = dma_end - dma_start;
1521 *size = max(len, len + 1);
1522 *offset = dma_offset;
1523 }
1524 out:
1525 acpi_dev_free_resource_list(&list);
1526
1527 return ret >= 0 ? 0 : ret;
1528 }
1529
1530 #ifdef CONFIG_IOMMU_API
1531 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1532 struct fwnode_handle *fwnode,
1533 const struct iommu_ops *ops)
1534 {
1535 int ret = iommu_fwspec_init(dev, fwnode, ops);
1536
1537 if (!ret)
1538 ret = iommu_fwspec_add_ids(dev, &id, 1);
1539
1540 return ret;
1541 }
1542
1543 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1544 {
1545 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1546
1547 return fwspec ? fwspec->ops : NULL;
1548 }
1549
1550 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1551 const u32 *id_in)
1552 {
1553 int err;
1554 const struct iommu_ops *ops;
1555
1556 /*
1557 * If we already translated the fwspec there is nothing left to do,
1558 * return the iommu_ops.
1559 */
1560 ops = acpi_iommu_fwspec_ops(dev);
1561 if (ops)
1562 return ops;
1563
1564 err = iort_iommu_configure_id(dev, id_in);
1565 if (err && err != -EPROBE_DEFER)
1566 err = viot_iommu_configure(dev);
1567
1568 /*
1569 * If we have reason to believe the IOMMU driver missed the initial
1570 * iommu_probe_device() call for dev, replay it to get things in order.
1571 */
1572 if (!err && dev->bus && !device_iommu_mapped(dev))
1573 err = iommu_probe_device(dev);
1574
1575 /* Ignore all other errors apart from EPROBE_DEFER */
1576 if (err == -EPROBE_DEFER) {
1577 return ERR_PTR(err);
1578 } else if (err) {
1579 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1580 return NULL;
1581 }
1582 return acpi_iommu_fwspec_ops(dev);
1583 }
1584
1585 #else /* !CONFIG_IOMMU_API */
1586
1587 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1588 struct fwnode_handle *fwnode,
1589 const struct iommu_ops *ops)
1590 {
1591 return -ENODEV;
1592 }
1593
1594 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1595 const u32 *id_in)
1596 {
1597 return NULL;
1598 }
1599
1600 #endif /* !CONFIG_IOMMU_API */
1601
1602 /**
1603 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1604 * @dev: The pointer to the device
1605 * @attr: device dma attributes
1606 * @input_id: input device id const value pointer
1607 */
1608 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1609 const u32 *input_id)
1610 {
1611 const struct iommu_ops *iommu;
1612 u64 dma_addr = 0, size = 0;
1613
1614 if (attr == DEV_DMA_NOT_SUPPORTED) {
1615 set_dma_ops(dev, &dma_dummy_ops);
1616 return 0;
1617 }
1618
1619 acpi_arch_dma_setup(dev, &dma_addr, &size);
1620
1621 iommu = acpi_iommu_configure_id(dev, input_id);
1622 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1623 return -EPROBE_DEFER;
1624
1625 arch_setup_dma_ops(dev, dma_addr, size,
1626 iommu, attr == DEV_DMA_COHERENT);
1627
1628 return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1631
1632 static void acpi_init_coherency(struct acpi_device *adev)
1633 {
1634 unsigned long long cca = 0;
1635 acpi_status status;
1636 struct acpi_device *parent = adev->parent;
1637
1638 if (parent && parent->flags.cca_seen) {
1639 /*
1640 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1641 * already saw one.
1642 */
1643 adev->flags.cca_seen = 1;
1644 cca = parent->flags.coherent_dma;
1645 } else {
1646 status = acpi_evaluate_integer(adev->handle, "_CCA",
1647 NULL, &cca);
1648 if (ACPI_SUCCESS(status))
1649 adev->flags.cca_seen = 1;
1650 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1651 /*
1652 * If architecture does not specify that _CCA is
1653 * required for DMA-able devices (e.g. x86),
1654 * we default to _CCA=1.
1655 */
1656 cca = 1;
1657 else
1658 acpi_handle_debug(adev->handle,
1659 "ACPI device is missing _CCA.\n");
1660 }
1661
1662 adev->flags.coherent_dma = cca;
1663 }
1664
1665 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1666 {
1667 bool *is_serial_bus_slave_p = data;
1668
1669 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1670 return 1;
1671
1672 *is_serial_bus_slave_p = true;
1673
1674 /* no need to do more checking */
1675 return -1;
1676 }
1677
1678 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1679 {
1680 struct acpi_device *parent = device->parent;
1681 static const struct acpi_device_id indirect_io_hosts[] = {
1682 {"HISI0191", 0},
1683 {}
1684 };
1685
1686 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1687 }
1688
1689 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1690 {
1691 struct list_head resource_list;
1692 bool is_serial_bus_slave = false;
1693 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1694 /*
1695 * These devices have multiple SerialBus resources and a client
1696 * device must be instantiated for each of them, each with
1697 * its own device id.
1698 * Normally we only instantiate one client device for the first
1699 * resource, using the ACPI HID as id. These special cases are handled
1700 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1701 * knows which client device id to use for each resource.
1702 */
1703 {"BSG1160", },
1704 {"BSG2150", },
1705 {"CSC3551", },
1706 {"INT33FE", },
1707 {"INT3515", },
1708 /* Non-conforming _HID for Cirrus Logic already released */
1709 {"CLSA0100", },
1710 /*
1711 * HIDs of device with an UartSerialBusV2 resource for which userspace
1712 * expects a regular tty cdev to be created (instead of the in kernel
1713 * serdev) and which have a kernel driver which expects a platform_dev
1714 * such as the rfkill-gpio driver.
1715 */
1716 {"BCM4752", },
1717 {"LNV4752", },
1718 {}
1719 };
1720
1721 if (acpi_is_indirect_io_slave(device))
1722 return true;
1723
1724 /* Macs use device properties in lieu of _CRS resources */
1725 if (x86_apple_machine &&
1726 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1727 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1728 fwnode_property_present(&device->fwnode, "baud")))
1729 return true;
1730
1731 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1732 return false;
1733
1734 INIT_LIST_HEAD(&resource_list);
1735 acpi_dev_get_resources(device, &resource_list,
1736 acpi_check_serial_bus_slave,
1737 &is_serial_bus_slave);
1738 acpi_dev_free_resource_list(&resource_list);
1739
1740 return is_serial_bus_slave;
1741 }
1742
1743 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1744 int type)
1745 {
1746 INIT_LIST_HEAD(&device->pnp.ids);
1747 device->device_type = type;
1748 device->handle = handle;
1749 device->parent = acpi_bus_get_parent(handle);
1750 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1751 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1752 acpi_device_get_busid(device);
1753 acpi_set_pnp_ids(handle, &device->pnp, type);
1754 acpi_init_properties(device);
1755 acpi_bus_get_flags(device);
1756 device->flags.match_driver = false;
1757 device->flags.initialized = true;
1758 device->flags.enumeration_by_parent =
1759 acpi_device_enumeration_by_parent(device);
1760 acpi_device_clear_enumerated(device);
1761 device_initialize(&device->dev);
1762 dev_set_uevent_suppress(&device->dev, true);
1763 acpi_init_coherency(device);
1764 }
1765
1766 static void acpi_scan_dep_init(struct acpi_device *adev)
1767 {
1768 struct acpi_dep_data *dep;
1769
1770 list_for_each_entry(dep, &acpi_dep_list, node) {
1771 if (dep->consumer == adev->handle)
1772 adev->dep_unmet++;
1773 }
1774 }
1775
1776 void acpi_device_add_finalize(struct acpi_device *device)
1777 {
1778 dev_set_uevent_suppress(&device->dev, false);
1779 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1780 }
1781
1782 static void acpi_scan_init_status(struct acpi_device *adev)
1783 {
1784 if (acpi_bus_get_status(adev))
1785 acpi_set_device_status(adev, 0);
1786 }
1787
1788 static int acpi_add_single_object(struct acpi_device **child,
1789 acpi_handle handle, int type, bool dep_init)
1790 {
1791 struct acpi_device *device;
1792 bool release_dep_lock = false;
1793 int result;
1794
1795 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1796 if (!device)
1797 return -ENOMEM;
1798
1799 acpi_init_device_object(device, handle, type);
1800 /*
1801 * Getting the status is delayed till here so that we can call
1802 * acpi_bus_get_status() and use its quirk handling. Note that
1803 * this must be done before the get power-/wakeup_dev-flags calls.
1804 */
1805 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1806 if (dep_init) {
1807 mutex_lock(&acpi_dep_list_lock);
1808 /*
1809 * Hold the lock until the acpi_tie_acpi_dev() call
1810 * below to prevent concurrent acpi_scan_clear_dep()
1811 * from deleting a dependency list entry without
1812 * updating dep_unmet for the device.
1813 */
1814 release_dep_lock = true;
1815 acpi_scan_dep_init(device);
1816 }
1817 acpi_scan_init_status(device);
1818 }
1819
1820 acpi_bus_get_power_flags(device);
1821 acpi_bus_get_wakeup_device_flags(device);
1822
1823 result = acpi_tie_acpi_dev(device);
1824
1825 if (release_dep_lock)
1826 mutex_unlock(&acpi_dep_list_lock);
1827
1828 if (!result)
1829 result = __acpi_device_add(device, acpi_device_release);
1830
1831 if (result) {
1832 acpi_device_release(&device->dev);
1833 return result;
1834 }
1835
1836 acpi_power_add_remove_device(device, true);
1837 acpi_device_add_finalize(device);
1838
1839 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1840 dev_name(&device->dev), device->parent ?
1841 dev_name(&device->parent->dev) : "(null)");
1842
1843 *child = device;
1844 return 0;
1845 }
1846
1847 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1848 void *context)
1849 {
1850 struct resource *res = context;
1851
1852 if (acpi_dev_resource_memory(ares, res))
1853 return AE_CTRL_TERMINATE;
1854
1855 return AE_OK;
1856 }
1857
1858 static bool acpi_device_should_be_hidden(acpi_handle handle)
1859 {
1860 acpi_status status;
1861 struct resource res;
1862
1863 /* Check if it should ignore the UART device */
1864 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1865 return false;
1866
1867 /*
1868 * The UART device described in SPCR table is assumed to have only one
1869 * memory resource present. So we only look for the first one here.
1870 */
1871 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1872 acpi_get_resource_memory, &res);
1873 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1874 return false;
1875
1876 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1877 &res.start);
1878
1879 return true;
1880 }
1881
1882 bool acpi_device_is_present(const struct acpi_device *adev)
1883 {
1884 return adev->status.present || adev->status.functional;
1885 }
1886
1887 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1888 const char *idstr,
1889 const struct acpi_device_id **matchid)
1890 {
1891 const struct acpi_device_id *devid;
1892
1893 if (handler->match)
1894 return handler->match(idstr, matchid);
1895
1896 for (devid = handler->ids; devid->id[0]; devid++)
1897 if (!strcmp((char *)devid->id, idstr)) {
1898 if (matchid)
1899 *matchid = devid;
1900
1901 return true;
1902 }
1903
1904 return false;
1905 }
1906
1907 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1908 const struct acpi_device_id **matchid)
1909 {
1910 struct acpi_scan_handler *handler;
1911
1912 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1913 if (acpi_scan_handler_matching(handler, idstr, matchid))
1914 return handler;
1915
1916 return NULL;
1917 }
1918
1919 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1920 {
1921 if (!!hotplug->enabled == !!val)
1922 return;
1923
1924 mutex_lock(&acpi_scan_lock);
1925
1926 hotplug->enabled = val;
1927
1928 mutex_unlock(&acpi_scan_lock);
1929 }
1930
1931 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1932 {
1933 struct acpi_hardware_id *hwid;
1934
1935 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1936 acpi_dock_add(adev);
1937 return;
1938 }
1939 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1940 struct acpi_scan_handler *handler;
1941
1942 handler = acpi_scan_match_handler(hwid->id, NULL);
1943 if (handler) {
1944 adev->flags.hotplug_notify = true;
1945 break;
1946 }
1947 }
1948 }
1949
1950 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1951 {
1952 struct acpi_handle_list dep_devices;
1953 acpi_status status;
1954 u32 count;
1955 int i;
1956
1957 /*
1958 * Check for _HID here to avoid deferring the enumeration of:
1959 * 1. PCI devices.
1960 * 2. ACPI nodes describing USB ports.
1961 * Still, checking for _HID catches more then just these cases ...
1962 */
1963 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1964 !acpi_has_method(handle, "_HID"))
1965 return 0;
1966
1967 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1968 if (ACPI_FAILURE(status)) {
1969 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1970 return 0;
1971 }
1972
1973 for (count = 0, i = 0; i < dep_devices.count; i++) {
1974 struct acpi_device_info *info;
1975 struct acpi_dep_data *dep;
1976 bool skip;
1977
1978 status = acpi_get_object_info(dep_devices.handles[i], &info);
1979 if (ACPI_FAILURE(status)) {
1980 acpi_handle_debug(handle, "Error reading _DEP device info\n");
1981 continue;
1982 }
1983
1984 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1985 kfree(info);
1986
1987 if (skip)
1988 continue;
1989
1990 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1991 if (!dep)
1992 continue;
1993
1994 count++;
1995
1996 dep->supplier = dep_devices.handles[i];
1997 dep->consumer = handle;
1998
1999 mutex_lock(&acpi_dep_list_lock);
2000 list_add_tail(&dep->node , &acpi_dep_list);
2001 mutex_unlock(&acpi_dep_list_lock);
2002 }
2003
2004 return count;
2005 }
2006
2007 static bool acpi_bus_scan_second_pass;
2008
2009 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2010 struct acpi_device **adev_p)
2011 {
2012 struct acpi_device *device = NULL;
2013 acpi_object_type acpi_type;
2014 int type;
2015
2016 acpi_bus_get_device(handle, &device);
2017 if (device)
2018 goto out;
2019
2020 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2021 return AE_OK;
2022
2023 switch (acpi_type) {
2024 case ACPI_TYPE_DEVICE:
2025 if (acpi_device_should_be_hidden(handle))
2026 return AE_OK;
2027
2028 /* Bail out if there are dependencies. */
2029 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2030 acpi_bus_scan_second_pass = true;
2031 return AE_CTRL_DEPTH;
2032 }
2033
2034 fallthrough;
2035 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2036 type = ACPI_BUS_TYPE_DEVICE;
2037 break;
2038
2039 case ACPI_TYPE_PROCESSOR:
2040 type = ACPI_BUS_TYPE_PROCESSOR;
2041 break;
2042
2043 case ACPI_TYPE_THERMAL:
2044 type = ACPI_BUS_TYPE_THERMAL;
2045 break;
2046
2047 case ACPI_TYPE_POWER:
2048 acpi_add_power_resource(handle);
2049 fallthrough;
2050 default:
2051 return AE_OK;
2052 }
2053
2054 /*
2055 * If check_dep is true at this point, the device has no dependencies,
2056 * or the creation of the device object would have been postponed above.
2057 */
2058 acpi_add_single_object(&device, handle, type, !check_dep);
2059 if (!device)
2060 return AE_CTRL_DEPTH;
2061
2062 acpi_scan_init_hotplug(device);
2063
2064 out:
2065 if (!*adev_p)
2066 *adev_p = device;
2067
2068 return AE_OK;
2069 }
2070
2071 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2072 void *not_used, void **ret_p)
2073 {
2074 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2075 }
2076
2077 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2078 void *not_used, void **ret_p)
2079 {
2080 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2081 }
2082
2083 static void acpi_default_enumeration(struct acpi_device *device)
2084 {
2085 /*
2086 * Do not enumerate devices with enumeration_by_parent flag set as
2087 * they will be enumerated by their respective parents.
2088 */
2089 if (!device->flags.enumeration_by_parent) {
2090 acpi_create_platform_device(device, NULL);
2091 acpi_device_set_enumerated(device);
2092 } else {
2093 blocking_notifier_call_chain(&acpi_reconfig_chain,
2094 ACPI_RECONFIG_DEVICE_ADD, device);
2095 }
2096 }
2097
2098 static const struct acpi_device_id generic_device_ids[] = {
2099 {ACPI_DT_NAMESPACE_HID, },
2100 {"", },
2101 };
2102
2103 static int acpi_generic_device_attach(struct acpi_device *adev,
2104 const struct acpi_device_id *not_used)
2105 {
2106 /*
2107 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2108 * below can be unconditional.
2109 */
2110 if (adev->data.of_compatible)
2111 acpi_default_enumeration(adev);
2112
2113 return 1;
2114 }
2115
2116 static struct acpi_scan_handler generic_device_handler = {
2117 .ids = generic_device_ids,
2118 .attach = acpi_generic_device_attach,
2119 };
2120
2121 static int acpi_scan_attach_handler(struct acpi_device *device)
2122 {
2123 struct acpi_hardware_id *hwid;
2124 int ret = 0;
2125
2126 list_for_each_entry(hwid, &device->pnp.ids, list) {
2127 const struct acpi_device_id *devid;
2128 struct acpi_scan_handler *handler;
2129
2130 handler = acpi_scan_match_handler(hwid->id, &devid);
2131 if (handler) {
2132 if (!handler->attach) {
2133 device->pnp.type.platform_id = 0;
2134 continue;
2135 }
2136 device->handler = handler;
2137 ret = handler->attach(device, devid);
2138 if (ret > 0)
2139 break;
2140
2141 device->handler = NULL;
2142 if (ret < 0)
2143 break;
2144 }
2145 }
2146
2147 return ret;
2148 }
2149
2150 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2151 {
2152 struct acpi_device *child;
2153 bool skip = !first_pass && device->flags.visited;
2154 acpi_handle ejd;
2155 int ret;
2156
2157 if (skip)
2158 goto ok;
2159
2160 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2161 register_dock_dependent_device(device, ejd);
2162
2163 acpi_bus_get_status(device);
2164 /* Skip devices that are not present. */
2165 if (!acpi_device_is_present(device)) {
2166 device->flags.initialized = false;
2167 acpi_device_clear_enumerated(device);
2168 device->flags.power_manageable = 0;
2169 return;
2170 }
2171 if (device->handler)
2172 goto ok;
2173
2174 if (!device->flags.initialized) {
2175 device->flags.power_manageable =
2176 device->power.states[ACPI_STATE_D0].flags.valid;
2177 if (acpi_bus_init_power(device))
2178 device->flags.power_manageable = 0;
2179
2180 device->flags.initialized = true;
2181 } else if (device->flags.visited) {
2182 goto ok;
2183 }
2184
2185 ret = acpi_scan_attach_handler(device);
2186 if (ret < 0)
2187 return;
2188
2189 device->flags.match_driver = true;
2190 if (ret > 0 && !device->flags.enumeration_by_parent) {
2191 acpi_device_set_enumerated(device);
2192 goto ok;
2193 }
2194
2195 ret = device_attach(&device->dev);
2196 if (ret < 0)
2197 return;
2198
2199 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2200 acpi_default_enumeration(device);
2201 else
2202 acpi_device_set_enumerated(device);
2203
2204 ok:
2205 list_for_each_entry(child, &device->children, node)
2206 acpi_bus_attach(child, first_pass);
2207
2208 if (!skip && device->handler && device->handler->hotplug.notify_online)
2209 device->handler->hotplug.notify_online(device);
2210 }
2211
2212 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2213 {
2214 struct acpi_device *adev;
2215
2216 adev = acpi_bus_get_acpi_device(dep->consumer);
2217 if (adev) {
2218 *(struct acpi_device **)data = adev;
2219 return 1;
2220 }
2221 /* Continue parsing if the device object is not present. */
2222 return 0;
2223 }
2224
2225 struct acpi_scan_clear_dep_work {
2226 struct work_struct work;
2227 struct acpi_device *adev;
2228 };
2229
2230 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2231 {
2232 struct acpi_scan_clear_dep_work *cdw;
2233
2234 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2235
2236 acpi_scan_lock_acquire();
2237 acpi_bus_attach(cdw->adev, true);
2238 acpi_scan_lock_release();
2239
2240 acpi_dev_put(cdw->adev);
2241 kfree(cdw);
2242 }
2243
2244 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2245 {
2246 struct acpi_scan_clear_dep_work *cdw;
2247
2248 if (adev->dep_unmet)
2249 return false;
2250
2251 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2252 if (!cdw)
2253 return false;
2254
2255 cdw->adev = adev;
2256 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2257 /*
2258 * Since the work function may block on the lock until the entire
2259 * initial enumeration of devices is complete, put it into the unbound
2260 * workqueue.
2261 */
2262 queue_work(system_unbound_wq, &cdw->work);
2263
2264 return true;
2265 }
2266
2267 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2268 {
2269 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2270
2271 if (adev) {
2272 adev->dep_unmet--;
2273 if (!acpi_scan_clear_dep_queue(adev))
2274 acpi_dev_put(adev);
2275 }
2276
2277 list_del(&dep->node);
2278 kfree(dep);
2279
2280 return 0;
2281 }
2282
2283 /**
2284 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2285 * @handle: The ACPI handle of the supplier device
2286 * @callback: Pointer to the callback function to apply
2287 * @data: Pointer to some data to pass to the callback
2288 *
2289 * The return value of the callback determines this function's behaviour. If 0
2290 * is returned we continue to iterate over acpi_dep_list. If a positive value
2291 * is returned then the loop is broken but this function returns 0. If a
2292 * negative value is returned by the callback then the loop is broken and that
2293 * value is returned as the final error.
2294 */
2295 static int acpi_walk_dep_device_list(acpi_handle handle,
2296 int (*callback)(struct acpi_dep_data *, void *),
2297 void *data)
2298 {
2299 struct acpi_dep_data *dep, *tmp;
2300 int ret = 0;
2301
2302 mutex_lock(&acpi_dep_list_lock);
2303 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2304 if (dep->supplier == handle) {
2305 ret = callback(dep, data);
2306 if (ret)
2307 break;
2308 }
2309 }
2310 mutex_unlock(&acpi_dep_list_lock);
2311
2312 return ret > 0 ? 0 : ret;
2313 }
2314
2315 /**
2316 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2317 * @supplier: Pointer to the supplier &struct acpi_device
2318 *
2319 * Clear dependencies on the given device.
2320 */
2321 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2322 {
2323 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2324 }
2325 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2326
2327 /**
2328 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2329 * @supplier: Pointer to the dependee device
2330 *
2331 * Returns the first &struct acpi_device which declares itself dependent on
2332 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2333 *
2334 * The caller is responsible for putting the reference to adev when it is no
2335 * longer needed.
2336 */
2337 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2338 {
2339 struct acpi_device *adev = NULL;
2340
2341 acpi_walk_dep_device_list(supplier->handle,
2342 acpi_dev_get_first_consumer_dev_cb, &adev);
2343
2344 return adev;
2345 }
2346 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2347
2348 /**
2349 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2350 * @handle: Root of the namespace scope to scan.
2351 *
2352 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2353 * found devices.
2354 *
2355 * If no devices were found, -ENODEV is returned, but it does not mean that
2356 * there has been a real error. There just have been no suitable ACPI objects
2357 * in the table trunk from which the kernel could create a device and add an
2358 * appropriate driver.
2359 *
2360 * Must be called under acpi_scan_lock.
2361 */
2362 int acpi_bus_scan(acpi_handle handle)
2363 {
2364 struct acpi_device *device = NULL;
2365
2366 acpi_bus_scan_second_pass = false;
2367
2368 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2369
2370 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2371 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2372 acpi_bus_check_add_1, NULL, NULL,
2373 (void **)&device);
2374
2375 if (!device)
2376 return -ENODEV;
2377
2378 acpi_bus_attach(device, true);
2379
2380 if (!acpi_bus_scan_second_pass)
2381 return 0;
2382
2383 /* Pass 2: Enumerate all of the remaining devices. */
2384
2385 device = NULL;
2386
2387 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2388 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2389 acpi_bus_check_add_2, NULL, NULL,
2390 (void **)&device);
2391
2392 acpi_bus_attach(device, false);
2393
2394 return 0;
2395 }
2396 EXPORT_SYMBOL(acpi_bus_scan);
2397
2398 /**
2399 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2400 * @adev: Root of the ACPI namespace scope to walk.
2401 *
2402 * Must be called under acpi_scan_lock.
2403 */
2404 void acpi_bus_trim(struct acpi_device *adev)
2405 {
2406 struct acpi_scan_handler *handler = adev->handler;
2407 struct acpi_device *child;
2408
2409 list_for_each_entry_reverse(child, &adev->children, node)
2410 acpi_bus_trim(child);
2411
2412 adev->flags.match_driver = false;
2413 if (handler) {
2414 if (handler->detach)
2415 handler->detach(adev);
2416
2417 adev->handler = NULL;
2418 } else {
2419 device_release_driver(&adev->dev);
2420 }
2421 /*
2422 * Most likely, the device is going away, so put it into D3cold before
2423 * that.
2424 */
2425 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2426 adev->flags.initialized = false;
2427 acpi_device_clear_enumerated(adev);
2428 }
2429 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2430
2431 int acpi_bus_register_early_device(int type)
2432 {
2433 struct acpi_device *device = NULL;
2434 int result;
2435
2436 result = acpi_add_single_object(&device, NULL, type, false);
2437 if (result)
2438 return result;
2439
2440 device->flags.match_driver = true;
2441 return device_attach(&device->dev);
2442 }
2443 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2444
2445 static int acpi_bus_scan_fixed(void)
2446 {
2447 int result = 0;
2448
2449 /*
2450 * Enumerate all fixed-feature devices.
2451 */
2452 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2453 struct acpi_device *device = NULL;
2454
2455 result = acpi_add_single_object(&device, NULL,
2456 ACPI_BUS_TYPE_POWER_BUTTON, false);
2457 if (result)
2458 return result;
2459
2460 device->flags.match_driver = true;
2461 result = device_attach(&device->dev);
2462 if (result < 0)
2463 return result;
2464
2465 device_init_wakeup(&device->dev, true);
2466 }
2467
2468 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2469 struct acpi_device *device = NULL;
2470
2471 result = acpi_add_single_object(&device, NULL,
2472 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2473 if (result)
2474 return result;
2475
2476 device->flags.match_driver = true;
2477 result = device_attach(&device->dev);
2478 }
2479
2480 return result < 0 ? result : 0;
2481 }
2482
2483 static void __init acpi_get_spcr_uart_addr(void)
2484 {
2485 acpi_status status;
2486 struct acpi_table_spcr *spcr_ptr;
2487
2488 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2489 (struct acpi_table_header **)&spcr_ptr);
2490 if (ACPI_FAILURE(status)) {
2491 pr_warn("STAO table present, but SPCR is missing\n");
2492 return;
2493 }
2494
2495 spcr_uart_addr = spcr_ptr->serial_port.address;
2496 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2497 }
2498
2499 static bool acpi_scan_initialized;
2500
2501 int __init acpi_scan_init(void)
2502 {
2503 int result;
2504 acpi_status status;
2505 struct acpi_table_stao *stao_ptr;
2506
2507 acpi_pci_root_init();
2508 acpi_pci_link_init();
2509 acpi_processor_init();
2510 acpi_platform_init();
2511 acpi_lpss_init();
2512 acpi_apd_init();
2513 acpi_cmos_rtc_init();
2514 acpi_container_init();
2515 acpi_memory_hotplug_init();
2516 acpi_watchdog_init();
2517 acpi_pnp_init();
2518 acpi_int340x_thermal_init();
2519 acpi_amba_init();
2520 acpi_init_lpit();
2521
2522 acpi_scan_add_handler(&generic_device_handler);
2523
2524 /*
2525 * If there is STAO table, check whether it needs to ignore the UART
2526 * device in SPCR table.
2527 */
2528 status = acpi_get_table(ACPI_SIG_STAO, 0,
2529 (struct acpi_table_header **)&stao_ptr);
2530 if (ACPI_SUCCESS(status)) {
2531 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2532 pr_info("STAO Name List not yet supported.\n");
2533
2534 if (stao_ptr->ignore_uart)
2535 acpi_get_spcr_uart_addr();
2536
2537 acpi_put_table((struct acpi_table_header *)stao_ptr);
2538 }
2539
2540 acpi_gpe_apply_masked_gpes();
2541 acpi_update_all_gpes();
2542
2543 /*
2544 * Although we call __add_memory() that is documented to require the
2545 * device_hotplug_lock, it is not necessary here because this is an
2546 * early code when userspace or any other code path cannot trigger
2547 * hotplug/hotunplug operations.
2548 */
2549 mutex_lock(&acpi_scan_lock);
2550 /*
2551 * Enumerate devices in the ACPI namespace.
2552 */
2553 result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2554 if (result)
2555 goto out;
2556
2557 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2558 if (result)
2559 goto out;
2560
2561 /* Fixed feature devices do not exist on HW-reduced platform */
2562 if (!acpi_gbl_reduced_hardware) {
2563 result = acpi_bus_scan_fixed();
2564 if (result) {
2565 acpi_detach_data(acpi_root->handle,
2566 acpi_scan_drop_device);
2567 acpi_device_del(acpi_root);
2568 acpi_bus_put_acpi_device(acpi_root);
2569 goto out;
2570 }
2571 }
2572
2573 acpi_turn_off_unused_power_resources();
2574
2575 acpi_scan_initialized = true;
2576
2577 out:
2578 mutex_unlock(&acpi_scan_lock);
2579 return result;
2580 }
2581
2582 static struct acpi_probe_entry *ape;
2583 static int acpi_probe_count;
2584 static DEFINE_MUTEX(acpi_probe_mutex);
2585
2586 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2587 const unsigned long end)
2588 {
2589 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2590 if (!ape->probe_subtbl(header, end))
2591 acpi_probe_count++;
2592
2593 return 0;
2594 }
2595
2596 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2597 {
2598 int count = 0;
2599
2600 if (acpi_disabled)
2601 return 0;
2602
2603 mutex_lock(&acpi_probe_mutex);
2604 for (ape = ap_head; nr; ape++, nr--) {
2605 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2606 acpi_probe_count = 0;
2607 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2608 count += acpi_probe_count;
2609 } else {
2610 int res;
2611 res = acpi_table_parse(ape->id, ape->probe_table);
2612 if (!res)
2613 count++;
2614 }
2615 }
2616 mutex_unlock(&acpi_probe_mutex);
2617
2618 return count;
2619 }
2620
2621 static void acpi_table_events_fn(struct work_struct *work)
2622 {
2623 acpi_scan_lock_acquire();
2624 acpi_bus_scan(ACPI_ROOT_OBJECT);
2625 acpi_scan_lock_release();
2626
2627 kfree(work);
2628 }
2629
2630 void acpi_scan_table_notify(void)
2631 {
2632 struct work_struct *work;
2633
2634 if (!acpi_scan_initialized)
2635 return;
2636
2637 work = kmalloc(sizeof(*work), GFP_KERNEL);
2638 if (!work)
2639 return;
2640
2641 INIT_WORK(work, acpi_table_events_fn);
2642 schedule_work(work);
2643 }
2644
2645 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2646 {
2647 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2648 }
2649 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2650
2651 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2652 {
2653 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2654 }
2655 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);