]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ata/libata-core.c
Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 *
743 * LOCKING:
744 * None.
745 *
746 * Build ATA taskfile @tf for read/write request described by
747 * @block, @n_block, @tf_flags and @tag on @dev.
748 *
749 * RETURNS:
750 *
751 * 0 on success, -ERANGE if the request is too large for @dev,
752 * -EINVAL if the request is invalid.
753 */
754 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
755 u64 block, u32 n_block, unsigned int tf_flags,
756 unsigned int tag)
757 {
758 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
759 tf->flags |= tf_flags;
760
761 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
762 /* yay, NCQ */
763 if (!lba_48_ok(block, n_block))
764 return -ERANGE;
765
766 tf->protocol = ATA_PROT_NCQ;
767 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
768
769 if (tf->flags & ATA_TFLAG_WRITE)
770 tf->command = ATA_CMD_FPDMA_WRITE;
771 else
772 tf->command = ATA_CMD_FPDMA_READ;
773
774 tf->nsect = tag << 3;
775 tf->hob_feature = (n_block >> 8) & 0xff;
776 tf->feature = n_block & 0xff;
777
778 tf->hob_lbah = (block >> 40) & 0xff;
779 tf->hob_lbam = (block >> 32) & 0xff;
780 tf->hob_lbal = (block >> 24) & 0xff;
781 tf->lbah = (block >> 16) & 0xff;
782 tf->lbam = (block >> 8) & 0xff;
783 tf->lbal = block & 0xff;
784
785 tf->device = ATA_LBA;
786 if (tf->flags & ATA_TFLAG_FUA)
787 tf->device |= 1 << 7;
788 } else if (dev->flags & ATA_DFLAG_LBA) {
789 tf->flags |= ATA_TFLAG_LBA;
790
791 if (lba_28_ok(block, n_block)) {
792 /* use LBA28 */
793 tf->device |= (block >> 24) & 0xf;
794 } else if (lba_48_ok(block, n_block)) {
795 if (!(dev->flags & ATA_DFLAG_LBA48))
796 return -ERANGE;
797
798 /* use LBA48 */
799 tf->flags |= ATA_TFLAG_LBA48;
800
801 tf->hob_nsect = (n_block >> 8) & 0xff;
802
803 tf->hob_lbah = (block >> 40) & 0xff;
804 tf->hob_lbam = (block >> 32) & 0xff;
805 tf->hob_lbal = (block >> 24) & 0xff;
806 } else
807 /* request too large even for LBA48 */
808 return -ERANGE;
809
810 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
811 return -EINVAL;
812
813 tf->nsect = n_block & 0xff;
814
815 tf->lbah = (block >> 16) & 0xff;
816 tf->lbam = (block >> 8) & 0xff;
817 tf->lbal = block & 0xff;
818
819 tf->device |= ATA_LBA;
820 } else {
821 /* CHS */
822 u32 sect, head, cyl, track;
823
824 /* The request -may- be too large for CHS addressing. */
825 if (!lba_28_ok(block, n_block))
826 return -ERANGE;
827
828 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
829 return -EINVAL;
830
831 /* Convert LBA to CHS */
832 track = (u32)block / dev->sectors;
833 cyl = track / dev->heads;
834 head = track % dev->heads;
835 sect = (u32)block % dev->sectors + 1;
836
837 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
838 (u32)block, track, cyl, head, sect);
839
840 /* Check whether the converted CHS can fit.
841 Cylinder: 0-65535
842 Head: 0-15
843 Sector: 1-255*/
844 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
845 return -ERANGE;
846
847 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
848 tf->lbal = sect;
849 tf->lbam = cyl;
850 tf->lbah = cyl >> 8;
851 tf->device |= head;
852 }
853
854 return 0;
855 }
856
857 /**
858 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
859 * @pio_mask: pio_mask
860 * @mwdma_mask: mwdma_mask
861 * @udma_mask: udma_mask
862 *
863 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
864 * unsigned int xfer_mask.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Packed xfer_mask.
871 */
872 unsigned long ata_pack_xfermask(unsigned long pio_mask,
873 unsigned long mwdma_mask,
874 unsigned long udma_mask)
875 {
876 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
877 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
878 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
879 }
880
881 /**
882 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
883 * @xfer_mask: xfer_mask to unpack
884 * @pio_mask: resulting pio_mask
885 * @mwdma_mask: resulting mwdma_mask
886 * @udma_mask: resulting udma_mask
887 *
888 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
889 * Any NULL destination masks will be ignored.
890 */
891 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
892 unsigned long *mwdma_mask, unsigned long *udma_mask)
893 {
894 if (pio_mask)
895 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
896 if (mwdma_mask)
897 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
898 if (udma_mask)
899 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
900 }
901
902 static const struct ata_xfer_ent {
903 int shift, bits;
904 u8 base;
905 } ata_xfer_tbl[] = {
906 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
907 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
908 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
909 { -1, },
910 };
911
912 /**
913 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
914 * @xfer_mask: xfer_mask of interest
915 *
916 * Return matching XFER_* value for @xfer_mask. Only the highest
917 * bit of @xfer_mask is considered.
918 *
919 * LOCKING:
920 * None.
921 *
922 * RETURNS:
923 * Matching XFER_* value, 0xff if no match found.
924 */
925 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
926 {
927 int highbit = fls(xfer_mask) - 1;
928 const struct ata_xfer_ent *ent;
929
930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
931 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
932 return ent->base + highbit - ent->shift;
933 return 0xff;
934 }
935
936 /**
937 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
938 * @xfer_mode: XFER_* of interest
939 *
940 * Return matching xfer_mask for @xfer_mode.
941 *
942 * LOCKING:
943 * None.
944 *
945 * RETURNS:
946 * Matching xfer_mask, 0 if no match found.
947 */
948 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
949 {
950 const struct ata_xfer_ent *ent;
951
952 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
953 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
954 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
955 & ~((1 << ent->shift) - 1);
956 return 0;
957 }
958
959 /**
960 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
961 * @xfer_mode: XFER_* of interest
962 *
963 * Return matching xfer_shift for @xfer_mode.
964 *
965 * LOCKING:
966 * None.
967 *
968 * RETURNS:
969 * Matching xfer_shift, -1 if no match found.
970 */
971 int ata_xfer_mode2shift(unsigned long xfer_mode)
972 {
973 const struct ata_xfer_ent *ent;
974
975 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
976 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
977 return ent->shift;
978 return -1;
979 }
980
981 /**
982 * ata_mode_string - convert xfer_mask to string
983 * @xfer_mask: mask of bits supported; only highest bit counts.
984 *
985 * Determine string which represents the highest speed
986 * (highest bit in @modemask).
987 *
988 * LOCKING:
989 * None.
990 *
991 * RETURNS:
992 * Constant C string representing highest speed listed in
993 * @mode_mask, or the constant C string "<n/a>".
994 */
995 const char *ata_mode_string(unsigned long xfer_mask)
996 {
997 static const char * const xfer_mode_str[] = {
998 "PIO0",
999 "PIO1",
1000 "PIO2",
1001 "PIO3",
1002 "PIO4",
1003 "PIO5",
1004 "PIO6",
1005 "MWDMA0",
1006 "MWDMA1",
1007 "MWDMA2",
1008 "MWDMA3",
1009 "MWDMA4",
1010 "UDMA/16",
1011 "UDMA/25",
1012 "UDMA/33",
1013 "UDMA/44",
1014 "UDMA/66",
1015 "UDMA/100",
1016 "UDMA/133",
1017 "UDMA7",
1018 };
1019 int highbit;
1020
1021 highbit = fls(xfer_mask) - 1;
1022 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1023 return xfer_mode_str[highbit];
1024 return "<n/a>";
1025 }
1026
1027 const char *sata_spd_string(unsigned int spd)
1028 {
1029 static const char * const spd_str[] = {
1030 "1.5 Gbps",
1031 "3.0 Gbps",
1032 "6.0 Gbps",
1033 };
1034
1035 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1036 return "<unknown>";
1037 return spd_str[spd - 1];
1038 }
1039
1040 /**
1041 * ata_dev_classify - determine device type based on ATA-spec signature
1042 * @tf: ATA taskfile register set for device to be identified
1043 *
1044 * Determine from taskfile register contents whether a device is
1045 * ATA or ATAPI, as per "Signature and persistence" section
1046 * of ATA/PI spec (volume 1, sect 5.14).
1047 *
1048 * LOCKING:
1049 * None.
1050 *
1051 * RETURNS:
1052 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1053 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1054 */
1055 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1056 {
1057 /* Apple's open source Darwin code hints that some devices only
1058 * put a proper signature into the LBA mid/high registers,
1059 * So, we only check those. It's sufficient for uniqueness.
1060 *
1061 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1062 * signatures for ATA and ATAPI devices attached on SerialATA,
1063 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1064 * spec has never mentioned about using different signatures
1065 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1066 * Multiplier specification began to use 0x69/0x96 to identify
1067 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1068 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1069 * 0x69/0x96 shortly and described them as reserved for
1070 * SerialATA.
1071 *
1072 * We follow the current spec and consider that 0x69/0x96
1073 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1074 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1075 * SEMB signature. This is worked around in
1076 * ata_dev_read_id().
1077 */
1078 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1079 DPRINTK("found ATA device by sig\n");
1080 return ATA_DEV_ATA;
1081 }
1082
1083 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1084 DPRINTK("found ATAPI device by sig\n");
1085 return ATA_DEV_ATAPI;
1086 }
1087
1088 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1089 DPRINTK("found PMP device by sig\n");
1090 return ATA_DEV_PMP;
1091 }
1092
1093 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1094 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1095 return ATA_DEV_SEMB;
1096 }
1097
1098 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1099 DPRINTK("found ZAC device by sig\n");
1100 return ATA_DEV_ZAC;
1101 }
1102
1103 DPRINTK("unknown device\n");
1104 return ATA_DEV_UNKNOWN;
1105 }
1106
1107 /**
1108 * ata_id_string - Convert IDENTIFY DEVICE page into string
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an even number.
1113 *
1114 * The strings in the IDENTIFY DEVICE page are broken up into
1115 * 16-bit chunks. Run through the string, and output each
1116 * 8-bit chunk linearly, regardless of platform.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
1121
1122 void ata_id_string(const u16 *id, unsigned char *s,
1123 unsigned int ofs, unsigned int len)
1124 {
1125 unsigned int c;
1126
1127 BUG_ON(len & 1);
1128
1129 while (len > 0) {
1130 c = id[ofs] >> 8;
1131 *s = c;
1132 s++;
1133
1134 c = id[ofs] & 0xff;
1135 *s = c;
1136 s++;
1137
1138 ofs++;
1139 len -= 2;
1140 }
1141 }
1142
1143 /**
1144 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1145 * @id: IDENTIFY DEVICE results we will examine
1146 * @s: string into which data is output
1147 * @ofs: offset into identify device page
1148 * @len: length of string to return. must be an odd number.
1149 *
1150 * This function is identical to ata_id_string except that it
1151 * trims trailing spaces and terminates the resulting string with
1152 * null. @len must be actual maximum length (even number) + 1.
1153 *
1154 * LOCKING:
1155 * caller.
1156 */
1157 void ata_id_c_string(const u16 *id, unsigned char *s,
1158 unsigned int ofs, unsigned int len)
1159 {
1160 unsigned char *p;
1161
1162 ata_id_string(id, s, ofs, len - 1);
1163
1164 p = s + strnlen(s, len - 1);
1165 while (p > s && p[-1] == ' ')
1166 p--;
1167 *p = '\0';
1168 }
1169
1170 static u64 ata_id_n_sectors(const u16 *id)
1171 {
1172 if (ata_id_has_lba(id)) {
1173 if (ata_id_has_lba48(id))
1174 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1175 else
1176 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1177 } else {
1178 if (ata_id_current_chs_valid(id))
1179 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1180 id[ATA_ID_CUR_SECTORS];
1181 else
1182 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1183 id[ATA_ID_SECTORS];
1184 }
1185 }
1186
1187 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1188 {
1189 u64 sectors = 0;
1190
1191 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1192 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1193 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199 }
1200
1201 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1202 {
1203 u64 sectors = 0;
1204
1205 sectors |= (tf->device & 0x0f) << 24;
1206 sectors |= (tf->lbah & 0xff) << 16;
1207 sectors |= (tf->lbam & 0xff) << 8;
1208 sectors |= (tf->lbal & 0xff);
1209
1210 return sectors;
1211 }
1212
1213 /**
1214 * ata_read_native_max_address - Read native max address
1215 * @dev: target device
1216 * @max_sectors: out parameter for the result native max address
1217 *
1218 * Perform an LBA48 or LBA28 native size query upon the device in
1219 * question.
1220 *
1221 * RETURNS:
1222 * 0 on success, -EACCES if command is aborted by the drive.
1223 * -EIO on other errors.
1224 */
1225 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1226 {
1227 unsigned int err_mask;
1228 struct ata_taskfile tf;
1229 int lba48 = ata_id_has_lba48(dev->id);
1230
1231 ata_tf_init(dev, &tf);
1232
1233 /* always clear all address registers */
1234 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1235
1236 if (lba48) {
1237 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1238 tf.flags |= ATA_TFLAG_LBA48;
1239 } else
1240 tf.command = ATA_CMD_READ_NATIVE_MAX;
1241
1242 tf.protocol = ATA_PROT_NODATA;
1243 tf.device |= ATA_LBA;
1244
1245 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1246 if (err_mask) {
1247 ata_dev_warn(dev,
1248 "failed to read native max address (err_mask=0x%x)\n",
1249 err_mask);
1250 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1251 return -EACCES;
1252 return -EIO;
1253 }
1254
1255 if (lba48)
1256 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1257 else
1258 *max_sectors = ata_tf_to_lba(&tf) + 1;
1259 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1260 (*max_sectors)--;
1261 return 0;
1262 }
1263
1264 /**
1265 * ata_set_max_sectors - Set max sectors
1266 * @dev: target device
1267 * @new_sectors: new max sectors value to set for the device
1268 *
1269 * Set max sectors of @dev to @new_sectors.
1270 *
1271 * RETURNS:
1272 * 0 on success, -EACCES if command is aborted or denied (due to
1273 * previous non-volatile SET_MAX) by the drive. -EIO on other
1274 * errors.
1275 */
1276 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1277 {
1278 unsigned int err_mask;
1279 struct ata_taskfile tf;
1280 int lba48 = ata_id_has_lba48(dev->id);
1281
1282 new_sectors--;
1283
1284 ata_tf_init(dev, &tf);
1285
1286 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1287
1288 if (lba48) {
1289 tf.command = ATA_CMD_SET_MAX_EXT;
1290 tf.flags |= ATA_TFLAG_LBA48;
1291
1292 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1293 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1294 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1295 } else {
1296 tf.command = ATA_CMD_SET_MAX;
1297
1298 tf.device |= (new_sectors >> 24) & 0xf;
1299 }
1300
1301 tf.protocol = ATA_PROT_NODATA;
1302 tf.device |= ATA_LBA;
1303
1304 tf.lbal = (new_sectors >> 0) & 0xff;
1305 tf.lbam = (new_sectors >> 8) & 0xff;
1306 tf.lbah = (new_sectors >> 16) & 0xff;
1307
1308 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1309 if (err_mask) {
1310 ata_dev_warn(dev,
1311 "failed to set max address (err_mask=0x%x)\n",
1312 err_mask);
1313 if (err_mask == AC_ERR_DEV &&
1314 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1315 return -EACCES;
1316 return -EIO;
1317 }
1318
1319 return 0;
1320 }
1321
1322 /**
1323 * ata_hpa_resize - Resize a device with an HPA set
1324 * @dev: Device to resize
1325 *
1326 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1327 * it if required to the full size of the media. The caller must check
1328 * the drive has the HPA feature set enabled.
1329 *
1330 * RETURNS:
1331 * 0 on success, -errno on failure.
1332 */
1333 static int ata_hpa_resize(struct ata_device *dev)
1334 {
1335 struct ata_eh_context *ehc = &dev->link->eh_context;
1336 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1337 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1338 u64 sectors = ata_id_n_sectors(dev->id);
1339 u64 native_sectors;
1340 int rc;
1341
1342 /* do we need to do it? */
1343 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1344 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1345 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1346 return 0;
1347
1348 /* read native max address */
1349 rc = ata_read_native_max_address(dev, &native_sectors);
1350 if (rc) {
1351 /* If device aborted the command or HPA isn't going to
1352 * be unlocked, skip HPA resizing.
1353 */
1354 if (rc == -EACCES || !unlock_hpa) {
1355 ata_dev_warn(dev,
1356 "HPA support seems broken, skipping HPA handling\n");
1357 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1358
1359 /* we can continue if device aborted the command */
1360 if (rc == -EACCES)
1361 rc = 0;
1362 }
1363
1364 return rc;
1365 }
1366 dev->n_native_sectors = native_sectors;
1367
1368 /* nothing to do? */
1369 if (native_sectors <= sectors || !unlock_hpa) {
1370 if (!print_info || native_sectors == sectors)
1371 return 0;
1372
1373 if (native_sectors > sectors)
1374 ata_dev_info(dev,
1375 "HPA detected: current %llu, native %llu\n",
1376 (unsigned long long)sectors,
1377 (unsigned long long)native_sectors);
1378 else if (native_sectors < sectors)
1379 ata_dev_warn(dev,
1380 "native sectors (%llu) is smaller than sectors (%llu)\n",
1381 (unsigned long long)native_sectors,
1382 (unsigned long long)sectors);
1383 return 0;
1384 }
1385
1386 /* let's unlock HPA */
1387 rc = ata_set_max_sectors(dev, native_sectors);
1388 if (rc == -EACCES) {
1389 /* if device aborted the command, skip HPA resizing */
1390 ata_dev_warn(dev,
1391 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1392 (unsigned long long)sectors,
1393 (unsigned long long)native_sectors);
1394 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1395 return 0;
1396 } else if (rc)
1397 return rc;
1398
1399 /* re-read IDENTIFY data */
1400 rc = ata_dev_reread_id(dev, 0);
1401 if (rc) {
1402 ata_dev_err(dev,
1403 "failed to re-read IDENTIFY data after HPA resizing\n");
1404 return rc;
1405 }
1406
1407 if (print_info) {
1408 u64 new_sectors = ata_id_n_sectors(dev->id);
1409 ata_dev_info(dev,
1410 "HPA unlocked: %llu -> %llu, native %llu\n",
1411 (unsigned long long)sectors,
1412 (unsigned long long)new_sectors,
1413 (unsigned long long)native_sectors);
1414 }
1415
1416 return 0;
1417 }
1418
1419 /**
1420 * ata_dump_id - IDENTIFY DEVICE info debugging output
1421 * @id: IDENTIFY DEVICE page to dump
1422 *
1423 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1424 * page.
1425 *
1426 * LOCKING:
1427 * caller.
1428 */
1429
1430 static inline void ata_dump_id(const u16 *id)
1431 {
1432 DPRINTK("49==0x%04x "
1433 "53==0x%04x "
1434 "63==0x%04x "
1435 "64==0x%04x "
1436 "75==0x%04x \n",
1437 id[49],
1438 id[53],
1439 id[63],
1440 id[64],
1441 id[75]);
1442 DPRINTK("80==0x%04x "
1443 "81==0x%04x "
1444 "82==0x%04x "
1445 "83==0x%04x "
1446 "84==0x%04x \n",
1447 id[80],
1448 id[81],
1449 id[82],
1450 id[83],
1451 id[84]);
1452 DPRINTK("88==0x%04x "
1453 "93==0x%04x\n",
1454 id[88],
1455 id[93]);
1456 }
1457
1458 /**
1459 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1460 * @id: IDENTIFY data to compute xfer mask from
1461 *
1462 * Compute the xfermask for this device. This is not as trivial
1463 * as it seems if we must consider early devices correctly.
1464 *
1465 * FIXME: pre IDE drive timing (do we care ?).
1466 *
1467 * LOCKING:
1468 * None.
1469 *
1470 * RETURNS:
1471 * Computed xfermask
1472 */
1473 unsigned long ata_id_xfermask(const u16 *id)
1474 {
1475 unsigned long pio_mask, mwdma_mask, udma_mask;
1476
1477 /* Usual case. Word 53 indicates word 64 is valid */
1478 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1479 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1480 pio_mask <<= 3;
1481 pio_mask |= 0x7;
1482 } else {
1483 /* If word 64 isn't valid then Word 51 high byte holds
1484 * the PIO timing number for the maximum. Turn it into
1485 * a mask.
1486 */
1487 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1488 if (mode < 5) /* Valid PIO range */
1489 pio_mask = (2 << mode) - 1;
1490 else
1491 pio_mask = 1;
1492
1493 /* But wait.. there's more. Design your standards by
1494 * committee and you too can get a free iordy field to
1495 * process. However its the speeds not the modes that
1496 * are supported... Note drivers using the timing API
1497 * will get this right anyway
1498 */
1499 }
1500
1501 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1502
1503 if (ata_id_is_cfa(id)) {
1504 /*
1505 * Process compact flash extended modes
1506 */
1507 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1508 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1509
1510 if (pio)
1511 pio_mask |= (1 << 5);
1512 if (pio > 1)
1513 pio_mask |= (1 << 6);
1514 if (dma)
1515 mwdma_mask |= (1 << 3);
1516 if (dma > 1)
1517 mwdma_mask |= (1 << 4);
1518 }
1519
1520 udma_mask = 0;
1521 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1522 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1523
1524 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1525 }
1526
1527 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1528 {
1529 struct completion *waiting = qc->private_data;
1530
1531 complete(waiting);
1532 }
1533
1534 /**
1535 * ata_exec_internal_sg - execute libata internal command
1536 * @dev: Device to which the command is sent
1537 * @tf: Taskfile registers for the command and the result
1538 * @cdb: CDB for packet command
1539 * @dma_dir: Data transfer direction of the command
1540 * @sgl: sg list for the data buffer of the command
1541 * @n_elem: Number of sg entries
1542 * @timeout: Timeout in msecs (0 for default)
1543 *
1544 * Executes libata internal command with timeout. @tf contains
1545 * command on entry and result on return. Timeout and error
1546 * conditions are reported via return value. No recovery action
1547 * is taken after a command times out. It's caller's duty to
1548 * clean up after timeout.
1549 *
1550 * LOCKING:
1551 * None. Should be called with kernel context, might sleep.
1552 *
1553 * RETURNS:
1554 * Zero on success, AC_ERR_* mask on failure
1555 */
1556 unsigned ata_exec_internal_sg(struct ata_device *dev,
1557 struct ata_taskfile *tf, const u8 *cdb,
1558 int dma_dir, struct scatterlist *sgl,
1559 unsigned int n_elem, unsigned long timeout)
1560 {
1561 struct ata_link *link = dev->link;
1562 struct ata_port *ap = link->ap;
1563 u8 command = tf->command;
1564 int auto_timeout = 0;
1565 struct ata_queued_cmd *qc;
1566 unsigned int tag, preempted_tag;
1567 u32 preempted_sactive, preempted_qc_active;
1568 int preempted_nr_active_links;
1569 DECLARE_COMPLETION_ONSTACK(wait);
1570 unsigned long flags;
1571 unsigned int err_mask;
1572 int rc;
1573
1574 spin_lock_irqsave(ap->lock, flags);
1575
1576 /* no internal command while frozen */
1577 if (ap->pflags & ATA_PFLAG_FROZEN) {
1578 spin_unlock_irqrestore(ap->lock, flags);
1579 return AC_ERR_SYSTEM;
1580 }
1581
1582 /* initialize internal qc */
1583
1584 /* XXX: Tag 0 is used for drivers with legacy EH as some
1585 * drivers choke if any other tag is given. This breaks
1586 * ata_tag_internal() test for those drivers. Don't use new
1587 * EH stuff without converting to it.
1588 */
1589 if (ap->ops->error_handler)
1590 tag = ATA_TAG_INTERNAL;
1591 else
1592 tag = 0;
1593
1594 qc = __ata_qc_from_tag(ap, tag);
1595
1596 qc->tag = tag;
1597 qc->scsicmd = NULL;
1598 qc->ap = ap;
1599 qc->dev = dev;
1600 ata_qc_reinit(qc);
1601
1602 preempted_tag = link->active_tag;
1603 preempted_sactive = link->sactive;
1604 preempted_qc_active = ap->qc_active;
1605 preempted_nr_active_links = ap->nr_active_links;
1606 link->active_tag = ATA_TAG_POISON;
1607 link->sactive = 0;
1608 ap->qc_active = 0;
1609 ap->nr_active_links = 0;
1610
1611 /* prepare & issue qc */
1612 qc->tf = *tf;
1613 if (cdb)
1614 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1615
1616 /* some SATA bridges need us to indicate data xfer direction */
1617 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1618 dma_dir == DMA_FROM_DEVICE)
1619 qc->tf.feature |= ATAPI_DMADIR;
1620
1621 qc->flags |= ATA_QCFLAG_RESULT_TF;
1622 qc->dma_dir = dma_dir;
1623 if (dma_dir != DMA_NONE) {
1624 unsigned int i, buflen = 0;
1625 struct scatterlist *sg;
1626
1627 for_each_sg(sgl, sg, n_elem, i)
1628 buflen += sg->length;
1629
1630 ata_sg_init(qc, sgl, n_elem);
1631 qc->nbytes = buflen;
1632 }
1633
1634 qc->private_data = &wait;
1635 qc->complete_fn = ata_qc_complete_internal;
1636
1637 ata_qc_issue(qc);
1638
1639 spin_unlock_irqrestore(ap->lock, flags);
1640
1641 if (!timeout) {
1642 if (ata_probe_timeout)
1643 timeout = ata_probe_timeout * 1000;
1644 else {
1645 timeout = ata_internal_cmd_timeout(dev, command);
1646 auto_timeout = 1;
1647 }
1648 }
1649
1650 if (ap->ops->error_handler)
1651 ata_eh_release(ap);
1652
1653 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1654
1655 if (ap->ops->error_handler)
1656 ata_eh_acquire(ap);
1657
1658 ata_sff_flush_pio_task(ap);
1659
1660 if (!rc) {
1661 spin_lock_irqsave(ap->lock, flags);
1662
1663 /* We're racing with irq here. If we lose, the
1664 * following test prevents us from completing the qc
1665 * twice. If we win, the port is frozen and will be
1666 * cleaned up by ->post_internal_cmd().
1667 */
1668 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1669 qc->err_mask |= AC_ERR_TIMEOUT;
1670
1671 if (ap->ops->error_handler)
1672 ata_port_freeze(ap);
1673 else
1674 ata_qc_complete(qc);
1675
1676 if (ata_msg_warn(ap))
1677 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1678 command);
1679 }
1680
1681 spin_unlock_irqrestore(ap->lock, flags);
1682 }
1683
1684 /* do post_internal_cmd */
1685 if (ap->ops->post_internal_cmd)
1686 ap->ops->post_internal_cmd(qc);
1687
1688 /* perform minimal error analysis */
1689 if (qc->flags & ATA_QCFLAG_FAILED) {
1690 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1691 qc->err_mask |= AC_ERR_DEV;
1692
1693 if (!qc->err_mask)
1694 qc->err_mask |= AC_ERR_OTHER;
1695
1696 if (qc->err_mask & ~AC_ERR_OTHER)
1697 qc->err_mask &= ~AC_ERR_OTHER;
1698 }
1699
1700 /* finish up */
1701 spin_lock_irqsave(ap->lock, flags);
1702
1703 *tf = qc->result_tf;
1704 err_mask = qc->err_mask;
1705
1706 ata_qc_free(qc);
1707 link->active_tag = preempted_tag;
1708 link->sactive = preempted_sactive;
1709 ap->qc_active = preempted_qc_active;
1710 ap->nr_active_links = preempted_nr_active_links;
1711
1712 spin_unlock_irqrestore(ap->lock, flags);
1713
1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1715 ata_internal_cmd_timed_out(dev, command);
1716
1717 return err_mask;
1718 }
1719
1720 /**
1721 * ata_exec_internal - execute libata internal command
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
1725 * @dma_dir: Data transfer direction of the command
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
1728 * @timeout: Timeout in msecs (0 for default)
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
1739 unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
1743 {
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
1746
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
1753
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
1756 }
1757
1758 /**
1759 * ata_pio_need_iordy - check if iordy needed
1760 * @adev: ATA device
1761 *
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1764 */
1765 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1766 {
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1770 */
1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1772 return 0;
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1775 */
1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1777 return 0;
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev->id)
1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1781 return 0;
1782 /* PIO3 and higher it is mandatory */
1783 if (adev->pio_mode > XFER_PIO_2)
1784 return 1;
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev->id))
1787 return 1;
1788 return 0;
1789 }
1790
1791 /**
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1793 * @adev: ATA device
1794 *
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1797 */
1798 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1799 {
1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1802 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1803 /* Is the speed faster than the drive allows non IORDY ? */
1804 if (pio) {
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio > 240) /* PIO2 is 240nS per cycle */
1807 return 3 << ATA_SHIFT_PIO;
1808 return 7 << ATA_SHIFT_PIO;
1809 }
1810 }
1811 return 3 << ATA_SHIFT_PIO;
1812 }
1813
1814 /**
1815 * ata_do_dev_read_id - default ID read method
1816 * @dev: device
1817 * @tf: proposed taskfile
1818 * @id: data buffer
1819 *
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1823 */
1824 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1825 struct ata_taskfile *tf, u16 *id)
1826 {
1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1829 }
1830
1831 /**
1832 * ata_dev_read_id - Read ID data from the specified device
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
1835 * @flags: ATA_READID_* flags
1836 * @id: buffer to read IDENTIFY data into
1837 *
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1842 *
1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1844 * now we abort if we hit that case.
1845 *
1846 * LOCKING:
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1851 */
1852 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1853 unsigned int flags, u16 *id)
1854 {
1855 struct ata_port *ap = dev->link->ap;
1856 unsigned int class = *p_class;
1857 struct ata_taskfile tf;
1858 unsigned int err_mask = 0;
1859 const char *reason;
1860 bool is_semb = class == ATA_DEV_SEMB;
1861 int may_fallback = 1, tried_spinup = 0;
1862 int rc;
1863
1864 if (ata_msg_ctl(ap))
1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1866
1867 retry:
1868 ata_tf_init(dev, &tf);
1869
1870 switch (class) {
1871 case ATA_DEV_SEMB:
1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1873 case ATA_DEV_ATA:
1874 case ATA_DEV_ZAC:
1875 tf.command = ATA_CMD_ID_ATA;
1876 break;
1877 case ATA_DEV_ATAPI:
1878 tf.command = ATA_CMD_ID_ATAPI;
1879 break;
1880 default:
1881 rc = -ENODEV;
1882 reason = "unsupported class";
1883 goto err_out;
1884 }
1885
1886 tf.protocol = ATA_PROT_PIO;
1887
1888 /* Some devices choke if TF registers contain garbage. Make
1889 * sure those are properly initialized.
1890 */
1891 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1892
1893 /* Device presence detection is unreliable on some
1894 * controllers. Always poll IDENTIFY if available.
1895 */
1896 tf.flags |= ATA_TFLAG_POLLING;
1897
1898 if (ap->ops->read_id)
1899 err_mask = ap->ops->read_id(dev, &tf, id);
1900 else
1901 err_mask = ata_do_dev_read_id(dev, &tf, id);
1902
1903 if (err_mask) {
1904 if (err_mask & AC_ERR_NODEV_HINT) {
1905 ata_dev_dbg(dev, "NODEV after polling detection\n");
1906 return -ENOENT;
1907 }
1908
1909 if (is_semb) {
1910 ata_dev_info(dev,
1911 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1912 /* SEMB is not supported yet */
1913 *p_class = ATA_DEV_SEMB_UNSUP;
1914 return 0;
1915 }
1916
1917 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1918 /* Device or controller might have reported
1919 * the wrong device class. Give a shot at the
1920 * other IDENTIFY if the current one is
1921 * aborted by the device.
1922 */
1923 if (may_fallback) {
1924 may_fallback = 0;
1925
1926 if (class == ATA_DEV_ATA)
1927 class = ATA_DEV_ATAPI;
1928 else
1929 class = ATA_DEV_ATA;
1930 goto retry;
1931 }
1932
1933 /* Control reaches here iff the device aborted
1934 * both flavors of IDENTIFYs which happens
1935 * sometimes with phantom devices.
1936 */
1937 ata_dev_dbg(dev,
1938 "both IDENTIFYs aborted, assuming NODEV\n");
1939 return -ENOENT;
1940 }
1941
1942 rc = -EIO;
1943 reason = "I/O error";
1944 goto err_out;
1945 }
1946
1947 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1948 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1949 "class=%d may_fallback=%d tried_spinup=%d\n",
1950 class, may_fallback, tried_spinup);
1951 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1952 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1953 }
1954
1955 /* Falling back doesn't make sense if ID data was read
1956 * successfully at least once.
1957 */
1958 may_fallback = 0;
1959
1960 swap_buf_le16(id, ATA_ID_WORDS);
1961
1962 /* sanity check */
1963 rc = -EINVAL;
1964 reason = "device reports invalid type";
1965
1966 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1967 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1968 goto err_out;
1969 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1970 ata_id_is_ata(id)) {
1971 ata_dev_dbg(dev,
1972 "host indicates ignore ATA devices, ignored\n");
1973 return -ENOENT;
1974 }
1975 } else {
1976 if (ata_id_is_ata(id))
1977 goto err_out;
1978 }
1979
1980 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 tried_spinup = 1;
1982 /*
1983 * Drive powered-up in standby mode, and requires a specific
1984 * SET_FEATURES spin-up subcommand before it will accept
1985 * anything other than the original IDENTIFY command.
1986 */
1987 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1988 if (err_mask && id[2] != 0x738c) {
1989 rc = -EIO;
1990 reason = "SPINUP failed";
1991 goto err_out;
1992 }
1993 /*
1994 * If the drive initially returned incomplete IDENTIFY info,
1995 * we now must reissue the IDENTIFY command.
1996 */
1997 if (id[2] == 0x37c8)
1998 goto retry;
1999 }
2000
2001 if ((flags & ATA_READID_POSTRESET) &&
2002 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * should never trigger.
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
2025 flags &= ~ATA_READID_POSTRESET;
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
2031
2032 return 0;
2033
2034 err_out:
2035 if (ata_msg_warn(ap))
2036 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2037 reason, err_mask);
2038 return rc;
2039 }
2040
2041 static int ata_do_link_spd_horkage(struct ata_device *dev)
2042 {
2043 struct ata_link *plink = ata_dev_phys_link(dev);
2044 u32 target, target_limit;
2045
2046 if (!sata_scr_valid(plink))
2047 return 0;
2048
2049 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2050 target = 1;
2051 else
2052 return 0;
2053
2054 target_limit = (1 << target) - 1;
2055
2056 /* if already on stricter limit, no need to push further */
2057 if (plink->sata_spd_limit <= target_limit)
2058 return 0;
2059
2060 plink->sata_spd_limit = target_limit;
2061
2062 /* Request another EH round by returning -EAGAIN if link is
2063 * going faster than the target speed. Forward progress is
2064 * guaranteed by setting sata_spd_limit to target_limit above.
2065 */
2066 if (plink->sata_spd > target) {
2067 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2068 sata_spd_string(target));
2069 return -EAGAIN;
2070 }
2071 return 0;
2072 }
2073
2074 static inline u8 ata_dev_knobble(struct ata_device *dev)
2075 {
2076 struct ata_port *ap = dev->link->ap;
2077
2078 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2079 return 0;
2080
2081 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2082 }
2083
2084 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2085 {
2086 struct ata_port *ap = dev->link->ap;
2087 unsigned int err_mask;
2088 int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2089 u16 log_pages;
2090
2091 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2092 0, ap->sector_buf, 1);
2093 if (err_mask) {
2094 ata_dev_dbg(dev,
2095 "failed to get Log Directory Emask 0x%x\n",
2096 err_mask);
2097 return;
2098 }
2099 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2100 if (!log_pages) {
2101 ata_dev_warn(dev,
2102 "NCQ Send/Recv Log not supported\n");
2103 return;
2104 }
2105 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2106 0, ap->sector_buf, 1);
2107 if (err_mask) {
2108 ata_dev_dbg(dev,
2109 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2110 err_mask);
2111 } else {
2112 u8 *cmds = dev->ncq_send_recv_cmds;
2113
2114 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2115 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2116
2117 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2118 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2119 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2120 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2121 }
2122 }
2123 }
2124
2125 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2126 {
2127 struct ata_port *ap = dev->link->ap;
2128 unsigned int err_mask;
2129 int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2130 u16 log_pages;
2131
2132 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2133 0, ap->sector_buf, 1);
2134 if (err_mask) {
2135 ata_dev_dbg(dev,
2136 "failed to get Log Directory Emask 0x%x\n",
2137 err_mask);
2138 return;
2139 }
2140 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2141 if (!log_pages) {
2142 ata_dev_warn(dev,
2143 "NCQ Send/Recv Log not supported\n");
2144 return;
2145 }
2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2147 0, ap->sector_buf, 1);
2148 if (err_mask) {
2149 ata_dev_dbg(dev,
2150 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2151 err_mask);
2152 } else {
2153 u8 *cmds = dev->ncq_non_data_cmds;
2154
2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2156 }
2157 }
2158
2159 static int ata_dev_config_ncq(struct ata_device *dev,
2160 char *desc, size_t desc_sz)
2161 {
2162 struct ata_port *ap = dev->link->ap;
2163 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2164 unsigned int err_mask;
2165 char *aa_desc = "";
2166
2167 if (!ata_id_has_ncq(dev->id)) {
2168 desc[0] = '\0';
2169 return 0;
2170 }
2171 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2172 snprintf(desc, desc_sz, "NCQ (not used)");
2173 return 0;
2174 }
2175 if (ap->flags & ATA_FLAG_NCQ) {
2176 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2177 dev->flags |= ATA_DFLAG_NCQ;
2178 }
2179
2180 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2181 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2182 ata_id_has_fpdma_aa(dev->id)) {
2183 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2184 SATA_FPDMA_AA);
2185 if (err_mask) {
2186 ata_dev_err(dev,
2187 "failed to enable AA (error_mask=0x%x)\n",
2188 err_mask);
2189 if (err_mask != AC_ERR_DEV) {
2190 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2191 return -EIO;
2192 }
2193 } else
2194 aa_desc = ", AA";
2195 }
2196
2197 if (hdepth >= ddepth)
2198 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2199 else
2200 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2201 ddepth, aa_desc);
2202
2203 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2204 if (ata_id_has_ncq_send_and_recv(dev->id))
2205 ata_dev_config_ncq_send_recv(dev);
2206 if (ata_id_has_ncq_non_data(dev->id))
2207 ata_dev_config_ncq_non_data(dev);
2208 }
2209
2210 return 0;
2211 }
2212
2213 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2214 {
2215 unsigned int err_mask;
2216
2217 if (!ata_id_has_sense_reporting(dev->id))
2218 return;
2219
2220 if (ata_id_sense_reporting_enabled(dev->id))
2221 return;
2222
2223 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2224 if (err_mask) {
2225 ata_dev_dbg(dev,
2226 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2227 err_mask);
2228 }
2229 }
2230
2231 static void ata_dev_config_zac(struct ata_device *dev)
2232 {
2233 struct ata_port *ap = dev->link->ap;
2234 unsigned int err_mask;
2235 u8 *identify_buf = ap->sector_buf;
2236 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2237 u16 log_pages;
2238
2239 dev->zac_zones_optimal_open = U32_MAX;
2240 dev->zac_zones_optimal_nonseq = U32_MAX;
2241 dev->zac_zones_max_open = U32_MAX;
2242
2243 /*
2244 * Always set the 'ZAC' flag for Host-managed devices.
2245 */
2246 if (dev->class == ATA_DEV_ZAC)
2247 dev->flags |= ATA_DFLAG_ZAC;
2248 else if (ata_id_zoned_cap(dev->id) == 0x01)
2249 /*
2250 * Check for host-aware devices.
2251 */
2252 dev->flags |= ATA_DFLAG_ZAC;
2253
2254 if (!(dev->flags & ATA_DFLAG_ZAC))
2255 return;
2256
2257 /*
2258 * Read Log Directory to figure out if IDENTIFY DEVICE log
2259 * is supported.
2260 */
2261 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2262 0, ap->sector_buf, 1);
2263 if (err_mask) {
2264 ata_dev_info(dev,
2265 "failed to get Log Directory Emask 0x%x\n",
2266 err_mask);
2267 return;
2268 }
2269 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2270 if (log_pages == 0) {
2271 ata_dev_warn(dev,
2272 "ATA Identify Device Log not supported\n");
2273 return;
2274 }
2275 /*
2276 * Read IDENTIFY DEVICE data log, page 0, to figure out
2277 * if page 9 is supported.
2278 */
2279 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2280 identify_buf, 1);
2281 if (err_mask) {
2282 ata_dev_info(dev,
2283 "failed to get Device Identify Log Emask 0x%x\n",
2284 err_mask);
2285 return;
2286 }
2287 log_pages = identify_buf[8];
2288 for (i = 0; i < log_pages; i++) {
2289 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2290 found++;
2291 break;
2292 }
2293 }
2294 if (!found) {
2295 ata_dev_warn(dev,
2296 "ATA Zoned Information Log not supported\n");
2297 return;
2298 }
2299
2300 /*
2301 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2302 */
2303 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2304 ATA_LOG_ZONED_INFORMATION,
2305 identify_buf, 1);
2306 if (!err_mask) {
2307 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2308
2309 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2310 if ((zoned_cap >> 63))
2311 dev->zac_zoned_cap = (zoned_cap & 1);
2312 opt_open = get_unaligned_le64(&identify_buf[24]);
2313 if ((opt_open >> 63))
2314 dev->zac_zones_optimal_open = (u32)opt_open;
2315 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2316 if ((opt_nonseq >> 63))
2317 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2318 max_open = get_unaligned_le64(&identify_buf[40]);
2319 if ((max_open >> 63))
2320 dev->zac_zones_max_open = (u32)max_open;
2321 }
2322 }
2323
2324 /**
2325 * ata_dev_configure - Configure the specified ATA/ATAPI device
2326 * @dev: Target device to configure
2327 *
2328 * Configure @dev according to @dev->id. Generic and low-level
2329 * driver specific fixups are also applied.
2330 *
2331 * LOCKING:
2332 * Kernel thread context (may sleep)
2333 *
2334 * RETURNS:
2335 * 0 on success, -errno otherwise
2336 */
2337 int ata_dev_configure(struct ata_device *dev)
2338 {
2339 struct ata_port *ap = dev->link->ap;
2340 struct ata_eh_context *ehc = &dev->link->eh_context;
2341 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2342 const u16 *id = dev->id;
2343 unsigned long xfer_mask;
2344 unsigned int err_mask;
2345 char revbuf[7]; /* XYZ-99\0 */
2346 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2347 char modelbuf[ATA_ID_PROD_LEN+1];
2348 int rc;
2349
2350 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2351 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2352 return 0;
2353 }
2354
2355 if (ata_msg_probe(ap))
2356 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2357
2358 /* set horkage */
2359 dev->horkage |= ata_dev_blacklisted(dev);
2360 ata_force_horkage(dev);
2361
2362 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2363 ata_dev_info(dev, "unsupported device, disabling\n");
2364 ata_dev_disable(dev);
2365 return 0;
2366 }
2367
2368 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2369 dev->class == ATA_DEV_ATAPI) {
2370 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2371 atapi_enabled ? "not supported with this driver"
2372 : "disabled");
2373 ata_dev_disable(dev);
2374 return 0;
2375 }
2376
2377 rc = ata_do_link_spd_horkage(dev);
2378 if (rc)
2379 return rc;
2380
2381 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2382 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2383 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2384 dev->horkage |= ATA_HORKAGE_NOLPM;
2385
2386 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2387 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2388 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2389 }
2390
2391 /* let ACPI work its magic */
2392 rc = ata_acpi_on_devcfg(dev);
2393 if (rc)
2394 return rc;
2395
2396 /* massage HPA, do it early as it might change IDENTIFY data */
2397 rc = ata_hpa_resize(dev);
2398 if (rc)
2399 return rc;
2400
2401 /* print device capabilities */
2402 if (ata_msg_probe(ap))
2403 ata_dev_dbg(dev,
2404 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2405 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2406 __func__,
2407 id[49], id[82], id[83], id[84],
2408 id[85], id[86], id[87], id[88]);
2409
2410 /* initialize to-be-configured parameters */
2411 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2412 dev->max_sectors = 0;
2413 dev->cdb_len = 0;
2414 dev->n_sectors = 0;
2415 dev->cylinders = 0;
2416 dev->heads = 0;
2417 dev->sectors = 0;
2418 dev->multi_count = 0;
2419
2420 /*
2421 * common ATA, ATAPI feature tests
2422 */
2423
2424 /* find max transfer mode; for printk only */
2425 xfer_mask = ata_id_xfermask(id);
2426
2427 if (ata_msg_probe(ap))
2428 ata_dump_id(id);
2429
2430 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2431 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2432 sizeof(fwrevbuf));
2433
2434 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2435 sizeof(modelbuf));
2436
2437 /* ATA-specific feature tests */
2438 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2439 if (ata_id_is_cfa(id)) {
2440 /* CPRM may make this media unusable */
2441 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2442 ata_dev_warn(dev,
2443 "supports DRM functions and may not be fully accessible\n");
2444 snprintf(revbuf, 7, "CFA");
2445 } else {
2446 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2447 /* Warn the user if the device has TPM extensions */
2448 if (ata_id_has_tpm(id))
2449 ata_dev_warn(dev,
2450 "supports DRM functions and may not be fully accessible\n");
2451 }
2452
2453 dev->n_sectors = ata_id_n_sectors(id);
2454
2455 /* get current R/W Multiple count setting */
2456 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2457 unsigned int max = dev->id[47] & 0xff;
2458 unsigned int cnt = dev->id[59] & 0xff;
2459 /* only recognize/allow powers of two here */
2460 if (is_power_of_2(max) && is_power_of_2(cnt))
2461 if (cnt <= max)
2462 dev->multi_count = cnt;
2463 }
2464
2465 if (ata_id_has_lba(id)) {
2466 const char *lba_desc;
2467 char ncq_desc[24];
2468
2469 lba_desc = "LBA";
2470 dev->flags |= ATA_DFLAG_LBA;
2471 if (ata_id_has_lba48(id)) {
2472 dev->flags |= ATA_DFLAG_LBA48;
2473 lba_desc = "LBA48";
2474
2475 if (dev->n_sectors >= (1UL << 28) &&
2476 ata_id_has_flush_ext(id))
2477 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2478 }
2479
2480 /* config NCQ */
2481 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2482 if (rc)
2483 return rc;
2484
2485 /* print device info to dmesg */
2486 if (ata_msg_drv(ap) && print_info) {
2487 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2488 revbuf, modelbuf, fwrevbuf,
2489 ata_mode_string(xfer_mask));
2490 ata_dev_info(dev,
2491 "%llu sectors, multi %u: %s %s\n",
2492 (unsigned long long)dev->n_sectors,
2493 dev->multi_count, lba_desc, ncq_desc);
2494 }
2495 } else {
2496 /* CHS */
2497
2498 /* Default translation */
2499 dev->cylinders = id[1];
2500 dev->heads = id[3];
2501 dev->sectors = id[6];
2502
2503 if (ata_id_current_chs_valid(id)) {
2504 /* Current CHS translation is valid. */
2505 dev->cylinders = id[54];
2506 dev->heads = id[55];
2507 dev->sectors = id[56];
2508 }
2509
2510 /* print device info to dmesg */
2511 if (ata_msg_drv(ap) && print_info) {
2512 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2513 revbuf, modelbuf, fwrevbuf,
2514 ata_mode_string(xfer_mask));
2515 ata_dev_info(dev,
2516 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2517 (unsigned long long)dev->n_sectors,
2518 dev->multi_count, dev->cylinders,
2519 dev->heads, dev->sectors);
2520 }
2521 }
2522
2523 /* Check and mark DevSlp capability. Get DevSlp timing variables
2524 * from SATA Settings page of Identify Device Data Log.
2525 */
2526 if (ata_id_has_devslp(dev->id)) {
2527 u8 *sata_setting = ap->sector_buf;
2528 int i, j;
2529
2530 dev->flags |= ATA_DFLAG_DEVSLP;
2531 err_mask = ata_read_log_page(dev,
2532 ATA_LOG_SATA_ID_DEV_DATA,
2533 ATA_LOG_SATA_SETTINGS,
2534 sata_setting,
2535 1);
2536 if (err_mask)
2537 ata_dev_dbg(dev,
2538 "failed to get Identify Device Data, Emask 0x%x\n",
2539 err_mask);
2540 else
2541 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2542 j = ATA_LOG_DEVSLP_OFFSET + i;
2543 dev->devslp_timing[i] = sata_setting[j];
2544 }
2545 }
2546 ata_dev_config_sense_reporting(dev);
2547 ata_dev_config_zac(dev);
2548 dev->cdb_len = 16;
2549 }
2550
2551 /* ATAPI-specific feature tests */
2552 else if (dev->class == ATA_DEV_ATAPI) {
2553 const char *cdb_intr_string = "";
2554 const char *atapi_an_string = "";
2555 const char *dma_dir_string = "";
2556 u32 sntf;
2557
2558 rc = atapi_cdb_len(id);
2559 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2560 if (ata_msg_warn(ap))
2561 ata_dev_warn(dev, "unsupported CDB len\n");
2562 rc = -EINVAL;
2563 goto err_out_nosup;
2564 }
2565 dev->cdb_len = (unsigned int) rc;
2566
2567 /* Enable ATAPI AN if both the host and device have
2568 * the support. If PMP is attached, SNTF is required
2569 * to enable ATAPI AN to discern between PHY status
2570 * changed notifications and ATAPI ANs.
2571 */
2572 if (atapi_an &&
2573 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2574 (!sata_pmp_attached(ap) ||
2575 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2576 /* issue SET feature command to turn this on */
2577 err_mask = ata_dev_set_feature(dev,
2578 SETFEATURES_SATA_ENABLE, SATA_AN);
2579 if (err_mask)
2580 ata_dev_err(dev,
2581 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2582 err_mask);
2583 else {
2584 dev->flags |= ATA_DFLAG_AN;
2585 atapi_an_string = ", ATAPI AN";
2586 }
2587 }
2588
2589 if (ata_id_cdb_intr(dev->id)) {
2590 dev->flags |= ATA_DFLAG_CDB_INTR;
2591 cdb_intr_string = ", CDB intr";
2592 }
2593
2594 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2595 dev->flags |= ATA_DFLAG_DMADIR;
2596 dma_dir_string = ", DMADIR";
2597 }
2598
2599 if (ata_id_has_da(dev->id)) {
2600 dev->flags |= ATA_DFLAG_DA;
2601 zpodd_init(dev);
2602 }
2603
2604 /* print device info to dmesg */
2605 if (ata_msg_drv(ap) && print_info)
2606 ata_dev_info(dev,
2607 "ATAPI: %s, %s, max %s%s%s%s\n",
2608 modelbuf, fwrevbuf,
2609 ata_mode_string(xfer_mask),
2610 cdb_intr_string, atapi_an_string,
2611 dma_dir_string);
2612 }
2613
2614 /* determine max_sectors */
2615 dev->max_sectors = ATA_MAX_SECTORS;
2616 if (dev->flags & ATA_DFLAG_LBA48)
2617 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2618
2619 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2620 200 sectors */
2621 if (ata_dev_knobble(dev)) {
2622 if (ata_msg_drv(ap) && print_info)
2623 ata_dev_info(dev, "applying bridge limits\n");
2624 dev->udma_mask &= ATA_UDMA5;
2625 dev->max_sectors = ATA_MAX_SECTORS;
2626 }
2627
2628 if ((dev->class == ATA_DEV_ATAPI) &&
2629 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2630 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2631 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2632 }
2633
2634 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2635 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2636 dev->max_sectors);
2637
2638 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2639 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2640 dev->max_sectors);
2641
2642 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2643 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2644
2645 if (ap->ops->dev_config)
2646 ap->ops->dev_config(dev);
2647
2648 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2649 /* Let the user know. We don't want to disallow opens for
2650 rescue purposes, or in case the vendor is just a blithering
2651 idiot. Do this after the dev_config call as some controllers
2652 with buggy firmware may want to avoid reporting false device
2653 bugs */
2654
2655 if (print_info) {
2656 ata_dev_warn(dev,
2657 "Drive reports diagnostics failure. This may indicate a drive\n");
2658 ata_dev_warn(dev,
2659 "fault or invalid emulation. Contact drive vendor for information.\n");
2660 }
2661 }
2662
2663 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2664 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2665 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2666 }
2667
2668 return 0;
2669
2670 err_out_nosup:
2671 if (ata_msg_probe(ap))
2672 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2673 return rc;
2674 }
2675
2676 /**
2677 * ata_cable_40wire - return 40 wire cable type
2678 * @ap: port
2679 *
2680 * Helper method for drivers which want to hardwire 40 wire cable
2681 * detection.
2682 */
2683
2684 int ata_cable_40wire(struct ata_port *ap)
2685 {
2686 return ATA_CBL_PATA40;
2687 }
2688
2689 /**
2690 * ata_cable_80wire - return 80 wire cable type
2691 * @ap: port
2692 *
2693 * Helper method for drivers which want to hardwire 80 wire cable
2694 * detection.
2695 */
2696
2697 int ata_cable_80wire(struct ata_port *ap)
2698 {
2699 return ATA_CBL_PATA80;
2700 }
2701
2702 /**
2703 * ata_cable_unknown - return unknown PATA cable.
2704 * @ap: port
2705 *
2706 * Helper method for drivers which have no PATA cable detection.
2707 */
2708
2709 int ata_cable_unknown(struct ata_port *ap)
2710 {
2711 return ATA_CBL_PATA_UNK;
2712 }
2713
2714 /**
2715 * ata_cable_ignore - return ignored PATA cable.
2716 * @ap: port
2717 *
2718 * Helper method for drivers which don't use cable type to limit
2719 * transfer mode.
2720 */
2721 int ata_cable_ignore(struct ata_port *ap)
2722 {
2723 return ATA_CBL_PATA_IGN;
2724 }
2725
2726 /**
2727 * ata_cable_sata - return SATA cable type
2728 * @ap: port
2729 *
2730 * Helper method for drivers which have SATA cables
2731 */
2732
2733 int ata_cable_sata(struct ata_port *ap)
2734 {
2735 return ATA_CBL_SATA;
2736 }
2737
2738 /**
2739 * ata_bus_probe - Reset and probe ATA bus
2740 * @ap: Bus to probe
2741 *
2742 * Master ATA bus probing function. Initiates a hardware-dependent
2743 * bus reset, then attempts to identify any devices found on
2744 * the bus.
2745 *
2746 * LOCKING:
2747 * PCI/etc. bus probe sem.
2748 *
2749 * RETURNS:
2750 * Zero on success, negative errno otherwise.
2751 */
2752
2753 int ata_bus_probe(struct ata_port *ap)
2754 {
2755 unsigned int classes[ATA_MAX_DEVICES];
2756 int tries[ATA_MAX_DEVICES];
2757 int rc;
2758 struct ata_device *dev;
2759
2760 ata_for_each_dev(dev, &ap->link, ALL)
2761 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2762
2763 retry:
2764 ata_for_each_dev(dev, &ap->link, ALL) {
2765 /* If we issue an SRST then an ATA drive (not ATAPI)
2766 * may change configuration and be in PIO0 timing. If
2767 * we do a hard reset (or are coming from power on)
2768 * this is true for ATA or ATAPI. Until we've set a
2769 * suitable controller mode we should not touch the
2770 * bus as we may be talking too fast.
2771 */
2772 dev->pio_mode = XFER_PIO_0;
2773 dev->dma_mode = 0xff;
2774
2775 /* If the controller has a pio mode setup function
2776 * then use it to set the chipset to rights. Don't
2777 * touch the DMA setup as that will be dealt with when
2778 * configuring devices.
2779 */
2780 if (ap->ops->set_piomode)
2781 ap->ops->set_piomode(ap, dev);
2782 }
2783
2784 /* reset and determine device classes */
2785 ap->ops->phy_reset(ap);
2786
2787 ata_for_each_dev(dev, &ap->link, ALL) {
2788 if (dev->class != ATA_DEV_UNKNOWN)
2789 classes[dev->devno] = dev->class;
2790 else
2791 classes[dev->devno] = ATA_DEV_NONE;
2792
2793 dev->class = ATA_DEV_UNKNOWN;
2794 }
2795
2796 /* read IDENTIFY page and configure devices. We have to do the identify
2797 specific sequence bass-ackwards so that PDIAG- is released by
2798 the slave device */
2799
2800 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2801 if (tries[dev->devno])
2802 dev->class = classes[dev->devno];
2803
2804 if (!ata_dev_enabled(dev))
2805 continue;
2806
2807 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2808 dev->id);
2809 if (rc)
2810 goto fail;
2811 }
2812
2813 /* Now ask for the cable type as PDIAG- should have been released */
2814 if (ap->ops->cable_detect)
2815 ap->cbl = ap->ops->cable_detect(ap);
2816
2817 /* We may have SATA bridge glue hiding here irrespective of
2818 * the reported cable types and sensed types. When SATA
2819 * drives indicate we have a bridge, we don't know which end
2820 * of the link the bridge is which is a problem.
2821 */
2822 ata_for_each_dev(dev, &ap->link, ENABLED)
2823 if (ata_id_is_sata(dev->id))
2824 ap->cbl = ATA_CBL_SATA;
2825
2826 /* After the identify sequence we can now set up the devices. We do
2827 this in the normal order so that the user doesn't get confused */
2828
2829 ata_for_each_dev(dev, &ap->link, ENABLED) {
2830 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2831 rc = ata_dev_configure(dev);
2832 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2833 if (rc)
2834 goto fail;
2835 }
2836
2837 /* configure transfer mode */
2838 rc = ata_set_mode(&ap->link, &dev);
2839 if (rc)
2840 goto fail;
2841
2842 ata_for_each_dev(dev, &ap->link, ENABLED)
2843 return 0;
2844
2845 return -ENODEV;
2846
2847 fail:
2848 tries[dev->devno]--;
2849
2850 switch (rc) {
2851 case -EINVAL:
2852 /* eeek, something went very wrong, give up */
2853 tries[dev->devno] = 0;
2854 break;
2855
2856 case -ENODEV:
2857 /* give it just one more chance */
2858 tries[dev->devno] = min(tries[dev->devno], 1);
2859 case -EIO:
2860 if (tries[dev->devno] == 1) {
2861 /* This is the last chance, better to slow
2862 * down than lose it.
2863 */
2864 sata_down_spd_limit(&ap->link, 0);
2865 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2866 }
2867 }
2868
2869 if (!tries[dev->devno])
2870 ata_dev_disable(dev);
2871
2872 goto retry;
2873 }
2874
2875 /**
2876 * sata_print_link_status - Print SATA link status
2877 * @link: SATA link to printk link status about
2878 *
2879 * This function prints link speed and status of a SATA link.
2880 *
2881 * LOCKING:
2882 * None.
2883 */
2884 static void sata_print_link_status(struct ata_link *link)
2885 {
2886 u32 sstatus, scontrol, tmp;
2887
2888 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2889 return;
2890 sata_scr_read(link, SCR_CONTROL, &scontrol);
2891
2892 if (ata_phys_link_online(link)) {
2893 tmp = (sstatus >> 4) & 0xf;
2894 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2895 sata_spd_string(tmp), sstatus, scontrol);
2896 } else {
2897 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2898 sstatus, scontrol);
2899 }
2900 }
2901
2902 /**
2903 * ata_dev_pair - return other device on cable
2904 * @adev: device
2905 *
2906 * Obtain the other device on the same cable, or if none is
2907 * present NULL is returned
2908 */
2909
2910 struct ata_device *ata_dev_pair(struct ata_device *adev)
2911 {
2912 struct ata_link *link = adev->link;
2913 struct ata_device *pair = &link->device[1 - adev->devno];
2914 if (!ata_dev_enabled(pair))
2915 return NULL;
2916 return pair;
2917 }
2918
2919 /**
2920 * sata_down_spd_limit - adjust SATA spd limit downward
2921 * @link: Link to adjust SATA spd limit for
2922 * @spd_limit: Additional limit
2923 *
2924 * Adjust SATA spd limit of @link downward. Note that this
2925 * function only adjusts the limit. The change must be applied
2926 * using sata_set_spd().
2927 *
2928 * If @spd_limit is non-zero, the speed is limited to equal to or
2929 * lower than @spd_limit if such speed is supported. If
2930 * @spd_limit is slower than any supported speed, only the lowest
2931 * supported speed is allowed.
2932 *
2933 * LOCKING:
2934 * Inherited from caller.
2935 *
2936 * RETURNS:
2937 * 0 on success, negative errno on failure
2938 */
2939 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2940 {
2941 u32 sstatus, spd, mask;
2942 int rc, bit;
2943
2944 if (!sata_scr_valid(link))
2945 return -EOPNOTSUPP;
2946
2947 /* If SCR can be read, use it to determine the current SPD.
2948 * If not, use cached value in link->sata_spd.
2949 */
2950 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2951 if (rc == 0 && ata_sstatus_online(sstatus))
2952 spd = (sstatus >> 4) & 0xf;
2953 else
2954 spd = link->sata_spd;
2955
2956 mask = link->sata_spd_limit;
2957 if (mask <= 1)
2958 return -EINVAL;
2959
2960 /* unconditionally mask off the highest bit */
2961 bit = fls(mask) - 1;
2962 mask &= ~(1 << bit);
2963
2964 /* Mask off all speeds higher than or equal to the current
2965 * one. Force 1.5Gbps if current SPD is not available.
2966 */
2967 if (spd > 1)
2968 mask &= (1 << (spd - 1)) - 1;
2969 else
2970 mask &= 1;
2971
2972 /* were we already at the bottom? */
2973 if (!mask)
2974 return -EINVAL;
2975
2976 if (spd_limit) {
2977 if (mask & ((1 << spd_limit) - 1))
2978 mask &= (1 << spd_limit) - 1;
2979 else {
2980 bit = ffs(mask) - 1;
2981 mask = 1 << bit;
2982 }
2983 }
2984
2985 link->sata_spd_limit = mask;
2986
2987 ata_link_warn(link, "limiting SATA link speed to %s\n",
2988 sata_spd_string(fls(mask)));
2989
2990 return 0;
2991 }
2992
2993 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2994 {
2995 struct ata_link *host_link = &link->ap->link;
2996 u32 limit, target, spd;
2997
2998 limit = link->sata_spd_limit;
2999
3000 /* Don't configure downstream link faster than upstream link.
3001 * It doesn't speed up anything and some PMPs choke on such
3002 * configuration.
3003 */
3004 if (!ata_is_host_link(link) && host_link->sata_spd)
3005 limit &= (1 << host_link->sata_spd) - 1;
3006
3007 if (limit == UINT_MAX)
3008 target = 0;
3009 else
3010 target = fls(limit);
3011
3012 spd = (*scontrol >> 4) & 0xf;
3013 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3014
3015 return spd != target;
3016 }
3017
3018 /**
3019 * sata_set_spd_needed - is SATA spd configuration needed
3020 * @link: Link in question
3021 *
3022 * Test whether the spd limit in SControl matches
3023 * @link->sata_spd_limit. This function is used to determine
3024 * whether hardreset is necessary to apply SATA spd
3025 * configuration.
3026 *
3027 * LOCKING:
3028 * Inherited from caller.
3029 *
3030 * RETURNS:
3031 * 1 if SATA spd configuration is needed, 0 otherwise.
3032 */
3033 static int sata_set_spd_needed(struct ata_link *link)
3034 {
3035 u32 scontrol;
3036
3037 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3038 return 1;
3039
3040 return __sata_set_spd_needed(link, &scontrol);
3041 }
3042
3043 /**
3044 * sata_set_spd - set SATA spd according to spd limit
3045 * @link: Link to set SATA spd for
3046 *
3047 * Set SATA spd of @link according to sata_spd_limit.
3048 *
3049 * LOCKING:
3050 * Inherited from caller.
3051 *
3052 * RETURNS:
3053 * 0 if spd doesn't need to be changed, 1 if spd has been
3054 * changed. Negative errno if SCR registers are inaccessible.
3055 */
3056 int sata_set_spd(struct ata_link *link)
3057 {
3058 u32 scontrol;
3059 int rc;
3060
3061 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3062 return rc;
3063
3064 if (!__sata_set_spd_needed(link, &scontrol))
3065 return 0;
3066
3067 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3068 return rc;
3069
3070 return 1;
3071 }
3072
3073 /*
3074 * This mode timing computation functionality is ported over from
3075 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3076 */
3077 /*
3078 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3079 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3080 * for UDMA6, which is currently supported only by Maxtor drives.
3081 *
3082 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3083 */
3084
3085 static const struct ata_timing ata_timing[] = {
3086 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3087 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3088 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3089 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3090 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3091 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3092 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3093 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3094
3095 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3096 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3097 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3098
3099 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3100 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3101 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3102 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3103 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3104
3105 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3106 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3107 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3108 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3109 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3110 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3111 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3112 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3113
3114 { 0xFF }
3115 };
3116
3117 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3118 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3119
3120 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3121 {
3122 q->setup = EZ(t->setup * 1000, T);
3123 q->act8b = EZ(t->act8b * 1000, T);
3124 q->rec8b = EZ(t->rec8b * 1000, T);
3125 q->cyc8b = EZ(t->cyc8b * 1000, T);
3126 q->active = EZ(t->active * 1000, T);
3127 q->recover = EZ(t->recover * 1000, T);
3128 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3129 q->cycle = EZ(t->cycle * 1000, T);
3130 q->udma = EZ(t->udma * 1000, UT);
3131 }
3132
3133 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3134 struct ata_timing *m, unsigned int what)
3135 {
3136 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3137 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3138 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3139 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3140 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3141 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3142 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3143 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3144 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3145 }
3146
3147 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3148 {
3149 const struct ata_timing *t = ata_timing;
3150
3151 while (xfer_mode > t->mode)
3152 t++;
3153
3154 if (xfer_mode == t->mode)
3155 return t;
3156
3157 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3158 __func__, xfer_mode);
3159
3160 return NULL;
3161 }
3162
3163 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3164 struct ata_timing *t, int T, int UT)
3165 {
3166 const u16 *id = adev->id;
3167 const struct ata_timing *s;
3168 struct ata_timing p;
3169
3170 /*
3171 * Find the mode.
3172 */
3173
3174 if (!(s = ata_timing_find_mode(speed)))
3175 return -EINVAL;
3176
3177 memcpy(t, s, sizeof(*s));
3178
3179 /*
3180 * If the drive is an EIDE drive, it can tell us it needs extended
3181 * PIO/MW_DMA cycle timing.
3182 */
3183
3184 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3185 memset(&p, 0, sizeof(p));
3186
3187 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3188 if (speed <= XFER_PIO_2)
3189 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3190 else if ((speed <= XFER_PIO_4) ||
3191 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3192 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3193 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3194 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3195
3196 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3197 }
3198
3199 /*
3200 * Convert the timing to bus clock counts.
3201 */
3202
3203 ata_timing_quantize(t, t, T, UT);
3204
3205 /*
3206 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3207 * S.M.A.R.T * and some other commands. We have to ensure that the
3208 * DMA cycle timing is slower/equal than the fastest PIO timing.
3209 */
3210
3211 if (speed > XFER_PIO_6) {
3212 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3213 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3214 }
3215
3216 /*
3217 * Lengthen active & recovery time so that cycle time is correct.
3218 */
3219
3220 if (t->act8b + t->rec8b < t->cyc8b) {
3221 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3222 t->rec8b = t->cyc8b - t->act8b;
3223 }
3224
3225 if (t->active + t->recover < t->cycle) {
3226 t->active += (t->cycle - (t->active + t->recover)) / 2;
3227 t->recover = t->cycle - t->active;
3228 }
3229
3230 /* In a few cases quantisation may produce enough errors to
3231 leave t->cycle too low for the sum of active and recovery
3232 if so we must correct this */
3233 if (t->active + t->recover > t->cycle)
3234 t->cycle = t->active + t->recover;
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3241 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3242 * @cycle: cycle duration in ns
3243 *
3244 * Return matching xfer mode for @cycle. The returned mode is of
3245 * the transfer type specified by @xfer_shift. If @cycle is too
3246 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3247 * than the fastest known mode, the fasted mode is returned.
3248 *
3249 * LOCKING:
3250 * None.
3251 *
3252 * RETURNS:
3253 * Matching xfer_mode, 0xff if no match found.
3254 */
3255 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3256 {
3257 u8 base_mode = 0xff, last_mode = 0xff;
3258 const struct ata_xfer_ent *ent;
3259 const struct ata_timing *t;
3260
3261 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3262 if (ent->shift == xfer_shift)
3263 base_mode = ent->base;
3264
3265 for (t = ata_timing_find_mode(base_mode);
3266 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3267 unsigned short this_cycle;
3268
3269 switch (xfer_shift) {
3270 case ATA_SHIFT_PIO:
3271 case ATA_SHIFT_MWDMA:
3272 this_cycle = t->cycle;
3273 break;
3274 case ATA_SHIFT_UDMA:
3275 this_cycle = t->udma;
3276 break;
3277 default:
3278 return 0xff;
3279 }
3280
3281 if (cycle > this_cycle)
3282 break;
3283
3284 last_mode = t->mode;
3285 }
3286
3287 return last_mode;
3288 }
3289
3290 /**
3291 * ata_down_xfermask_limit - adjust dev xfer masks downward
3292 * @dev: Device to adjust xfer masks
3293 * @sel: ATA_DNXFER_* selector
3294 *
3295 * Adjust xfer masks of @dev downward. Note that this function
3296 * does not apply the change. Invoking ata_set_mode() afterwards
3297 * will apply the limit.
3298 *
3299 * LOCKING:
3300 * Inherited from caller.
3301 *
3302 * RETURNS:
3303 * 0 on success, negative errno on failure
3304 */
3305 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3306 {
3307 char buf[32];
3308 unsigned long orig_mask, xfer_mask;
3309 unsigned long pio_mask, mwdma_mask, udma_mask;
3310 int quiet, highbit;
3311
3312 quiet = !!(sel & ATA_DNXFER_QUIET);
3313 sel &= ~ATA_DNXFER_QUIET;
3314
3315 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3316 dev->mwdma_mask,
3317 dev->udma_mask);
3318 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3319
3320 switch (sel) {
3321 case ATA_DNXFER_PIO:
3322 highbit = fls(pio_mask) - 1;
3323 pio_mask &= ~(1 << highbit);
3324 break;
3325
3326 case ATA_DNXFER_DMA:
3327 if (udma_mask) {
3328 highbit = fls(udma_mask) - 1;
3329 udma_mask &= ~(1 << highbit);
3330 if (!udma_mask)
3331 return -ENOENT;
3332 } else if (mwdma_mask) {
3333 highbit = fls(mwdma_mask) - 1;
3334 mwdma_mask &= ~(1 << highbit);
3335 if (!mwdma_mask)
3336 return -ENOENT;
3337 }
3338 break;
3339
3340 case ATA_DNXFER_40C:
3341 udma_mask &= ATA_UDMA_MASK_40C;
3342 break;
3343
3344 case ATA_DNXFER_FORCE_PIO0:
3345 pio_mask &= 1;
3346 case ATA_DNXFER_FORCE_PIO:
3347 mwdma_mask = 0;
3348 udma_mask = 0;
3349 break;
3350
3351 default:
3352 BUG();
3353 }
3354
3355 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3356
3357 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3358 return -ENOENT;
3359
3360 if (!quiet) {
3361 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3362 snprintf(buf, sizeof(buf), "%s:%s",
3363 ata_mode_string(xfer_mask),
3364 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3365 else
3366 snprintf(buf, sizeof(buf), "%s",
3367 ata_mode_string(xfer_mask));
3368
3369 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3370 }
3371
3372 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3373 &dev->udma_mask);
3374
3375 return 0;
3376 }
3377
3378 static int ata_dev_set_mode(struct ata_device *dev)
3379 {
3380 struct ata_port *ap = dev->link->ap;
3381 struct ata_eh_context *ehc = &dev->link->eh_context;
3382 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3383 const char *dev_err_whine = "";
3384 int ign_dev_err = 0;
3385 unsigned int err_mask = 0;
3386 int rc;
3387
3388 dev->flags &= ~ATA_DFLAG_PIO;
3389 if (dev->xfer_shift == ATA_SHIFT_PIO)
3390 dev->flags |= ATA_DFLAG_PIO;
3391
3392 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3393 dev_err_whine = " (SET_XFERMODE skipped)";
3394 else {
3395 if (nosetxfer)
3396 ata_dev_warn(dev,
3397 "NOSETXFER but PATA detected - can't "
3398 "skip SETXFER, might malfunction\n");
3399 err_mask = ata_dev_set_xfermode(dev);
3400 }
3401
3402 if (err_mask & ~AC_ERR_DEV)
3403 goto fail;
3404
3405 /* revalidate */
3406 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409 if (rc)
3410 return rc;
3411
3412 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413 /* Old CFA may refuse this command, which is just fine */
3414 if (ata_id_is_cfa(dev->id))
3415 ign_dev_err = 1;
3416 /* Catch several broken garbage emulations plus some pre
3417 ATA devices */
3418 if (ata_id_major_version(dev->id) == 0 &&
3419 dev->pio_mode <= XFER_PIO_2)
3420 ign_dev_err = 1;
3421 /* Some very old devices and some bad newer ones fail
3422 any kind of SET_XFERMODE request but support PIO0-2
3423 timings and no IORDY */
3424 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425 ign_dev_err = 1;
3426 }
3427 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3429 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3430 dev->dma_mode == XFER_MW_DMA_0 &&
3431 (dev->id[63] >> 8) & 1)
3432 ign_dev_err = 1;
3433
3434 /* if the device is actually configured correctly, ignore dev err */
3435 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436 ign_dev_err = 1;
3437
3438 if (err_mask & AC_ERR_DEV) {
3439 if (!ign_dev_err)
3440 goto fail;
3441 else
3442 dev_err_whine = " (device error ignored)";
3443 }
3444
3445 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446 dev->xfer_shift, (int)dev->xfer_mode);
3447
3448 ata_dev_info(dev, "configured for %s%s\n",
3449 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450 dev_err_whine);
3451
3452 return 0;
3453
3454 fail:
3455 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3456 return -EIO;
3457 }
3458
3459 /**
3460 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3461 * @link: link on which timings will be programmed
3462 * @r_failed_dev: out parameter for failed device
3463 *
3464 * Standard implementation of the function used to tune and set
3465 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3466 * ata_dev_set_mode() fails, pointer to the failing device is
3467 * returned in @r_failed_dev.
3468 *
3469 * LOCKING:
3470 * PCI/etc. bus probe sem.
3471 *
3472 * RETURNS:
3473 * 0 on success, negative errno otherwise
3474 */
3475
3476 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3477 {
3478 struct ata_port *ap = link->ap;
3479 struct ata_device *dev;
3480 int rc = 0, used_dma = 0, found = 0;
3481
3482 /* step 1: calculate xfer_mask */
3483 ata_for_each_dev(dev, link, ENABLED) {
3484 unsigned long pio_mask, dma_mask;
3485 unsigned int mode_mask;
3486
3487 mode_mask = ATA_DMA_MASK_ATA;
3488 if (dev->class == ATA_DEV_ATAPI)
3489 mode_mask = ATA_DMA_MASK_ATAPI;
3490 else if (ata_id_is_cfa(dev->id))
3491 mode_mask = ATA_DMA_MASK_CFA;
3492
3493 ata_dev_xfermask(dev);
3494 ata_force_xfermask(dev);
3495
3496 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3497
3498 if (libata_dma_mask & mode_mask)
3499 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3500 dev->udma_mask);
3501 else
3502 dma_mask = 0;
3503
3504 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3505 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3506
3507 found = 1;
3508 if (ata_dma_enabled(dev))
3509 used_dma = 1;
3510 }
3511 if (!found)
3512 goto out;
3513
3514 /* step 2: always set host PIO timings */
3515 ata_for_each_dev(dev, link, ENABLED) {
3516 if (dev->pio_mode == 0xff) {
3517 ata_dev_warn(dev, "no PIO support\n");
3518 rc = -EINVAL;
3519 goto out;
3520 }
3521
3522 dev->xfer_mode = dev->pio_mode;
3523 dev->xfer_shift = ATA_SHIFT_PIO;
3524 if (ap->ops->set_piomode)
3525 ap->ops->set_piomode(ap, dev);
3526 }
3527
3528 /* step 3: set host DMA timings */
3529 ata_for_each_dev(dev, link, ENABLED) {
3530 if (!ata_dma_enabled(dev))
3531 continue;
3532
3533 dev->xfer_mode = dev->dma_mode;
3534 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3535 if (ap->ops->set_dmamode)
3536 ap->ops->set_dmamode(ap, dev);
3537 }
3538
3539 /* step 4: update devices' xfer mode */
3540 ata_for_each_dev(dev, link, ENABLED) {
3541 rc = ata_dev_set_mode(dev);
3542 if (rc)
3543 goto out;
3544 }
3545
3546 /* Record simplex status. If we selected DMA then the other
3547 * host channels are not permitted to do so.
3548 */
3549 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3550 ap->host->simplex_claimed = ap;
3551
3552 out:
3553 if (rc)
3554 *r_failed_dev = dev;
3555 return rc;
3556 }
3557
3558 /**
3559 * ata_wait_ready - wait for link to become ready
3560 * @link: link to be waited on
3561 * @deadline: deadline jiffies for the operation
3562 * @check_ready: callback to check link readiness
3563 *
3564 * Wait for @link to become ready. @check_ready should return
3565 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3566 * link doesn't seem to be occupied, other errno for other error
3567 * conditions.
3568 *
3569 * Transient -ENODEV conditions are allowed for
3570 * ATA_TMOUT_FF_WAIT.
3571 *
3572 * LOCKING:
3573 * EH context.
3574 *
3575 * RETURNS:
3576 * 0 if @link is ready before @deadline; otherwise, -errno.
3577 */
3578 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3579 int (*check_ready)(struct ata_link *link))
3580 {
3581 unsigned long start = jiffies;
3582 unsigned long nodev_deadline;
3583 int warned = 0;
3584
3585 /* choose which 0xff timeout to use, read comment in libata.h */
3586 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3587 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3588 else
3589 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3590
3591 /* Slave readiness can't be tested separately from master. On
3592 * M/S emulation configuration, this function should be called
3593 * only on the master and it will handle both master and slave.
3594 */
3595 WARN_ON(link == link->ap->slave_link);
3596
3597 if (time_after(nodev_deadline, deadline))
3598 nodev_deadline = deadline;
3599
3600 while (1) {
3601 unsigned long now = jiffies;
3602 int ready, tmp;
3603
3604 ready = tmp = check_ready(link);
3605 if (ready > 0)
3606 return 0;
3607
3608 /*
3609 * -ENODEV could be transient. Ignore -ENODEV if link
3610 * is online. Also, some SATA devices take a long
3611 * time to clear 0xff after reset. Wait for
3612 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3613 * offline.
3614 *
3615 * Note that some PATA controllers (pata_ali) explode
3616 * if status register is read more than once when
3617 * there's no device attached.
3618 */
3619 if (ready == -ENODEV) {
3620 if (ata_link_online(link))
3621 ready = 0;
3622 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3623 !ata_link_offline(link) &&
3624 time_before(now, nodev_deadline))
3625 ready = 0;
3626 }
3627
3628 if (ready)
3629 return ready;
3630 if (time_after(now, deadline))
3631 return -EBUSY;
3632
3633 if (!warned && time_after(now, start + 5 * HZ) &&
3634 (deadline - now > 3 * HZ)) {
3635 ata_link_warn(link,
3636 "link is slow to respond, please be patient "
3637 "(ready=%d)\n", tmp);
3638 warned = 1;
3639 }
3640
3641 ata_msleep(link->ap, 50);
3642 }
3643 }
3644
3645 /**
3646 * ata_wait_after_reset - wait for link to become ready after reset
3647 * @link: link to be waited on
3648 * @deadline: deadline jiffies for the operation
3649 * @check_ready: callback to check link readiness
3650 *
3651 * Wait for @link to become ready after reset.
3652 *
3653 * LOCKING:
3654 * EH context.
3655 *
3656 * RETURNS:
3657 * 0 if @link is ready before @deadline; otherwise, -errno.
3658 */
3659 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3660 int (*check_ready)(struct ata_link *link))
3661 {
3662 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3663
3664 return ata_wait_ready(link, deadline, check_ready);
3665 }
3666
3667 /**
3668 * sata_link_debounce - debounce SATA phy status
3669 * @link: ATA link to debounce SATA phy status for
3670 * @params: timing parameters { interval, duration, timeout } in msec
3671 * @deadline: deadline jiffies for the operation
3672 *
3673 * Make sure SStatus of @link reaches stable state, determined by
3674 * holding the same value where DET is not 1 for @duration polled
3675 * every @interval, before @timeout. Timeout constraints the
3676 * beginning of the stable state. Because DET gets stuck at 1 on
3677 * some controllers after hot unplugging, this functions waits
3678 * until timeout then returns 0 if DET is stable at 1.
3679 *
3680 * @timeout is further limited by @deadline. The sooner of the
3681 * two is used.
3682 *
3683 * LOCKING:
3684 * Kernel thread context (may sleep)
3685 *
3686 * RETURNS:
3687 * 0 on success, -errno on failure.
3688 */
3689 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3690 unsigned long deadline)
3691 {
3692 unsigned long interval = params[0];
3693 unsigned long duration = params[1];
3694 unsigned long last_jiffies, t;
3695 u32 last, cur;
3696 int rc;
3697
3698 t = ata_deadline(jiffies, params[2]);
3699 if (time_before(t, deadline))
3700 deadline = t;
3701
3702 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3703 return rc;
3704 cur &= 0xf;
3705
3706 last = cur;
3707 last_jiffies = jiffies;
3708
3709 while (1) {
3710 ata_msleep(link->ap, interval);
3711 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3712 return rc;
3713 cur &= 0xf;
3714
3715 /* DET stable? */
3716 if (cur == last) {
3717 if (cur == 1 && time_before(jiffies, deadline))
3718 continue;
3719 if (time_after(jiffies,
3720 ata_deadline(last_jiffies, duration)))
3721 return 0;
3722 continue;
3723 }
3724
3725 /* unstable, start over */
3726 last = cur;
3727 last_jiffies = jiffies;
3728
3729 /* Check deadline. If debouncing failed, return
3730 * -EPIPE to tell upper layer to lower link speed.
3731 */
3732 if (time_after(jiffies, deadline))
3733 return -EPIPE;
3734 }
3735 }
3736
3737 /**
3738 * sata_link_resume - resume SATA link
3739 * @link: ATA link to resume SATA
3740 * @params: timing parameters { interval, duration, timeout } in msec
3741 * @deadline: deadline jiffies for the operation
3742 *
3743 * Resume SATA phy @link and debounce it.
3744 *
3745 * LOCKING:
3746 * Kernel thread context (may sleep)
3747 *
3748 * RETURNS:
3749 * 0 on success, -errno on failure.
3750 */
3751 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3752 unsigned long deadline)
3753 {
3754 int tries = ATA_LINK_RESUME_TRIES;
3755 u32 scontrol, serror;
3756 int rc;
3757
3758 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3759 return rc;
3760
3761 /*
3762 * Writes to SControl sometimes get ignored under certain
3763 * controllers (ata_piix SIDPR). Make sure DET actually is
3764 * cleared.
3765 */
3766 do {
3767 scontrol = (scontrol & 0x0f0) | 0x300;
3768 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3769 return rc;
3770 /*
3771 * Some PHYs react badly if SStatus is pounded
3772 * immediately after resuming. Delay 200ms before
3773 * debouncing.
3774 */
3775 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3776 ata_msleep(link->ap, 200);
3777
3778 /* is SControl restored correctly? */
3779 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 return rc;
3781 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3782
3783 if ((scontrol & 0xf0f) != 0x300) {
3784 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3785 scontrol);
3786 return 0;
3787 }
3788
3789 if (tries < ATA_LINK_RESUME_TRIES)
3790 ata_link_warn(link, "link resume succeeded after %d retries\n",
3791 ATA_LINK_RESUME_TRIES - tries);
3792
3793 if ((rc = sata_link_debounce(link, params, deadline)))
3794 return rc;
3795
3796 /* clear SError, some PHYs require this even for SRST to work */
3797 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3798 rc = sata_scr_write(link, SCR_ERROR, serror);
3799
3800 return rc != -EINVAL ? rc : 0;
3801 }
3802
3803 /**
3804 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3805 * @link: ATA link to manipulate SControl for
3806 * @policy: LPM policy to configure
3807 * @spm_wakeup: initiate LPM transition to active state
3808 *
3809 * Manipulate the IPM field of the SControl register of @link
3810 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3811 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3812 * the link. This function also clears PHYRDY_CHG before
3813 * returning.
3814 *
3815 * LOCKING:
3816 * EH context.
3817 *
3818 * RETURNS:
3819 * 0 on success, -errno otherwise.
3820 */
3821 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3822 bool spm_wakeup)
3823 {
3824 struct ata_eh_context *ehc = &link->eh_context;
3825 bool woken_up = false;
3826 u32 scontrol;
3827 int rc;
3828
3829 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3830 if (rc)
3831 return rc;
3832
3833 switch (policy) {
3834 case ATA_LPM_MAX_POWER:
3835 /* disable all LPM transitions */
3836 scontrol |= (0x7 << 8);
3837 /* initiate transition to active state */
3838 if (spm_wakeup) {
3839 scontrol |= (0x4 << 12);
3840 woken_up = true;
3841 }
3842 break;
3843 case ATA_LPM_MED_POWER:
3844 /* allow LPM to PARTIAL */
3845 scontrol &= ~(0x1 << 8);
3846 scontrol |= (0x6 << 8);
3847 break;
3848 case ATA_LPM_MIN_POWER:
3849 if (ata_link_nr_enabled(link) > 0)
3850 /* no restrictions on LPM transitions */
3851 scontrol &= ~(0x7 << 8);
3852 else {
3853 /* empty port, power off */
3854 scontrol &= ~0xf;
3855 scontrol |= (0x1 << 2);
3856 }
3857 break;
3858 default:
3859 WARN_ON(1);
3860 }
3861
3862 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3863 if (rc)
3864 return rc;
3865
3866 /* give the link time to transit out of LPM state */
3867 if (woken_up)
3868 msleep(10);
3869
3870 /* clear PHYRDY_CHG from SError */
3871 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3872 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3873 }
3874
3875 /**
3876 * ata_std_prereset - prepare for reset
3877 * @link: ATA link to be reset
3878 * @deadline: deadline jiffies for the operation
3879 *
3880 * @link is about to be reset. Initialize it. Failure from
3881 * prereset makes libata abort whole reset sequence and give up
3882 * that port, so prereset should be best-effort. It does its
3883 * best to prepare for reset sequence but if things go wrong, it
3884 * should just whine, not fail.
3885 *
3886 * LOCKING:
3887 * Kernel thread context (may sleep)
3888 *
3889 * RETURNS:
3890 * 0 on success, -errno otherwise.
3891 */
3892 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3893 {
3894 struct ata_port *ap = link->ap;
3895 struct ata_eh_context *ehc = &link->eh_context;
3896 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3897 int rc;
3898
3899 /* if we're about to do hardreset, nothing more to do */
3900 if (ehc->i.action & ATA_EH_HARDRESET)
3901 return 0;
3902
3903 /* if SATA, resume link */
3904 if (ap->flags & ATA_FLAG_SATA) {
3905 rc = sata_link_resume(link, timing, deadline);
3906 /* whine about phy resume failure but proceed */
3907 if (rc && rc != -EOPNOTSUPP)
3908 ata_link_warn(link,
3909 "failed to resume link for reset (errno=%d)\n",
3910 rc);
3911 }
3912
3913 /* no point in trying softreset on offline link */
3914 if (ata_phys_link_offline(link))
3915 ehc->i.action &= ~ATA_EH_SOFTRESET;
3916
3917 return 0;
3918 }
3919
3920 /**
3921 * sata_link_hardreset - reset link via SATA phy reset
3922 * @link: link to reset
3923 * @timing: timing parameters { interval, duration, timeout } in msec
3924 * @deadline: deadline jiffies for the operation
3925 * @online: optional out parameter indicating link onlineness
3926 * @check_ready: optional callback to check link readiness
3927 *
3928 * SATA phy-reset @link using DET bits of SControl register.
3929 * After hardreset, link readiness is waited upon using
3930 * ata_wait_ready() if @check_ready is specified. LLDs are
3931 * allowed to not specify @check_ready and wait itself after this
3932 * function returns. Device classification is LLD's
3933 * responsibility.
3934 *
3935 * *@online is set to one iff reset succeeded and @link is online
3936 * after reset.
3937 *
3938 * LOCKING:
3939 * Kernel thread context (may sleep)
3940 *
3941 * RETURNS:
3942 * 0 on success, -errno otherwise.
3943 */
3944 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3945 unsigned long deadline,
3946 bool *online, int (*check_ready)(struct ata_link *))
3947 {
3948 u32 scontrol;
3949 int rc;
3950
3951 DPRINTK("ENTER\n");
3952
3953 if (online)
3954 *online = false;
3955
3956 if (sata_set_spd_needed(link)) {
3957 /* SATA spec says nothing about how to reconfigure
3958 * spd. To be on the safe side, turn off phy during
3959 * reconfiguration. This works for at least ICH7 AHCI
3960 * and Sil3124.
3961 */
3962 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3963 goto out;
3964
3965 scontrol = (scontrol & 0x0f0) | 0x304;
3966
3967 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3968 goto out;
3969
3970 sata_set_spd(link);
3971 }
3972
3973 /* issue phy wake/reset */
3974 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3975 goto out;
3976
3977 scontrol = (scontrol & 0x0f0) | 0x301;
3978
3979 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3980 goto out;
3981
3982 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3983 * 10.4.2 says at least 1 ms.
3984 */
3985 ata_msleep(link->ap, 1);
3986
3987 /* bring link back */
3988 rc = sata_link_resume(link, timing, deadline);
3989 if (rc)
3990 goto out;
3991 /* if link is offline nothing more to do */
3992 if (ata_phys_link_offline(link))
3993 goto out;
3994
3995 /* Link is online. From this point, -ENODEV too is an error. */
3996 if (online)
3997 *online = true;
3998
3999 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4000 /* If PMP is supported, we have to do follow-up SRST.
4001 * Some PMPs don't send D2H Reg FIS after hardreset if
4002 * the first port is empty. Wait only for
4003 * ATA_TMOUT_PMP_SRST_WAIT.
4004 */
4005 if (check_ready) {
4006 unsigned long pmp_deadline;
4007
4008 pmp_deadline = ata_deadline(jiffies,
4009 ATA_TMOUT_PMP_SRST_WAIT);
4010 if (time_after(pmp_deadline, deadline))
4011 pmp_deadline = deadline;
4012 ata_wait_ready(link, pmp_deadline, check_ready);
4013 }
4014 rc = -EAGAIN;
4015 goto out;
4016 }
4017
4018 rc = 0;
4019 if (check_ready)
4020 rc = ata_wait_ready(link, deadline, check_ready);
4021 out:
4022 if (rc && rc != -EAGAIN) {
4023 /* online is set iff link is online && reset succeeded */
4024 if (online)
4025 *online = false;
4026 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4027 }
4028 DPRINTK("EXIT, rc=%d\n", rc);
4029 return rc;
4030 }
4031
4032 /**
4033 * sata_std_hardreset - COMRESET w/o waiting or classification
4034 * @link: link to reset
4035 * @class: resulting class of attached device
4036 * @deadline: deadline jiffies for the operation
4037 *
4038 * Standard SATA COMRESET w/o waiting or classification.
4039 *
4040 * LOCKING:
4041 * Kernel thread context (may sleep)
4042 *
4043 * RETURNS:
4044 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4045 */
4046 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4047 unsigned long deadline)
4048 {
4049 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4050 bool online;
4051 int rc;
4052
4053 /* do hardreset */
4054 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4055 return online ? -EAGAIN : rc;
4056 }
4057
4058 /**
4059 * ata_std_postreset - standard postreset callback
4060 * @link: the target ata_link
4061 * @classes: classes of attached devices
4062 *
4063 * This function is invoked after a successful reset. Note that
4064 * the device might have been reset more than once using
4065 * different reset methods before postreset is invoked.
4066 *
4067 * LOCKING:
4068 * Kernel thread context (may sleep)
4069 */
4070 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4071 {
4072 u32 serror;
4073
4074 DPRINTK("ENTER\n");
4075
4076 /* reset complete, clear SError */
4077 if (!sata_scr_read(link, SCR_ERROR, &serror))
4078 sata_scr_write(link, SCR_ERROR, serror);
4079
4080 /* print link status */
4081 sata_print_link_status(link);
4082
4083 DPRINTK("EXIT\n");
4084 }
4085
4086 /**
4087 * ata_dev_same_device - Determine whether new ID matches configured device
4088 * @dev: device to compare against
4089 * @new_class: class of the new device
4090 * @new_id: IDENTIFY page of the new device
4091 *
4092 * Compare @new_class and @new_id against @dev and determine
4093 * whether @dev is the device indicated by @new_class and
4094 * @new_id.
4095 *
4096 * LOCKING:
4097 * None.
4098 *
4099 * RETURNS:
4100 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4101 */
4102 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4103 const u16 *new_id)
4104 {
4105 const u16 *old_id = dev->id;
4106 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4107 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4108
4109 if (dev->class != new_class) {
4110 ata_dev_info(dev, "class mismatch %d != %d\n",
4111 dev->class, new_class);
4112 return 0;
4113 }
4114
4115 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4116 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4117 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4118 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4119
4120 if (strcmp(model[0], model[1])) {
4121 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4122 model[0], model[1]);
4123 return 0;
4124 }
4125
4126 if (strcmp(serial[0], serial[1])) {
4127 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4128 serial[0], serial[1]);
4129 return 0;
4130 }
4131
4132 return 1;
4133 }
4134
4135 /**
4136 * ata_dev_reread_id - Re-read IDENTIFY data
4137 * @dev: target ATA device
4138 * @readid_flags: read ID flags
4139 *
4140 * Re-read IDENTIFY page and make sure @dev is still attached to
4141 * the port.
4142 *
4143 * LOCKING:
4144 * Kernel thread context (may sleep)
4145 *
4146 * RETURNS:
4147 * 0 on success, negative errno otherwise
4148 */
4149 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4150 {
4151 unsigned int class = dev->class;
4152 u16 *id = (void *)dev->link->ap->sector_buf;
4153 int rc;
4154
4155 /* read ID data */
4156 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4157 if (rc)
4158 return rc;
4159
4160 /* is the device still there? */
4161 if (!ata_dev_same_device(dev, class, id))
4162 return -ENODEV;
4163
4164 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4165 return 0;
4166 }
4167
4168 /**
4169 * ata_dev_revalidate - Revalidate ATA device
4170 * @dev: device to revalidate
4171 * @new_class: new class code
4172 * @readid_flags: read ID flags
4173 *
4174 * Re-read IDENTIFY page, make sure @dev is still attached to the
4175 * port and reconfigure it according to the new IDENTIFY page.
4176 *
4177 * LOCKING:
4178 * Kernel thread context (may sleep)
4179 *
4180 * RETURNS:
4181 * 0 on success, negative errno otherwise
4182 */
4183 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4184 unsigned int readid_flags)
4185 {
4186 u64 n_sectors = dev->n_sectors;
4187 u64 n_native_sectors = dev->n_native_sectors;
4188 int rc;
4189
4190 if (!ata_dev_enabled(dev))
4191 return -ENODEV;
4192
4193 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4194 if (ata_class_enabled(new_class) &&
4195 new_class != ATA_DEV_ATA &&
4196 new_class != ATA_DEV_ATAPI &&
4197 new_class != ATA_DEV_ZAC &&
4198 new_class != ATA_DEV_SEMB) {
4199 ata_dev_info(dev, "class mismatch %u != %u\n",
4200 dev->class, new_class);
4201 rc = -ENODEV;
4202 goto fail;
4203 }
4204
4205 /* re-read ID */
4206 rc = ata_dev_reread_id(dev, readid_flags);
4207 if (rc)
4208 goto fail;
4209
4210 /* configure device according to the new ID */
4211 rc = ata_dev_configure(dev);
4212 if (rc)
4213 goto fail;
4214
4215 /* verify n_sectors hasn't changed */
4216 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4217 dev->n_sectors == n_sectors)
4218 return 0;
4219
4220 /* n_sectors has changed */
4221 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4222 (unsigned long long)n_sectors,
4223 (unsigned long long)dev->n_sectors);
4224
4225 /*
4226 * Something could have caused HPA to be unlocked
4227 * involuntarily. If n_native_sectors hasn't changed and the
4228 * new size matches it, keep the device.
4229 */
4230 if (dev->n_native_sectors == n_native_sectors &&
4231 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4232 ata_dev_warn(dev,
4233 "new n_sectors matches native, probably "
4234 "late HPA unlock, n_sectors updated\n");
4235 /* use the larger n_sectors */
4236 return 0;
4237 }
4238
4239 /*
4240 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4241 * unlocking HPA in those cases.
4242 *
4243 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4244 */
4245 if (dev->n_native_sectors == n_native_sectors &&
4246 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4247 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4248 ata_dev_warn(dev,
4249 "old n_sectors matches native, probably "
4250 "late HPA lock, will try to unlock HPA\n");
4251 /* try unlocking HPA */
4252 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4253 rc = -EIO;
4254 } else
4255 rc = -ENODEV;
4256
4257 /* restore original n_[native_]sectors and fail */
4258 dev->n_native_sectors = n_native_sectors;
4259 dev->n_sectors = n_sectors;
4260 fail:
4261 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4262 return rc;
4263 }
4264
4265 struct ata_blacklist_entry {
4266 const char *model_num;
4267 const char *model_rev;
4268 unsigned long horkage;
4269 };
4270
4271 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4272 /* Devices with DMA related problems under Linux */
4273 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4274 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4275 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4276 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4277 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4278 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4279 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4280 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4281 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4282 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4283 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4284 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4285 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4286 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4287 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4288 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4289 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4290 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4291 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4292 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4293 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4294 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4295 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4296 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4297 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4298 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4299 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4300 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4301 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4302 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4303 /* Odd clown on sil3726/4726 PMPs */
4304 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4305
4306 /* Weird ATAPI devices */
4307 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4308 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4309 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4310 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4311
4312 /*
4313 * Causes silent data corruption with higher max sects.
4314 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4315 */
4316 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4317
4318 /*
4319 * Device times out with higher max sects.
4320 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4321 */
4322 { "LITEON CX1-JB256-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4323
4324 /* Devices we expect to fail diagnostics */
4325
4326 /* Devices where NCQ should be avoided */
4327 /* NCQ is slow */
4328 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4329 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4330 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4331 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4332 /* NCQ is broken */
4333 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4334 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4335 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4336 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4337 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4338
4339 /* Seagate NCQ + FLUSH CACHE firmware bug */
4340 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4341 ATA_HORKAGE_FIRMWARE_WARN },
4342
4343 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4344 ATA_HORKAGE_FIRMWARE_WARN },
4345
4346 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4347 ATA_HORKAGE_FIRMWARE_WARN },
4348
4349 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4350 ATA_HORKAGE_FIRMWARE_WARN },
4351
4352 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4353 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4354 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4355 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4356
4357 /* Blacklist entries taken from Silicon Image 3124/3132
4358 Windows driver .inf file - also several Linux problem reports */
4359 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4360 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4361 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4362
4363 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4364 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4365
4366 /* devices which puke on READ_NATIVE_MAX */
4367 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4368 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4369 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4370 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4371
4372 /* this one allows HPA unlocking but fails IOs on the area */
4373 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4374
4375 /* Devices which report 1 sector over size HPA */
4376 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4377 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4378 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4379
4380 /* Devices which get the IVB wrong */
4381 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4382 /* Maybe we should just blacklist TSSTcorp... */
4383 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4384
4385 /* Devices that do not need bridging limits applied */
4386 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4387 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4388
4389 /* Devices which aren't very happy with higher link speeds */
4390 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4391 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4392
4393 /*
4394 * Devices which choke on SETXFER. Applies only if both the
4395 * device and controller are SATA.
4396 */
4397 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4398 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4399 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4400 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4401 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4402
4403 /* devices that don't properly handle queued TRIM commands */
4404 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4405 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4406 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4407 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4408 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4409 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4410 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4411 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4412 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4413 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4414 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4415 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4416 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4417 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4418
4419 /* devices that don't properly handle TRIM commands */
4420 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4421
4422 /*
4423 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4424 * (Return Zero After Trim) flags in the ATA Command Set are
4425 * unreliable in the sense that they only define what happens if
4426 * the device successfully executed the DSM TRIM command. TRIM
4427 * is only advisory, however, and the device is free to silently
4428 * ignore all or parts of the request.
4429 *
4430 * Whitelist drives that are known to reliably return zeroes
4431 * after TRIM.
4432 */
4433
4434 /*
4435 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4436 * that model before whitelisting all other intel SSDs.
4437 */
4438 { "INTEL*SSDSC2MH*", NULL, 0, },
4439
4440 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4441 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4442 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4443 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4444 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4445 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4446 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4447
4448 /*
4449 * Some WD SATA-I drives spin up and down erratically when the link
4450 * is put into the slumber mode. We don't have full list of the
4451 * affected devices. Disable LPM if the device matches one of the
4452 * known prefixes and is SATA-1. As a side effect LPM partial is
4453 * lost too.
4454 *
4455 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4456 */
4457 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4458 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4459 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4460 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4461 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4462 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4463 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4464
4465 /* End Marker */
4466 { }
4467 };
4468
4469 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4470 {
4471 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4472 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4473 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4474
4475 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4476 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4477
4478 while (ad->model_num) {
4479 if (glob_match(ad->model_num, model_num)) {
4480 if (ad->model_rev == NULL)
4481 return ad->horkage;
4482 if (glob_match(ad->model_rev, model_rev))
4483 return ad->horkage;
4484 }
4485 ad++;
4486 }
4487 return 0;
4488 }
4489
4490 static int ata_dma_blacklisted(const struct ata_device *dev)
4491 {
4492 /* We don't support polling DMA.
4493 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4494 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4495 */
4496 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4497 (dev->flags & ATA_DFLAG_CDB_INTR))
4498 return 1;
4499 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4500 }
4501
4502 /**
4503 * ata_is_40wire - check drive side detection
4504 * @dev: device
4505 *
4506 * Perform drive side detection decoding, allowing for device vendors
4507 * who can't follow the documentation.
4508 */
4509
4510 static int ata_is_40wire(struct ata_device *dev)
4511 {
4512 if (dev->horkage & ATA_HORKAGE_IVB)
4513 return ata_drive_40wire_relaxed(dev->id);
4514 return ata_drive_40wire(dev->id);
4515 }
4516
4517 /**
4518 * cable_is_40wire - 40/80/SATA decider
4519 * @ap: port to consider
4520 *
4521 * This function encapsulates the policy for speed management
4522 * in one place. At the moment we don't cache the result but
4523 * there is a good case for setting ap->cbl to the result when
4524 * we are called with unknown cables (and figuring out if it
4525 * impacts hotplug at all).
4526 *
4527 * Return 1 if the cable appears to be 40 wire.
4528 */
4529
4530 static int cable_is_40wire(struct ata_port *ap)
4531 {
4532 struct ata_link *link;
4533 struct ata_device *dev;
4534
4535 /* If the controller thinks we are 40 wire, we are. */
4536 if (ap->cbl == ATA_CBL_PATA40)
4537 return 1;
4538
4539 /* If the controller thinks we are 80 wire, we are. */
4540 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4541 return 0;
4542
4543 /* If the system is known to be 40 wire short cable (eg
4544 * laptop), then we allow 80 wire modes even if the drive
4545 * isn't sure.
4546 */
4547 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4548 return 0;
4549
4550 /* If the controller doesn't know, we scan.
4551 *
4552 * Note: We look for all 40 wire detects at this point. Any
4553 * 80 wire detect is taken to be 80 wire cable because
4554 * - in many setups only the one drive (slave if present) will
4555 * give a valid detect
4556 * - if you have a non detect capable drive you don't want it
4557 * to colour the choice
4558 */
4559 ata_for_each_link(link, ap, EDGE) {
4560 ata_for_each_dev(dev, link, ENABLED) {
4561 if (!ata_is_40wire(dev))
4562 return 0;
4563 }
4564 }
4565 return 1;
4566 }
4567
4568 /**
4569 * ata_dev_xfermask - Compute supported xfermask of the given device
4570 * @dev: Device to compute xfermask for
4571 *
4572 * Compute supported xfermask of @dev and store it in
4573 * dev->*_mask. This function is responsible for applying all
4574 * known limits including host controller limits, device
4575 * blacklist, etc...
4576 *
4577 * LOCKING:
4578 * None.
4579 */
4580 static void ata_dev_xfermask(struct ata_device *dev)
4581 {
4582 struct ata_link *link = dev->link;
4583 struct ata_port *ap = link->ap;
4584 struct ata_host *host = ap->host;
4585 unsigned long xfer_mask;
4586
4587 /* controller modes available */
4588 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4589 ap->mwdma_mask, ap->udma_mask);
4590
4591 /* drive modes available */
4592 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4593 dev->mwdma_mask, dev->udma_mask);
4594 xfer_mask &= ata_id_xfermask(dev->id);
4595
4596 /*
4597 * CFA Advanced TrueIDE timings are not allowed on a shared
4598 * cable
4599 */
4600 if (ata_dev_pair(dev)) {
4601 /* No PIO5 or PIO6 */
4602 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4603 /* No MWDMA3 or MWDMA 4 */
4604 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4605 }
4606
4607 if (ata_dma_blacklisted(dev)) {
4608 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4609 ata_dev_warn(dev,
4610 "device is on DMA blacklist, disabling DMA\n");
4611 }
4612
4613 if ((host->flags & ATA_HOST_SIMPLEX) &&
4614 host->simplex_claimed && host->simplex_claimed != ap) {
4615 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4616 ata_dev_warn(dev,
4617 "simplex DMA is claimed by other device, disabling DMA\n");
4618 }
4619
4620 if (ap->flags & ATA_FLAG_NO_IORDY)
4621 xfer_mask &= ata_pio_mask_no_iordy(dev);
4622
4623 if (ap->ops->mode_filter)
4624 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4625
4626 /* Apply cable rule here. Don't apply it early because when
4627 * we handle hot plug the cable type can itself change.
4628 * Check this last so that we know if the transfer rate was
4629 * solely limited by the cable.
4630 * Unknown or 80 wire cables reported host side are checked
4631 * drive side as well. Cases where we know a 40wire cable
4632 * is used safely for 80 are not checked here.
4633 */
4634 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4635 /* UDMA/44 or higher would be available */
4636 if (cable_is_40wire(ap)) {
4637 ata_dev_warn(dev,
4638 "limited to UDMA/33 due to 40-wire cable\n");
4639 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4640 }
4641
4642 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4643 &dev->mwdma_mask, &dev->udma_mask);
4644 }
4645
4646 /**
4647 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4648 * @dev: Device to which command will be sent
4649 *
4650 * Issue SET FEATURES - XFER MODE command to device @dev
4651 * on port @ap.
4652 *
4653 * LOCKING:
4654 * PCI/etc. bus probe sem.
4655 *
4656 * RETURNS:
4657 * 0 on success, AC_ERR_* mask otherwise.
4658 */
4659
4660 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4661 {
4662 struct ata_taskfile tf;
4663 unsigned int err_mask;
4664
4665 /* set up set-features taskfile */
4666 DPRINTK("set features - xfer mode\n");
4667
4668 /* Some controllers and ATAPI devices show flaky interrupt
4669 * behavior after setting xfer mode. Use polling instead.
4670 */
4671 ata_tf_init(dev, &tf);
4672 tf.command = ATA_CMD_SET_FEATURES;
4673 tf.feature = SETFEATURES_XFER;
4674 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4675 tf.protocol = ATA_PROT_NODATA;
4676 /* If we are using IORDY we must send the mode setting command */
4677 if (ata_pio_need_iordy(dev))
4678 tf.nsect = dev->xfer_mode;
4679 /* If the device has IORDY and the controller does not - turn it off */
4680 else if (ata_id_has_iordy(dev->id))
4681 tf.nsect = 0x01;
4682 else /* In the ancient relic department - skip all of this */
4683 return 0;
4684
4685 /* On some disks, this command causes spin-up, so we need longer timeout */
4686 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4687
4688 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4689 return err_mask;
4690 }
4691
4692 /**
4693 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4694 * @dev: Device to which command will be sent
4695 * @enable: Whether to enable or disable the feature
4696 * @feature: The sector count represents the feature to set
4697 *
4698 * Issue SET FEATURES - SATA FEATURES command to device @dev
4699 * on port @ap with sector count
4700 *
4701 * LOCKING:
4702 * PCI/etc. bus probe sem.
4703 *
4704 * RETURNS:
4705 * 0 on success, AC_ERR_* mask otherwise.
4706 */
4707 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4708 {
4709 struct ata_taskfile tf;
4710 unsigned int err_mask;
4711 unsigned long timeout = 0;
4712
4713 /* set up set-features taskfile */
4714 DPRINTK("set features - SATA features\n");
4715
4716 ata_tf_init(dev, &tf);
4717 tf.command = ATA_CMD_SET_FEATURES;
4718 tf.feature = enable;
4719 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4720 tf.protocol = ATA_PROT_NODATA;
4721 tf.nsect = feature;
4722
4723 if (enable == SETFEATURES_SPINUP)
4724 timeout = ata_probe_timeout ?
4725 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4727
4728 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4729 return err_mask;
4730 }
4731 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4732
4733 /**
4734 * ata_dev_init_params - Issue INIT DEV PARAMS command
4735 * @dev: Device to which command will be sent
4736 * @heads: Number of heads (taskfile parameter)
4737 * @sectors: Number of sectors (taskfile parameter)
4738 *
4739 * LOCKING:
4740 * Kernel thread context (may sleep)
4741 *
4742 * RETURNS:
4743 * 0 on success, AC_ERR_* mask otherwise.
4744 */
4745 static unsigned int ata_dev_init_params(struct ata_device *dev,
4746 u16 heads, u16 sectors)
4747 {
4748 struct ata_taskfile tf;
4749 unsigned int err_mask;
4750
4751 /* Number of sectors per track 1-255. Number of heads 1-16 */
4752 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4753 return AC_ERR_INVALID;
4754
4755 /* set up init dev params taskfile */
4756 DPRINTK("init dev params \n");
4757
4758 ata_tf_init(dev, &tf);
4759 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4760 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4761 tf.protocol = ATA_PROT_NODATA;
4762 tf.nsect = sectors;
4763 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4764
4765 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4766 /* A clean abort indicates an original or just out of spec drive
4767 and we should continue as we issue the setup based on the
4768 drive reported working geometry */
4769 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4770 err_mask = 0;
4771
4772 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4773 return err_mask;
4774 }
4775
4776 /**
4777 * ata_sg_clean - Unmap DMA memory associated with command
4778 * @qc: Command containing DMA memory to be released
4779 *
4780 * Unmap all mapped DMA memory associated with this command.
4781 *
4782 * LOCKING:
4783 * spin_lock_irqsave(host lock)
4784 */
4785 void ata_sg_clean(struct ata_queued_cmd *qc)
4786 {
4787 struct ata_port *ap = qc->ap;
4788 struct scatterlist *sg = qc->sg;
4789 int dir = qc->dma_dir;
4790
4791 WARN_ON_ONCE(sg == NULL);
4792
4793 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4794
4795 if (qc->n_elem)
4796 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4797
4798 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4799 qc->sg = NULL;
4800 }
4801
4802 /**
4803 * atapi_check_dma - Check whether ATAPI DMA can be supported
4804 * @qc: Metadata associated with taskfile to check
4805 *
4806 * Allow low-level driver to filter ATA PACKET commands, returning
4807 * a status indicating whether or not it is OK to use DMA for the
4808 * supplied PACKET command.
4809 *
4810 * LOCKING:
4811 * spin_lock_irqsave(host lock)
4812 *
4813 * RETURNS: 0 when ATAPI DMA can be used
4814 * nonzero otherwise
4815 */
4816 int atapi_check_dma(struct ata_queued_cmd *qc)
4817 {
4818 struct ata_port *ap = qc->ap;
4819
4820 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4821 * few ATAPI devices choke on such DMA requests.
4822 */
4823 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4824 unlikely(qc->nbytes & 15))
4825 return 1;
4826
4827 if (ap->ops->check_atapi_dma)
4828 return ap->ops->check_atapi_dma(qc);
4829
4830 return 0;
4831 }
4832
4833 /**
4834 * ata_std_qc_defer - Check whether a qc needs to be deferred
4835 * @qc: ATA command in question
4836 *
4837 * Non-NCQ commands cannot run with any other command, NCQ or
4838 * not. As upper layer only knows the queue depth, we are
4839 * responsible for maintaining exclusion. This function checks
4840 * whether a new command @qc can be issued.
4841 *
4842 * LOCKING:
4843 * spin_lock_irqsave(host lock)
4844 *
4845 * RETURNS:
4846 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4847 */
4848 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4849 {
4850 struct ata_link *link = qc->dev->link;
4851
4852 if (ata_is_ncq(qc->tf.protocol)) {
4853 if (!ata_tag_valid(link->active_tag))
4854 return 0;
4855 } else {
4856 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4857 return 0;
4858 }
4859
4860 return ATA_DEFER_LINK;
4861 }
4862
4863 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4864
4865 /**
4866 * ata_sg_init - Associate command with scatter-gather table.
4867 * @qc: Command to be associated
4868 * @sg: Scatter-gather table.
4869 * @n_elem: Number of elements in s/g table.
4870 *
4871 * Initialize the data-related elements of queued_cmd @qc
4872 * to point to a scatter-gather table @sg, containing @n_elem
4873 * elements.
4874 *
4875 * LOCKING:
4876 * spin_lock_irqsave(host lock)
4877 */
4878 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4879 unsigned int n_elem)
4880 {
4881 qc->sg = sg;
4882 qc->n_elem = n_elem;
4883 qc->cursg = qc->sg;
4884 }
4885
4886 /**
4887 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4888 * @qc: Command with scatter-gather table to be mapped.
4889 *
4890 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4891 *
4892 * LOCKING:
4893 * spin_lock_irqsave(host lock)
4894 *
4895 * RETURNS:
4896 * Zero on success, negative on error.
4897 *
4898 */
4899 static int ata_sg_setup(struct ata_queued_cmd *qc)
4900 {
4901 struct ata_port *ap = qc->ap;
4902 unsigned int n_elem;
4903
4904 VPRINTK("ENTER, ata%u\n", ap->print_id);
4905
4906 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4907 if (n_elem < 1)
4908 return -1;
4909
4910 DPRINTK("%d sg elements mapped\n", n_elem);
4911 qc->orig_n_elem = qc->n_elem;
4912 qc->n_elem = n_elem;
4913 qc->flags |= ATA_QCFLAG_DMAMAP;
4914
4915 return 0;
4916 }
4917
4918 /**
4919 * swap_buf_le16 - swap halves of 16-bit words in place
4920 * @buf: Buffer to swap
4921 * @buf_words: Number of 16-bit words in buffer.
4922 *
4923 * Swap halves of 16-bit words if needed to convert from
4924 * little-endian byte order to native cpu byte order, or
4925 * vice-versa.
4926 *
4927 * LOCKING:
4928 * Inherited from caller.
4929 */
4930 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4931 {
4932 #ifdef __BIG_ENDIAN
4933 unsigned int i;
4934
4935 for (i = 0; i < buf_words; i++)
4936 buf[i] = le16_to_cpu(buf[i]);
4937 #endif /* __BIG_ENDIAN */
4938 }
4939
4940 /**
4941 * ata_qc_new_init - Request an available ATA command, and initialize it
4942 * @dev: Device from whom we request an available command structure
4943 * @tag: tag
4944 *
4945 * LOCKING:
4946 * None.
4947 */
4948
4949 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4950 {
4951 struct ata_port *ap = dev->link->ap;
4952 struct ata_queued_cmd *qc;
4953
4954 /* no command while frozen */
4955 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4956 return NULL;
4957
4958 /* libsas case */
4959 if (ap->flags & ATA_FLAG_SAS_HOST) {
4960 tag = ata_sas_allocate_tag(ap);
4961 if (tag < 0)
4962 return NULL;
4963 }
4964
4965 qc = __ata_qc_from_tag(ap, tag);
4966 qc->tag = tag;
4967 qc->scsicmd = NULL;
4968 qc->ap = ap;
4969 qc->dev = dev;
4970
4971 ata_qc_reinit(qc);
4972
4973 return qc;
4974 }
4975
4976 /**
4977 * ata_qc_free - free unused ata_queued_cmd
4978 * @qc: Command to complete
4979 *
4980 * Designed to free unused ata_queued_cmd object
4981 * in case something prevents using it.
4982 *
4983 * LOCKING:
4984 * spin_lock_irqsave(host lock)
4985 */
4986 void ata_qc_free(struct ata_queued_cmd *qc)
4987 {
4988 struct ata_port *ap;
4989 unsigned int tag;
4990
4991 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4992 ap = qc->ap;
4993
4994 qc->flags = 0;
4995 tag = qc->tag;
4996 if (likely(ata_tag_valid(tag))) {
4997 qc->tag = ATA_TAG_POISON;
4998 if (ap->flags & ATA_FLAG_SAS_HOST)
4999 ata_sas_free_tag(tag, ap);
5000 }
5001 }
5002
5003 void __ata_qc_complete(struct ata_queued_cmd *qc)
5004 {
5005 struct ata_port *ap;
5006 struct ata_link *link;
5007
5008 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5009 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5010 ap = qc->ap;
5011 link = qc->dev->link;
5012
5013 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5014 ata_sg_clean(qc);
5015
5016 /* command should be marked inactive atomically with qc completion */
5017 if (ata_is_ncq(qc->tf.protocol)) {
5018 link->sactive &= ~(1 << qc->tag);
5019 if (!link->sactive)
5020 ap->nr_active_links--;
5021 } else {
5022 link->active_tag = ATA_TAG_POISON;
5023 ap->nr_active_links--;
5024 }
5025
5026 /* clear exclusive status */
5027 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5028 ap->excl_link == link))
5029 ap->excl_link = NULL;
5030
5031 /* atapi: mark qc as inactive to prevent the interrupt handler
5032 * from completing the command twice later, before the error handler
5033 * is called. (when rc != 0 and atapi request sense is needed)
5034 */
5035 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5036 ap->qc_active &= ~(1 << qc->tag);
5037
5038 /* call completion callback */
5039 qc->complete_fn(qc);
5040 }
5041
5042 static void fill_result_tf(struct ata_queued_cmd *qc)
5043 {
5044 struct ata_port *ap = qc->ap;
5045
5046 qc->result_tf.flags = qc->tf.flags;
5047 ap->ops->qc_fill_rtf(qc);
5048 }
5049
5050 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5051 {
5052 struct ata_device *dev = qc->dev;
5053
5054 if (!ata_is_data(qc->tf.protocol))
5055 return;
5056
5057 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5058 return;
5059
5060 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5061 }
5062
5063 /**
5064 * ata_qc_complete - Complete an active ATA command
5065 * @qc: Command to complete
5066 *
5067 * Indicate to the mid and upper layers that an ATA command has
5068 * completed, with either an ok or not-ok status.
5069 *
5070 * Refrain from calling this function multiple times when
5071 * successfully completing multiple NCQ commands.
5072 * ata_qc_complete_multiple() should be used instead, which will
5073 * properly update IRQ expect state.
5074 *
5075 * LOCKING:
5076 * spin_lock_irqsave(host lock)
5077 */
5078 void ata_qc_complete(struct ata_queued_cmd *qc)
5079 {
5080 struct ata_port *ap = qc->ap;
5081
5082 /* Trigger the LED (if available) */
5083 ledtrig_disk_activity();
5084
5085 /* XXX: New EH and old EH use different mechanisms to
5086 * synchronize EH with regular execution path.
5087 *
5088 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5089 * Normal execution path is responsible for not accessing a
5090 * failed qc. libata core enforces the rule by returning NULL
5091 * from ata_qc_from_tag() for failed qcs.
5092 *
5093 * Old EH depends on ata_qc_complete() nullifying completion
5094 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5095 * not synchronize with interrupt handler. Only PIO task is
5096 * taken care of.
5097 */
5098 if (ap->ops->error_handler) {
5099 struct ata_device *dev = qc->dev;
5100 struct ata_eh_info *ehi = &dev->link->eh_info;
5101
5102 if (unlikely(qc->err_mask))
5103 qc->flags |= ATA_QCFLAG_FAILED;
5104
5105 /*
5106 * Finish internal commands without any further processing
5107 * and always with the result TF filled.
5108 */
5109 if (unlikely(ata_tag_internal(qc->tag))) {
5110 fill_result_tf(qc);
5111 trace_ata_qc_complete_internal(qc);
5112 __ata_qc_complete(qc);
5113 return;
5114 }
5115
5116 /*
5117 * Non-internal qc has failed. Fill the result TF and
5118 * summon EH.
5119 */
5120 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5121 fill_result_tf(qc);
5122 trace_ata_qc_complete_failed(qc);
5123 ata_qc_schedule_eh(qc);
5124 return;
5125 }
5126
5127 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5128
5129 /* read result TF if requested */
5130 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5131 fill_result_tf(qc);
5132
5133 trace_ata_qc_complete_done(qc);
5134 /* Some commands need post-processing after successful
5135 * completion.
5136 */
5137 switch (qc->tf.command) {
5138 case ATA_CMD_SET_FEATURES:
5139 if (qc->tf.feature != SETFEATURES_WC_ON &&
5140 qc->tf.feature != SETFEATURES_WC_OFF &&
5141 qc->tf.feature != SETFEATURES_RA_ON &&
5142 qc->tf.feature != SETFEATURES_RA_OFF)
5143 break;
5144 /* fall through */
5145 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5146 case ATA_CMD_SET_MULTI: /* multi_count changed */
5147 /* revalidate device */
5148 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5149 ata_port_schedule_eh(ap);
5150 break;
5151
5152 case ATA_CMD_SLEEP:
5153 dev->flags |= ATA_DFLAG_SLEEPING;
5154 break;
5155 }
5156
5157 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5158 ata_verify_xfer(qc);
5159
5160 __ata_qc_complete(qc);
5161 } else {
5162 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5163 return;
5164
5165 /* read result TF if failed or requested */
5166 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5167 fill_result_tf(qc);
5168
5169 __ata_qc_complete(qc);
5170 }
5171 }
5172
5173 /**
5174 * ata_qc_complete_multiple - Complete multiple qcs successfully
5175 * @ap: port in question
5176 * @qc_active: new qc_active mask
5177 *
5178 * Complete in-flight commands. This functions is meant to be
5179 * called from low-level driver's interrupt routine to complete
5180 * requests normally. ap->qc_active and @qc_active is compared
5181 * and commands are completed accordingly.
5182 *
5183 * Always use this function when completing multiple NCQ commands
5184 * from IRQ handlers instead of calling ata_qc_complete()
5185 * multiple times to keep IRQ expect status properly in sync.
5186 *
5187 * LOCKING:
5188 * spin_lock_irqsave(host lock)
5189 *
5190 * RETURNS:
5191 * Number of completed commands on success, -errno otherwise.
5192 */
5193 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5194 {
5195 int nr_done = 0;
5196 u32 done_mask;
5197
5198 done_mask = ap->qc_active ^ qc_active;
5199
5200 if (unlikely(done_mask & qc_active)) {
5201 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5202 ap->qc_active, qc_active);
5203 return -EINVAL;
5204 }
5205
5206 while (done_mask) {
5207 struct ata_queued_cmd *qc;
5208 unsigned int tag = __ffs(done_mask);
5209
5210 qc = ata_qc_from_tag(ap, tag);
5211 if (qc) {
5212 ata_qc_complete(qc);
5213 nr_done++;
5214 }
5215 done_mask &= ~(1 << tag);
5216 }
5217
5218 return nr_done;
5219 }
5220
5221 /**
5222 * ata_qc_issue - issue taskfile to device
5223 * @qc: command to issue to device
5224 *
5225 * Prepare an ATA command to submission to device.
5226 * This includes mapping the data into a DMA-able
5227 * area, filling in the S/G table, and finally
5228 * writing the taskfile to hardware, starting the command.
5229 *
5230 * LOCKING:
5231 * spin_lock_irqsave(host lock)
5232 */
5233 void ata_qc_issue(struct ata_queued_cmd *qc)
5234 {
5235 struct ata_port *ap = qc->ap;
5236 struct ata_link *link = qc->dev->link;
5237 u8 prot = qc->tf.protocol;
5238
5239 /* Make sure only one non-NCQ command is outstanding. The
5240 * check is skipped for old EH because it reuses active qc to
5241 * request ATAPI sense.
5242 */
5243 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5244
5245 if (ata_is_ncq(prot)) {
5246 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5247
5248 if (!link->sactive)
5249 ap->nr_active_links++;
5250 link->sactive |= 1 << qc->tag;
5251 } else {
5252 WARN_ON_ONCE(link->sactive);
5253
5254 ap->nr_active_links++;
5255 link->active_tag = qc->tag;
5256 }
5257
5258 qc->flags |= ATA_QCFLAG_ACTIVE;
5259 ap->qc_active |= 1 << qc->tag;
5260
5261 /*
5262 * We guarantee to LLDs that they will have at least one
5263 * non-zero sg if the command is a data command.
5264 */
5265 if (WARN_ON_ONCE(ata_is_data(prot) &&
5266 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5267 goto sys_err;
5268
5269 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5270 (ap->flags & ATA_FLAG_PIO_DMA)))
5271 if (ata_sg_setup(qc))
5272 goto sys_err;
5273
5274 /* if device is sleeping, schedule reset and abort the link */
5275 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5276 link->eh_info.action |= ATA_EH_RESET;
5277 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5278 ata_link_abort(link);
5279 return;
5280 }
5281
5282 ap->ops->qc_prep(qc);
5283 trace_ata_qc_issue(qc);
5284 qc->err_mask |= ap->ops->qc_issue(qc);
5285 if (unlikely(qc->err_mask))
5286 goto err;
5287 return;
5288
5289 sys_err:
5290 qc->err_mask |= AC_ERR_SYSTEM;
5291 err:
5292 ata_qc_complete(qc);
5293 }
5294
5295 /**
5296 * sata_scr_valid - test whether SCRs are accessible
5297 * @link: ATA link to test SCR accessibility for
5298 *
5299 * Test whether SCRs are accessible for @link.
5300 *
5301 * LOCKING:
5302 * None.
5303 *
5304 * RETURNS:
5305 * 1 if SCRs are accessible, 0 otherwise.
5306 */
5307 int sata_scr_valid(struct ata_link *link)
5308 {
5309 struct ata_port *ap = link->ap;
5310
5311 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5312 }
5313
5314 /**
5315 * sata_scr_read - read SCR register of the specified port
5316 * @link: ATA link to read SCR for
5317 * @reg: SCR to read
5318 * @val: Place to store read value
5319 *
5320 * Read SCR register @reg of @link into *@val. This function is
5321 * guaranteed to succeed if @link is ap->link, the cable type of
5322 * the port is SATA and the port implements ->scr_read.
5323 *
5324 * LOCKING:
5325 * None if @link is ap->link. Kernel thread context otherwise.
5326 *
5327 * RETURNS:
5328 * 0 on success, negative errno on failure.
5329 */
5330 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5331 {
5332 if (ata_is_host_link(link)) {
5333 if (sata_scr_valid(link))
5334 return link->ap->ops->scr_read(link, reg, val);
5335 return -EOPNOTSUPP;
5336 }
5337
5338 return sata_pmp_scr_read(link, reg, val);
5339 }
5340
5341 /**
5342 * sata_scr_write - write SCR register of the specified port
5343 * @link: ATA link to write SCR for
5344 * @reg: SCR to write
5345 * @val: value to write
5346 *
5347 * Write @val to SCR register @reg of @link. This function is
5348 * guaranteed to succeed if @link is ap->link, the cable type of
5349 * the port is SATA and the port implements ->scr_read.
5350 *
5351 * LOCKING:
5352 * None if @link is ap->link. Kernel thread context otherwise.
5353 *
5354 * RETURNS:
5355 * 0 on success, negative errno on failure.
5356 */
5357 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5358 {
5359 if (ata_is_host_link(link)) {
5360 if (sata_scr_valid(link))
5361 return link->ap->ops->scr_write(link, reg, val);
5362 return -EOPNOTSUPP;
5363 }
5364
5365 return sata_pmp_scr_write(link, reg, val);
5366 }
5367
5368 /**
5369 * sata_scr_write_flush - write SCR register of the specified port and flush
5370 * @link: ATA link to write SCR for
5371 * @reg: SCR to write
5372 * @val: value to write
5373 *
5374 * This function is identical to sata_scr_write() except that this
5375 * function performs flush after writing to the register.
5376 *
5377 * LOCKING:
5378 * None if @link is ap->link. Kernel thread context otherwise.
5379 *
5380 * RETURNS:
5381 * 0 on success, negative errno on failure.
5382 */
5383 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5384 {
5385 if (ata_is_host_link(link)) {
5386 int rc;
5387
5388 if (sata_scr_valid(link)) {
5389 rc = link->ap->ops->scr_write(link, reg, val);
5390 if (rc == 0)
5391 rc = link->ap->ops->scr_read(link, reg, &val);
5392 return rc;
5393 }
5394 return -EOPNOTSUPP;
5395 }
5396
5397 return sata_pmp_scr_write(link, reg, val);
5398 }
5399
5400 /**
5401 * ata_phys_link_online - test whether the given link is online
5402 * @link: ATA link to test
5403 *
5404 * Test whether @link is online. Note that this function returns
5405 * 0 if online status of @link cannot be obtained, so
5406 * ata_link_online(link) != !ata_link_offline(link).
5407 *
5408 * LOCKING:
5409 * None.
5410 *
5411 * RETURNS:
5412 * True if the port online status is available and online.
5413 */
5414 bool ata_phys_link_online(struct ata_link *link)
5415 {
5416 u32 sstatus;
5417
5418 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5419 ata_sstatus_online(sstatus))
5420 return true;
5421 return false;
5422 }
5423
5424 /**
5425 * ata_phys_link_offline - test whether the given link is offline
5426 * @link: ATA link to test
5427 *
5428 * Test whether @link is offline. Note that this function
5429 * returns 0 if offline status of @link cannot be obtained, so
5430 * ata_link_online(link) != !ata_link_offline(link).
5431 *
5432 * LOCKING:
5433 * None.
5434 *
5435 * RETURNS:
5436 * True if the port offline status is available and offline.
5437 */
5438 bool ata_phys_link_offline(struct ata_link *link)
5439 {
5440 u32 sstatus;
5441
5442 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5443 !ata_sstatus_online(sstatus))
5444 return true;
5445 return false;
5446 }
5447
5448 /**
5449 * ata_link_online - test whether the given link is online
5450 * @link: ATA link to test
5451 *
5452 * Test whether @link is online. This is identical to
5453 * ata_phys_link_online() when there's no slave link. When
5454 * there's a slave link, this function should only be called on
5455 * the master link and will return true if any of M/S links is
5456 * online.
5457 *
5458 * LOCKING:
5459 * None.
5460 *
5461 * RETURNS:
5462 * True if the port online status is available and online.
5463 */
5464 bool ata_link_online(struct ata_link *link)
5465 {
5466 struct ata_link *slave = link->ap->slave_link;
5467
5468 WARN_ON(link == slave); /* shouldn't be called on slave link */
5469
5470 return ata_phys_link_online(link) ||
5471 (slave && ata_phys_link_online(slave));
5472 }
5473
5474 /**
5475 * ata_link_offline - test whether the given link is offline
5476 * @link: ATA link to test
5477 *
5478 * Test whether @link is offline. This is identical to
5479 * ata_phys_link_offline() when there's no slave link. When
5480 * there's a slave link, this function should only be called on
5481 * the master link and will return true if both M/S links are
5482 * offline.
5483 *
5484 * LOCKING:
5485 * None.
5486 *
5487 * RETURNS:
5488 * True if the port offline status is available and offline.
5489 */
5490 bool ata_link_offline(struct ata_link *link)
5491 {
5492 struct ata_link *slave = link->ap->slave_link;
5493
5494 WARN_ON(link == slave); /* shouldn't be called on slave link */
5495
5496 return ata_phys_link_offline(link) &&
5497 (!slave || ata_phys_link_offline(slave));
5498 }
5499
5500 #ifdef CONFIG_PM
5501 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5502 unsigned int action, unsigned int ehi_flags,
5503 bool async)
5504 {
5505 struct ata_link *link;
5506 unsigned long flags;
5507
5508 /* Previous resume operation might still be in
5509 * progress. Wait for PM_PENDING to clear.
5510 */
5511 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5512 ata_port_wait_eh(ap);
5513 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5514 }
5515
5516 /* request PM ops to EH */
5517 spin_lock_irqsave(ap->lock, flags);
5518
5519 ap->pm_mesg = mesg;
5520 ap->pflags |= ATA_PFLAG_PM_PENDING;
5521 ata_for_each_link(link, ap, HOST_FIRST) {
5522 link->eh_info.action |= action;
5523 link->eh_info.flags |= ehi_flags;
5524 }
5525
5526 ata_port_schedule_eh(ap);
5527
5528 spin_unlock_irqrestore(ap->lock, flags);
5529
5530 if (!async) {
5531 ata_port_wait_eh(ap);
5532 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5533 }
5534 }
5535
5536 /*
5537 * On some hardware, device fails to respond after spun down for suspend. As
5538 * the device won't be used before being resumed, we don't need to touch the
5539 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5540 *
5541 * http://thread.gmane.org/gmane.linux.ide/46764
5542 */
5543 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5544 | ATA_EHI_NO_AUTOPSY
5545 | ATA_EHI_NO_RECOVERY;
5546
5547 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5548 {
5549 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5550 }
5551
5552 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5553 {
5554 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5555 }
5556
5557 static int ata_port_pm_suspend(struct device *dev)
5558 {
5559 struct ata_port *ap = to_ata_port(dev);
5560
5561 if (pm_runtime_suspended(dev))
5562 return 0;
5563
5564 ata_port_suspend(ap, PMSG_SUSPEND);
5565 return 0;
5566 }
5567
5568 static int ata_port_pm_freeze(struct device *dev)
5569 {
5570 struct ata_port *ap = to_ata_port(dev);
5571
5572 if (pm_runtime_suspended(dev))
5573 return 0;
5574
5575 ata_port_suspend(ap, PMSG_FREEZE);
5576 return 0;
5577 }
5578
5579 static int ata_port_pm_poweroff(struct device *dev)
5580 {
5581 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5582 return 0;
5583 }
5584
5585 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5586 | ATA_EHI_QUIET;
5587
5588 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5589 {
5590 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5591 }
5592
5593 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5594 {
5595 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5596 }
5597
5598 static int ata_port_pm_resume(struct device *dev)
5599 {
5600 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5601 pm_runtime_disable(dev);
5602 pm_runtime_set_active(dev);
5603 pm_runtime_enable(dev);
5604 return 0;
5605 }
5606
5607 /*
5608 * For ODDs, the upper layer will poll for media change every few seconds,
5609 * which will make it enter and leave suspend state every few seconds. And
5610 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5611 * is very little and the ODD may malfunction after constantly being reset.
5612 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5613 * ODD is attached to the port.
5614 */
5615 static int ata_port_runtime_idle(struct device *dev)
5616 {
5617 struct ata_port *ap = to_ata_port(dev);
5618 struct ata_link *link;
5619 struct ata_device *adev;
5620
5621 ata_for_each_link(link, ap, HOST_FIRST) {
5622 ata_for_each_dev(adev, link, ENABLED)
5623 if (adev->class == ATA_DEV_ATAPI &&
5624 !zpodd_dev_enabled(adev))
5625 return -EBUSY;
5626 }
5627
5628 return 0;
5629 }
5630
5631 static int ata_port_runtime_suspend(struct device *dev)
5632 {
5633 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5634 return 0;
5635 }
5636
5637 static int ata_port_runtime_resume(struct device *dev)
5638 {
5639 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5640 return 0;
5641 }
5642
5643 static const struct dev_pm_ops ata_port_pm_ops = {
5644 .suspend = ata_port_pm_suspend,
5645 .resume = ata_port_pm_resume,
5646 .freeze = ata_port_pm_freeze,
5647 .thaw = ata_port_pm_resume,
5648 .poweroff = ata_port_pm_poweroff,
5649 .restore = ata_port_pm_resume,
5650
5651 .runtime_suspend = ata_port_runtime_suspend,
5652 .runtime_resume = ata_port_runtime_resume,
5653 .runtime_idle = ata_port_runtime_idle,
5654 };
5655
5656 /* sas ports don't participate in pm runtime management of ata_ports,
5657 * and need to resume ata devices at the domain level, not the per-port
5658 * level. sas suspend/resume is async to allow parallel port recovery
5659 * since sas has multiple ata_port instances per Scsi_Host.
5660 */
5661 void ata_sas_port_suspend(struct ata_port *ap)
5662 {
5663 ata_port_suspend_async(ap, PMSG_SUSPEND);
5664 }
5665 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5666
5667 void ata_sas_port_resume(struct ata_port *ap)
5668 {
5669 ata_port_resume_async(ap, PMSG_RESUME);
5670 }
5671 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5672
5673 /**
5674 * ata_host_suspend - suspend host
5675 * @host: host to suspend
5676 * @mesg: PM message
5677 *
5678 * Suspend @host. Actual operation is performed by port suspend.
5679 */
5680 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5681 {
5682 host->dev->power.power_state = mesg;
5683 return 0;
5684 }
5685
5686 /**
5687 * ata_host_resume - resume host
5688 * @host: host to resume
5689 *
5690 * Resume @host. Actual operation is performed by port resume.
5691 */
5692 void ata_host_resume(struct ata_host *host)
5693 {
5694 host->dev->power.power_state = PMSG_ON;
5695 }
5696 #endif
5697
5698 struct device_type ata_port_type = {
5699 .name = "ata_port",
5700 #ifdef CONFIG_PM
5701 .pm = &ata_port_pm_ops,
5702 #endif
5703 };
5704
5705 /**
5706 * ata_dev_init - Initialize an ata_device structure
5707 * @dev: Device structure to initialize
5708 *
5709 * Initialize @dev in preparation for probing.
5710 *
5711 * LOCKING:
5712 * Inherited from caller.
5713 */
5714 void ata_dev_init(struct ata_device *dev)
5715 {
5716 struct ata_link *link = ata_dev_phys_link(dev);
5717 struct ata_port *ap = link->ap;
5718 unsigned long flags;
5719
5720 /* SATA spd limit is bound to the attached device, reset together */
5721 link->sata_spd_limit = link->hw_sata_spd_limit;
5722 link->sata_spd = 0;
5723
5724 /* High bits of dev->flags are used to record warm plug
5725 * requests which occur asynchronously. Synchronize using
5726 * host lock.
5727 */
5728 spin_lock_irqsave(ap->lock, flags);
5729 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5730 dev->horkage = 0;
5731 spin_unlock_irqrestore(ap->lock, flags);
5732
5733 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5734 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5735 dev->pio_mask = UINT_MAX;
5736 dev->mwdma_mask = UINT_MAX;
5737 dev->udma_mask = UINT_MAX;
5738 }
5739
5740 /**
5741 * ata_link_init - Initialize an ata_link structure
5742 * @ap: ATA port link is attached to
5743 * @link: Link structure to initialize
5744 * @pmp: Port multiplier port number
5745 *
5746 * Initialize @link.
5747 *
5748 * LOCKING:
5749 * Kernel thread context (may sleep)
5750 */
5751 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5752 {
5753 int i;
5754
5755 /* clear everything except for devices */
5756 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5757 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5758
5759 link->ap = ap;
5760 link->pmp = pmp;
5761 link->active_tag = ATA_TAG_POISON;
5762 link->hw_sata_spd_limit = UINT_MAX;
5763
5764 /* can't use iterator, ap isn't initialized yet */
5765 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5766 struct ata_device *dev = &link->device[i];
5767
5768 dev->link = link;
5769 dev->devno = dev - link->device;
5770 #ifdef CONFIG_ATA_ACPI
5771 dev->gtf_filter = ata_acpi_gtf_filter;
5772 #endif
5773 ata_dev_init(dev);
5774 }
5775 }
5776
5777 /**
5778 * sata_link_init_spd - Initialize link->sata_spd_limit
5779 * @link: Link to configure sata_spd_limit for
5780 *
5781 * Initialize @link->[hw_]sata_spd_limit to the currently
5782 * configured value.
5783 *
5784 * LOCKING:
5785 * Kernel thread context (may sleep).
5786 *
5787 * RETURNS:
5788 * 0 on success, -errno on failure.
5789 */
5790 int sata_link_init_spd(struct ata_link *link)
5791 {
5792 u8 spd;
5793 int rc;
5794
5795 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5796 if (rc)
5797 return rc;
5798
5799 spd = (link->saved_scontrol >> 4) & 0xf;
5800 if (spd)
5801 link->hw_sata_spd_limit &= (1 << spd) - 1;
5802
5803 ata_force_link_limits(link);
5804
5805 link->sata_spd_limit = link->hw_sata_spd_limit;
5806
5807 return 0;
5808 }
5809
5810 /**
5811 * ata_port_alloc - allocate and initialize basic ATA port resources
5812 * @host: ATA host this allocated port belongs to
5813 *
5814 * Allocate and initialize basic ATA port resources.
5815 *
5816 * RETURNS:
5817 * Allocate ATA port on success, NULL on failure.
5818 *
5819 * LOCKING:
5820 * Inherited from calling layer (may sleep).
5821 */
5822 struct ata_port *ata_port_alloc(struct ata_host *host)
5823 {
5824 struct ata_port *ap;
5825
5826 DPRINTK("ENTER\n");
5827
5828 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5829 if (!ap)
5830 return NULL;
5831
5832 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5833 ap->lock = &host->lock;
5834 ap->print_id = -1;
5835 ap->local_port_no = -1;
5836 ap->host = host;
5837 ap->dev = host->dev;
5838
5839 #if defined(ATA_VERBOSE_DEBUG)
5840 /* turn on all debugging levels */
5841 ap->msg_enable = 0x00FF;
5842 #elif defined(ATA_DEBUG)
5843 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5844 #else
5845 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5846 #endif
5847
5848 mutex_init(&ap->scsi_scan_mutex);
5849 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5850 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5851 INIT_LIST_HEAD(&ap->eh_done_q);
5852 init_waitqueue_head(&ap->eh_wait_q);
5853 init_completion(&ap->park_req_pending);
5854 init_timer_deferrable(&ap->fastdrain_timer);
5855 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5856 ap->fastdrain_timer.data = (unsigned long)ap;
5857
5858 ap->cbl = ATA_CBL_NONE;
5859
5860 ata_link_init(ap, &ap->link, 0);
5861
5862 #ifdef ATA_IRQ_TRAP
5863 ap->stats.unhandled_irq = 1;
5864 ap->stats.idle_irq = 1;
5865 #endif
5866 ata_sff_port_init(ap);
5867
5868 return ap;
5869 }
5870
5871 static void ata_host_release(struct device *gendev, void *res)
5872 {
5873 struct ata_host *host = dev_get_drvdata(gendev);
5874 int i;
5875
5876 for (i = 0; i < host->n_ports; i++) {
5877 struct ata_port *ap = host->ports[i];
5878
5879 if (!ap)
5880 continue;
5881
5882 if (ap->scsi_host)
5883 scsi_host_put(ap->scsi_host);
5884
5885 kfree(ap->pmp_link);
5886 kfree(ap->slave_link);
5887 kfree(ap);
5888 host->ports[i] = NULL;
5889 }
5890
5891 dev_set_drvdata(gendev, NULL);
5892 }
5893
5894 /**
5895 * ata_host_alloc - allocate and init basic ATA host resources
5896 * @dev: generic device this host is associated with
5897 * @max_ports: maximum number of ATA ports associated with this host
5898 *
5899 * Allocate and initialize basic ATA host resources. LLD calls
5900 * this function to allocate a host, initializes it fully and
5901 * attaches it using ata_host_register().
5902 *
5903 * @max_ports ports are allocated and host->n_ports is
5904 * initialized to @max_ports. The caller is allowed to decrease
5905 * host->n_ports before calling ata_host_register(). The unused
5906 * ports will be automatically freed on registration.
5907 *
5908 * RETURNS:
5909 * Allocate ATA host on success, NULL on failure.
5910 *
5911 * LOCKING:
5912 * Inherited from calling layer (may sleep).
5913 */
5914 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5915 {
5916 struct ata_host *host;
5917 size_t sz;
5918 int i;
5919
5920 DPRINTK("ENTER\n");
5921
5922 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5923 return NULL;
5924
5925 /* alloc a container for our list of ATA ports (buses) */
5926 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5927 /* alloc a container for our list of ATA ports (buses) */
5928 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5929 if (!host)
5930 goto err_out;
5931
5932 devres_add(dev, host);
5933 dev_set_drvdata(dev, host);
5934
5935 spin_lock_init(&host->lock);
5936 mutex_init(&host->eh_mutex);
5937 host->dev = dev;
5938 host->n_ports = max_ports;
5939
5940 /* allocate ports bound to this host */
5941 for (i = 0; i < max_ports; i++) {
5942 struct ata_port *ap;
5943
5944 ap = ata_port_alloc(host);
5945 if (!ap)
5946 goto err_out;
5947
5948 ap->port_no = i;
5949 host->ports[i] = ap;
5950 }
5951
5952 devres_remove_group(dev, NULL);
5953 return host;
5954
5955 err_out:
5956 devres_release_group(dev, NULL);
5957 return NULL;
5958 }
5959
5960 /**
5961 * ata_host_alloc_pinfo - alloc host and init with port_info array
5962 * @dev: generic device this host is associated with
5963 * @ppi: array of ATA port_info to initialize host with
5964 * @n_ports: number of ATA ports attached to this host
5965 *
5966 * Allocate ATA host and initialize with info from @ppi. If NULL
5967 * terminated, @ppi may contain fewer entries than @n_ports. The
5968 * last entry will be used for the remaining ports.
5969 *
5970 * RETURNS:
5971 * Allocate ATA host on success, NULL on failure.
5972 *
5973 * LOCKING:
5974 * Inherited from calling layer (may sleep).
5975 */
5976 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5977 const struct ata_port_info * const * ppi,
5978 int n_ports)
5979 {
5980 const struct ata_port_info *pi;
5981 struct ata_host *host;
5982 int i, j;
5983
5984 host = ata_host_alloc(dev, n_ports);
5985 if (!host)
5986 return NULL;
5987
5988 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5989 struct ata_port *ap = host->ports[i];
5990
5991 if (ppi[j])
5992 pi = ppi[j++];
5993
5994 ap->pio_mask = pi->pio_mask;
5995 ap->mwdma_mask = pi->mwdma_mask;
5996 ap->udma_mask = pi->udma_mask;
5997 ap->flags |= pi->flags;
5998 ap->link.flags |= pi->link_flags;
5999 ap->ops = pi->port_ops;
6000
6001 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6002 host->ops = pi->port_ops;
6003 }
6004
6005 return host;
6006 }
6007
6008 /**
6009 * ata_slave_link_init - initialize slave link
6010 * @ap: port to initialize slave link for
6011 *
6012 * Create and initialize slave link for @ap. This enables slave
6013 * link handling on the port.
6014 *
6015 * In libata, a port contains links and a link contains devices.
6016 * There is single host link but if a PMP is attached to it,
6017 * there can be multiple fan-out links. On SATA, there's usually
6018 * a single device connected to a link but PATA and SATA
6019 * controllers emulating TF based interface can have two - master
6020 * and slave.
6021 *
6022 * However, there are a few controllers which don't fit into this
6023 * abstraction too well - SATA controllers which emulate TF
6024 * interface with both master and slave devices but also have
6025 * separate SCR register sets for each device. These controllers
6026 * need separate links for physical link handling
6027 * (e.g. onlineness, link speed) but should be treated like a
6028 * traditional M/S controller for everything else (e.g. command
6029 * issue, softreset).
6030 *
6031 * slave_link is libata's way of handling this class of
6032 * controllers without impacting core layer too much. For
6033 * anything other than physical link handling, the default host
6034 * link is used for both master and slave. For physical link
6035 * handling, separate @ap->slave_link is used. All dirty details
6036 * are implemented inside libata core layer. From LLD's POV, the
6037 * only difference is that prereset, hardreset and postreset are
6038 * called once more for the slave link, so the reset sequence
6039 * looks like the following.
6040 *
6041 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6042 * softreset(M) -> postreset(M) -> postreset(S)
6043 *
6044 * Note that softreset is called only for the master. Softreset
6045 * resets both M/S by definition, so SRST on master should handle
6046 * both (the standard method will work just fine).
6047 *
6048 * LOCKING:
6049 * Should be called before host is registered.
6050 *
6051 * RETURNS:
6052 * 0 on success, -errno on failure.
6053 */
6054 int ata_slave_link_init(struct ata_port *ap)
6055 {
6056 struct ata_link *link;
6057
6058 WARN_ON(ap->slave_link);
6059 WARN_ON(ap->flags & ATA_FLAG_PMP);
6060
6061 link = kzalloc(sizeof(*link), GFP_KERNEL);
6062 if (!link)
6063 return -ENOMEM;
6064
6065 ata_link_init(ap, link, 1);
6066 ap->slave_link = link;
6067 return 0;
6068 }
6069
6070 static void ata_host_stop(struct device *gendev, void *res)
6071 {
6072 struct ata_host *host = dev_get_drvdata(gendev);
6073 int i;
6074
6075 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6076
6077 for (i = 0; i < host->n_ports; i++) {
6078 struct ata_port *ap = host->ports[i];
6079
6080 if (ap->ops->port_stop)
6081 ap->ops->port_stop(ap);
6082 }
6083
6084 if (host->ops->host_stop)
6085 host->ops->host_stop(host);
6086 }
6087
6088 /**
6089 * ata_finalize_port_ops - finalize ata_port_operations
6090 * @ops: ata_port_operations to finalize
6091 *
6092 * An ata_port_operations can inherit from another ops and that
6093 * ops can again inherit from another. This can go on as many
6094 * times as necessary as long as there is no loop in the
6095 * inheritance chain.
6096 *
6097 * Ops tables are finalized when the host is started. NULL or
6098 * unspecified entries are inherited from the closet ancestor
6099 * which has the method and the entry is populated with it.
6100 * After finalization, the ops table directly points to all the
6101 * methods and ->inherits is no longer necessary and cleared.
6102 *
6103 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6104 *
6105 * LOCKING:
6106 * None.
6107 */
6108 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6109 {
6110 static DEFINE_SPINLOCK(lock);
6111 const struct ata_port_operations *cur;
6112 void **begin = (void **)ops;
6113 void **end = (void **)&ops->inherits;
6114 void **pp;
6115
6116 if (!ops || !ops->inherits)
6117 return;
6118
6119 spin_lock(&lock);
6120
6121 for (cur = ops->inherits; cur; cur = cur->inherits) {
6122 void **inherit = (void **)cur;
6123
6124 for (pp = begin; pp < end; pp++, inherit++)
6125 if (!*pp)
6126 *pp = *inherit;
6127 }
6128
6129 for (pp = begin; pp < end; pp++)
6130 if (IS_ERR(*pp))
6131 *pp = NULL;
6132
6133 ops->inherits = NULL;
6134
6135 spin_unlock(&lock);
6136 }
6137
6138 /**
6139 * ata_host_start - start and freeze ports of an ATA host
6140 * @host: ATA host to start ports for
6141 *
6142 * Start and then freeze ports of @host. Started status is
6143 * recorded in host->flags, so this function can be called
6144 * multiple times. Ports are guaranteed to get started only
6145 * once. If host->ops isn't initialized yet, its set to the
6146 * first non-dummy port ops.
6147 *
6148 * LOCKING:
6149 * Inherited from calling layer (may sleep).
6150 *
6151 * RETURNS:
6152 * 0 if all ports are started successfully, -errno otherwise.
6153 */
6154 int ata_host_start(struct ata_host *host)
6155 {
6156 int have_stop = 0;
6157 void *start_dr = NULL;
6158 int i, rc;
6159
6160 if (host->flags & ATA_HOST_STARTED)
6161 return 0;
6162
6163 ata_finalize_port_ops(host->ops);
6164
6165 for (i = 0; i < host->n_ports; i++) {
6166 struct ata_port *ap = host->ports[i];
6167
6168 ata_finalize_port_ops(ap->ops);
6169
6170 if (!host->ops && !ata_port_is_dummy(ap))
6171 host->ops = ap->ops;
6172
6173 if (ap->ops->port_stop)
6174 have_stop = 1;
6175 }
6176
6177 if (host->ops->host_stop)
6178 have_stop = 1;
6179
6180 if (have_stop) {
6181 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6182 if (!start_dr)
6183 return -ENOMEM;
6184 }
6185
6186 for (i = 0; i < host->n_ports; i++) {
6187 struct ata_port *ap = host->ports[i];
6188
6189 if (ap->ops->port_start) {
6190 rc = ap->ops->port_start(ap);
6191 if (rc) {
6192 if (rc != -ENODEV)
6193 dev_err(host->dev,
6194 "failed to start port %d (errno=%d)\n",
6195 i, rc);
6196 goto err_out;
6197 }
6198 }
6199 ata_eh_freeze_port(ap);
6200 }
6201
6202 if (start_dr)
6203 devres_add(host->dev, start_dr);
6204 host->flags |= ATA_HOST_STARTED;
6205 return 0;
6206
6207 err_out:
6208 while (--i >= 0) {
6209 struct ata_port *ap = host->ports[i];
6210
6211 if (ap->ops->port_stop)
6212 ap->ops->port_stop(ap);
6213 }
6214 devres_free(start_dr);
6215 return rc;
6216 }
6217
6218 /**
6219 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6220 * @host: host to initialize
6221 * @dev: device host is attached to
6222 * @ops: port_ops
6223 *
6224 */
6225 void ata_host_init(struct ata_host *host, struct device *dev,
6226 struct ata_port_operations *ops)
6227 {
6228 spin_lock_init(&host->lock);
6229 mutex_init(&host->eh_mutex);
6230 host->n_tags = ATA_MAX_QUEUE - 1;
6231 host->dev = dev;
6232 host->ops = ops;
6233 }
6234
6235 void __ata_port_probe(struct ata_port *ap)
6236 {
6237 struct ata_eh_info *ehi = &ap->link.eh_info;
6238 unsigned long flags;
6239
6240 /* kick EH for boot probing */
6241 spin_lock_irqsave(ap->lock, flags);
6242
6243 ehi->probe_mask |= ATA_ALL_DEVICES;
6244 ehi->action |= ATA_EH_RESET;
6245 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6246
6247 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6248 ap->pflags |= ATA_PFLAG_LOADING;
6249 ata_port_schedule_eh(ap);
6250
6251 spin_unlock_irqrestore(ap->lock, flags);
6252 }
6253
6254 int ata_port_probe(struct ata_port *ap)
6255 {
6256 int rc = 0;
6257
6258 if (ap->ops->error_handler) {
6259 __ata_port_probe(ap);
6260 ata_port_wait_eh(ap);
6261 } else {
6262 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6263 rc = ata_bus_probe(ap);
6264 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6265 }
6266 return rc;
6267 }
6268
6269
6270 static void async_port_probe(void *data, async_cookie_t cookie)
6271 {
6272 struct ata_port *ap = data;
6273
6274 /*
6275 * If we're not allowed to scan this host in parallel,
6276 * we need to wait until all previous scans have completed
6277 * before going further.
6278 * Jeff Garzik says this is only within a controller, so we
6279 * don't need to wait for port 0, only for later ports.
6280 */
6281 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6282 async_synchronize_cookie(cookie);
6283
6284 (void)ata_port_probe(ap);
6285
6286 /* in order to keep device order, we need to synchronize at this point */
6287 async_synchronize_cookie(cookie);
6288
6289 ata_scsi_scan_host(ap, 1);
6290 }
6291
6292 /**
6293 * ata_host_register - register initialized ATA host
6294 * @host: ATA host to register
6295 * @sht: template for SCSI host
6296 *
6297 * Register initialized ATA host. @host is allocated using
6298 * ata_host_alloc() and fully initialized by LLD. This function
6299 * starts ports, registers @host with ATA and SCSI layers and
6300 * probe registered devices.
6301 *
6302 * LOCKING:
6303 * Inherited from calling layer (may sleep).
6304 *
6305 * RETURNS:
6306 * 0 on success, -errno otherwise.
6307 */
6308 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6309 {
6310 int i, rc;
6311
6312 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6313
6314 /* host must have been started */
6315 if (!(host->flags & ATA_HOST_STARTED)) {
6316 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6317 WARN_ON(1);
6318 return -EINVAL;
6319 }
6320
6321 /* Blow away unused ports. This happens when LLD can't
6322 * determine the exact number of ports to allocate at
6323 * allocation time.
6324 */
6325 for (i = host->n_ports; host->ports[i]; i++)
6326 kfree(host->ports[i]);
6327
6328 /* give ports names and add SCSI hosts */
6329 for (i = 0; i < host->n_ports; i++) {
6330 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6331 host->ports[i]->local_port_no = i + 1;
6332 }
6333
6334 /* Create associated sysfs transport objects */
6335 for (i = 0; i < host->n_ports; i++) {
6336 rc = ata_tport_add(host->dev,host->ports[i]);
6337 if (rc) {
6338 goto err_tadd;
6339 }
6340 }
6341
6342 rc = ata_scsi_add_hosts(host, sht);
6343 if (rc)
6344 goto err_tadd;
6345
6346 /* set cable, sata_spd_limit and report */
6347 for (i = 0; i < host->n_ports; i++) {
6348 struct ata_port *ap = host->ports[i];
6349 unsigned long xfer_mask;
6350
6351 /* set SATA cable type if still unset */
6352 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6353 ap->cbl = ATA_CBL_SATA;
6354
6355 /* init sata_spd_limit to the current value */
6356 sata_link_init_spd(&ap->link);
6357 if (ap->slave_link)
6358 sata_link_init_spd(ap->slave_link);
6359
6360 /* print per-port info to dmesg */
6361 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6362 ap->udma_mask);
6363
6364 if (!ata_port_is_dummy(ap)) {
6365 ata_port_info(ap, "%cATA max %s %s\n",
6366 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6367 ata_mode_string(xfer_mask),
6368 ap->link.eh_info.desc);
6369 ata_ehi_clear_desc(&ap->link.eh_info);
6370 } else
6371 ata_port_info(ap, "DUMMY\n");
6372 }
6373
6374 /* perform each probe asynchronously */
6375 for (i = 0; i < host->n_ports; i++) {
6376 struct ata_port *ap = host->ports[i];
6377 async_schedule(async_port_probe, ap);
6378 }
6379
6380 return 0;
6381
6382 err_tadd:
6383 while (--i >= 0) {
6384 ata_tport_delete(host->ports[i]);
6385 }
6386 return rc;
6387
6388 }
6389
6390 /**
6391 * ata_host_activate - start host, request IRQ and register it
6392 * @host: target ATA host
6393 * @irq: IRQ to request
6394 * @irq_handler: irq_handler used when requesting IRQ
6395 * @irq_flags: irq_flags used when requesting IRQ
6396 * @sht: scsi_host_template to use when registering the host
6397 *
6398 * After allocating an ATA host and initializing it, most libata
6399 * LLDs perform three steps to activate the host - start host,
6400 * request IRQ and register it. This helper takes necessary
6401 * arguments and performs the three steps in one go.
6402 *
6403 * An invalid IRQ skips the IRQ registration and expects the host to
6404 * have set polling mode on the port. In this case, @irq_handler
6405 * should be NULL.
6406 *
6407 * LOCKING:
6408 * Inherited from calling layer (may sleep).
6409 *
6410 * RETURNS:
6411 * 0 on success, -errno otherwise.
6412 */
6413 int ata_host_activate(struct ata_host *host, int irq,
6414 irq_handler_t irq_handler, unsigned long irq_flags,
6415 struct scsi_host_template *sht)
6416 {
6417 int i, rc;
6418 char *irq_desc;
6419
6420 rc = ata_host_start(host);
6421 if (rc)
6422 return rc;
6423
6424 /* Special case for polling mode */
6425 if (!irq) {
6426 WARN_ON(irq_handler);
6427 return ata_host_register(host, sht);
6428 }
6429
6430 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6431 dev_driver_string(host->dev),
6432 dev_name(host->dev));
6433 if (!irq_desc)
6434 return -ENOMEM;
6435
6436 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6437 irq_desc, host);
6438 if (rc)
6439 return rc;
6440
6441 for (i = 0; i < host->n_ports; i++)
6442 ata_port_desc(host->ports[i], "irq %d", irq);
6443
6444 rc = ata_host_register(host, sht);
6445 /* if failed, just free the IRQ and leave ports alone */
6446 if (rc)
6447 devm_free_irq(host->dev, irq, host);
6448
6449 return rc;
6450 }
6451
6452 /**
6453 * ata_port_detach - Detach ATA port in preparation of device removal
6454 * @ap: ATA port to be detached
6455 *
6456 * Detach all ATA devices and the associated SCSI devices of @ap;
6457 * then, remove the associated SCSI host. @ap is guaranteed to
6458 * be quiescent on return from this function.
6459 *
6460 * LOCKING:
6461 * Kernel thread context (may sleep).
6462 */
6463 static void ata_port_detach(struct ata_port *ap)
6464 {
6465 unsigned long flags;
6466 struct ata_link *link;
6467 struct ata_device *dev;
6468
6469 if (!ap->ops->error_handler)
6470 goto skip_eh;
6471
6472 /* tell EH we're leaving & flush EH */
6473 spin_lock_irqsave(ap->lock, flags);
6474 ap->pflags |= ATA_PFLAG_UNLOADING;
6475 ata_port_schedule_eh(ap);
6476 spin_unlock_irqrestore(ap->lock, flags);
6477
6478 /* wait till EH commits suicide */
6479 ata_port_wait_eh(ap);
6480
6481 /* it better be dead now */
6482 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6483
6484 cancel_delayed_work_sync(&ap->hotplug_task);
6485
6486 skip_eh:
6487 /* clean up zpodd on port removal */
6488 ata_for_each_link(link, ap, HOST_FIRST) {
6489 ata_for_each_dev(dev, link, ALL) {
6490 if (zpodd_dev_enabled(dev))
6491 zpodd_exit(dev);
6492 }
6493 }
6494 if (ap->pmp_link) {
6495 int i;
6496 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6497 ata_tlink_delete(&ap->pmp_link[i]);
6498 }
6499 /* remove the associated SCSI host */
6500 scsi_remove_host(ap->scsi_host);
6501 ata_tport_delete(ap);
6502 }
6503
6504 /**
6505 * ata_host_detach - Detach all ports of an ATA host
6506 * @host: Host to detach
6507 *
6508 * Detach all ports of @host.
6509 *
6510 * LOCKING:
6511 * Kernel thread context (may sleep).
6512 */
6513 void ata_host_detach(struct ata_host *host)
6514 {
6515 int i;
6516
6517 for (i = 0; i < host->n_ports; i++)
6518 ata_port_detach(host->ports[i]);
6519
6520 /* the host is dead now, dissociate ACPI */
6521 ata_acpi_dissociate(host);
6522 }
6523
6524 #ifdef CONFIG_PCI
6525
6526 /**
6527 * ata_pci_remove_one - PCI layer callback for device removal
6528 * @pdev: PCI device that was removed
6529 *
6530 * PCI layer indicates to libata via this hook that hot-unplug or
6531 * module unload event has occurred. Detach all ports. Resource
6532 * release is handled via devres.
6533 *
6534 * LOCKING:
6535 * Inherited from PCI layer (may sleep).
6536 */
6537 void ata_pci_remove_one(struct pci_dev *pdev)
6538 {
6539 struct ata_host *host = pci_get_drvdata(pdev);
6540
6541 ata_host_detach(host);
6542 }
6543
6544 /* move to PCI subsystem */
6545 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6546 {
6547 unsigned long tmp = 0;
6548
6549 switch (bits->width) {
6550 case 1: {
6551 u8 tmp8 = 0;
6552 pci_read_config_byte(pdev, bits->reg, &tmp8);
6553 tmp = tmp8;
6554 break;
6555 }
6556 case 2: {
6557 u16 tmp16 = 0;
6558 pci_read_config_word(pdev, bits->reg, &tmp16);
6559 tmp = tmp16;
6560 break;
6561 }
6562 case 4: {
6563 u32 tmp32 = 0;
6564 pci_read_config_dword(pdev, bits->reg, &tmp32);
6565 tmp = tmp32;
6566 break;
6567 }
6568
6569 default:
6570 return -EINVAL;
6571 }
6572
6573 tmp &= bits->mask;
6574
6575 return (tmp == bits->val) ? 1 : 0;
6576 }
6577
6578 #ifdef CONFIG_PM
6579 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6580 {
6581 pci_save_state(pdev);
6582 pci_disable_device(pdev);
6583
6584 if (mesg.event & PM_EVENT_SLEEP)
6585 pci_set_power_state(pdev, PCI_D3hot);
6586 }
6587
6588 int ata_pci_device_do_resume(struct pci_dev *pdev)
6589 {
6590 int rc;
6591
6592 pci_set_power_state(pdev, PCI_D0);
6593 pci_restore_state(pdev);
6594
6595 rc = pcim_enable_device(pdev);
6596 if (rc) {
6597 dev_err(&pdev->dev,
6598 "failed to enable device after resume (%d)\n", rc);
6599 return rc;
6600 }
6601
6602 pci_set_master(pdev);
6603 return 0;
6604 }
6605
6606 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6607 {
6608 struct ata_host *host = pci_get_drvdata(pdev);
6609 int rc = 0;
6610
6611 rc = ata_host_suspend(host, mesg);
6612 if (rc)
6613 return rc;
6614
6615 ata_pci_device_do_suspend(pdev, mesg);
6616
6617 return 0;
6618 }
6619
6620 int ata_pci_device_resume(struct pci_dev *pdev)
6621 {
6622 struct ata_host *host = pci_get_drvdata(pdev);
6623 int rc;
6624
6625 rc = ata_pci_device_do_resume(pdev);
6626 if (rc == 0)
6627 ata_host_resume(host);
6628 return rc;
6629 }
6630 #endif /* CONFIG_PM */
6631
6632 #endif /* CONFIG_PCI */
6633
6634 /**
6635 * ata_platform_remove_one - Platform layer callback for device removal
6636 * @pdev: Platform device that was removed
6637 *
6638 * Platform layer indicates to libata via this hook that hot-unplug or
6639 * module unload event has occurred. Detach all ports. Resource
6640 * release is handled via devres.
6641 *
6642 * LOCKING:
6643 * Inherited from platform layer (may sleep).
6644 */
6645 int ata_platform_remove_one(struct platform_device *pdev)
6646 {
6647 struct ata_host *host = platform_get_drvdata(pdev);
6648
6649 ata_host_detach(host);
6650
6651 return 0;
6652 }
6653
6654 static int __init ata_parse_force_one(char **cur,
6655 struct ata_force_ent *force_ent,
6656 const char **reason)
6657 {
6658 static const struct ata_force_param force_tbl[] __initconst = {
6659 { "40c", .cbl = ATA_CBL_PATA40 },
6660 { "80c", .cbl = ATA_CBL_PATA80 },
6661 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6662 { "unk", .cbl = ATA_CBL_PATA_UNK },
6663 { "ign", .cbl = ATA_CBL_PATA_IGN },
6664 { "sata", .cbl = ATA_CBL_SATA },
6665 { "1.5Gbps", .spd_limit = 1 },
6666 { "3.0Gbps", .spd_limit = 2 },
6667 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6668 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6669 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6670 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6671 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6672 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6673 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6674 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6675 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6676 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6677 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6678 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6679 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6680 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6681 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6682 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6683 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6684 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6685 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6686 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6687 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6688 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6689 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6690 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6691 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6692 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6693 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6694 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6695 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6696 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6697 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6698 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6699 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6700 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6701 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6702 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6703 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6704 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6705 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6706 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6707 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6708 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6709 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6710 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6711 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6712 };
6713 char *start = *cur, *p = *cur;
6714 char *id, *val, *endp;
6715 const struct ata_force_param *match_fp = NULL;
6716 int nr_matches = 0, i;
6717
6718 /* find where this param ends and update *cur */
6719 while (*p != '\0' && *p != ',')
6720 p++;
6721
6722 if (*p == '\0')
6723 *cur = p;
6724 else
6725 *cur = p + 1;
6726
6727 *p = '\0';
6728
6729 /* parse */
6730 p = strchr(start, ':');
6731 if (!p) {
6732 val = strstrip(start);
6733 goto parse_val;
6734 }
6735 *p = '\0';
6736
6737 id = strstrip(start);
6738 val = strstrip(p + 1);
6739
6740 /* parse id */
6741 p = strchr(id, '.');
6742 if (p) {
6743 *p++ = '\0';
6744 force_ent->device = simple_strtoul(p, &endp, 10);
6745 if (p == endp || *endp != '\0') {
6746 *reason = "invalid device";
6747 return -EINVAL;
6748 }
6749 }
6750
6751 force_ent->port = simple_strtoul(id, &endp, 10);
6752 if (p == endp || *endp != '\0') {
6753 *reason = "invalid port/link";
6754 return -EINVAL;
6755 }
6756
6757 parse_val:
6758 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6759 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6760 const struct ata_force_param *fp = &force_tbl[i];
6761
6762 if (strncasecmp(val, fp->name, strlen(val)))
6763 continue;
6764
6765 nr_matches++;
6766 match_fp = fp;
6767
6768 if (strcasecmp(val, fp->name) == 0) {
6769 nr_matches = 1;
6770 break;
6771 }
6772 }
6773
6774 if (!nr_matches) {
6775 *reason = "unknown value";
6776 return -EINVAL;
6777 }
6778 if (nr_matches > 1) {
6779 *reason = "ambigious value";
6780 return -EINVAL;
6781 }
6782
6783 force_ent->param = *match_fp;
6784
6785 return 0;
6786 }
6787
6788 static void __init ata_parse_force_param(void)
6789 {
6790 int idx = 0, size = 1;
6791 int last_port = -1, last_device = -1;
6792 char *p, *cur, *next;
6793
6794 /* calculate maximum number of params and allocate force_tbl */
6795 for (p = ata_force_param_buf; *p; p++)
6796 if (*p == ',')
6797 size++;
6798
6799 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6800 if (!ata_force_tbl) {
6801 printk(KERN_WARNING "ata: failed to extend force table, "
6802 "libata.force ignored\n");
6803 return;
6804 }
6805
6806 /* parse and populate the table */
6807 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6808 const char *reason = "";
6809 struct ata_force_ent te = { .port = -1, .device = -1 };
6810
6811 next = cur;
6812 if (ata_parse_force_one(&next, &te, &reason)) {
6813 printk(KERN_WARNING "ata: failed to parse force "
6814 "parameter \"%s\" (%s)\n",
6815 cur, reason);
6816 continue;
6817 }
6818
6819 if (te.port == -1) {
6820 te.port = last_port;
6821 te.device = last_device;
6822 }
6823
6824 ata_force_tbl[idx++] = te;
6825
6826 last_port = te.port;
6827 last_device = te.device;
6828 }
6829
6830 ata_force_tbl_size = idx;
6831 }
6832
6833 static int __init ata_init(void)
6834 {
6835 int rc;
6836
6837 ata_parse_force_param();
6838
6839 rc = ata_sff_init();
6840 if (rc) {
6841 kfree(ata_force_tbl);
6842 return rc;
6843 }
6844
6845 libata_transport_init();
6846 ata_scsi_transport_template = ata_attach_transport();
6847 if (!ata_scsi_transport_template) {
6848 ata_sff_exit();
6849 rc = -ENOMEM;
6850 goto err_out;
6851 }
6852
6853 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6854 return 0;
6855
6856 err_out:
6857 return rc;
6858 }
6859
6860 static void __exit ata_exit(void)
6861 {
6862 ata_release_transport(ata_scsi_transport_template);
6863 libata_transport_exit();
6864 ata_sff_exit();
6865 kfree(ata_force_tbl);
6866 }
6867
6868 subsys_initcall(ata_init);
6869 module_exit(ata_exit);
6870
6871 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6872
6873 int ata_ratelimit(void)
6874 {
6875 return __ratelimit(&ratelimit);
6876 }
6877
6878 /**
6879 * ata_msleep - ATA EH owner aware msleep
6880 * @ap: ATA port to attribute the sleep to
6881 * @msecs: duration to sleep in milliseconds
6882 *
6883 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6884 * ownership is released before going to sleep and reacquired
6885 * after the sleep is complete. IOW, other ports sharing the
6886 * @ap->host will be allowed to own the EH while this task is
6887 * sleeping.
6888 *
6889 * LOCKING:
6890 * Might sleep.
6891 */
6892 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6893 {
6894 bool owns_eh = ap && ap->host->eh_owner == current;
6895
6896 if (owns_eh)
6897 ata_eh_release(ap);
6898
6899 if (msecs < 20) {
6900 unsigned long usecs = msecs * USEC_PER_MSEC;
6901 usleep_range(usecs, usecs + 50);
6902 } else {
6903 msleep(msecs);
6904 }
6905
6906 if (owns_eh)
6907 ata_eh_acquire(ap);
6908 }
6909
6910 /**
6911 * ata_wait_register - wait until register value changes
6912 * @ap: ATA port to wait register for, can be NULL
6913 * @reg: IO-mapped register
6914 * @mask: Mask to apply to read register value
6915 * @val: Wait condition
6916 * @interval: polling interval in milliseconds
6917 * @timeout: timeout in milliseconds
6918 *
6919 * Waiting for some bits of register to change is a common
6920 * operation for ATA controllers. This function reads 32bit LE
6921 * IO-mapped register @reg and tests for the following condition.
6922 *
6923 * (*@reg & mask) != val
6924 *
6925 * If the condition is met, it returns; otherwise, the process is
6926 * repeated after @interval_msec until timeout.
6927 *
6928 * LOCKING:
6929 * Kernel thread context (may sleep)
6930 *
6931 * RETURNS:
6932 * The final register value.
6933 */
6934 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6935 unsigned long interval, unsigned long timeout)
6936 {
6937 unsigned long deadline;
6938 u32 tmp;
6939
6940 tmp = ioread32(reg);
6941
6942 /* Calculate timeout _after_ the first read to make sure
6943 * preceding writes reach the controller before starting to
6944 * eat away the timeout.
6945 */
6946 deadline = ata_deadline(jiffies, timeout);
6947
6948 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6949 ata_msleep(ap, interval);
6950 tmp = ioread32(reg);
6951 }
6952
6953 return tmp;
6954 }
6955
6956 /**
6957 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6958 * @link: Link receiving the event
6959 *
6960 * Test whether the received PHY event has to be ignored or not.
6961 *
6962 * LOCKING:
6963 * None:
6964 *
6965 * RETURNS:
6966 * True if the event has to be ignored.
6967 */
6968 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6969 {
6970 unsigned long lpm_timeout = link->last_lpm_change +
6971 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6972
6973 /* if LPM is enabled, PHYRDY doesn't mean anything */
6974 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6975 return true;
6976
6977 /* ignore the first PHY event after the LPM policy changed
6978 * as it is might be spurious
6979 */
6980 if ((link->flags & ATA_LFLAG_CHANGED) &&
6981 time_before(jiffies, lpm_timeout))
6982 return true;
6983
6984 return false;
6985 }
6986 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6987
6988 /*
6989 * Dummy port_ops
6990 */
6991 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6992 {
6993 return AC_ERR_SYSTEM;
6994 }
6995
6996 static void ata_dummy_error_handler(struct ata_port *ap)
6997 {
6998 /* truly dummy */
6999 }
7000
7001 struct ata_port_operations ata_dummy_port_ops = {
7002 .qc_prep = ata_noop_qc_prep,
7003 .qc_issue = ata_dummy_qc_issue,
7004 .error_handler = ata_dummy_error_handler,
7005 .sched_eh = ata_std_sched_eh,
7006 .end_eh = ata_std_end_eh,
7007 };
7008
7009 const struct ata_port_info ata_dummy_port_info = {
7010 .port_ops = &ata_dummy_port_ops,
7011 };
7012
7013 /*
7014 * Utility print functions
7015 */
7016 void ata_port_printk(const struct ata_port *ap, const char *level,
7017 const char *fmt, ...)
7018 {
7019 struct va_format vaf;
7020 va_list args;
7021
7022 va_start(args, fmt);
7023
7024 vaf.fmt = fmt;
7025 vaf.va = &args;
7026
7027 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7028
7029 va_end(args);
7030 }
7031 EXPORT_SYMBOL(ata_port_printk);
7032
7033 void ata_link_printk(const struct ata_link *link, const char *level,
7034 const char *fmt, ...)
7035 {
7036 struct va_format vaf;
7037 va_list args;
7038
7039 va_start(args, fmt);
7040
7041 vaf.fmt = fmt;
7042 vaf.va = &args;
7043
7044 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7045 printk("%sata%u.%02u: %pV",
7046 level, link->ap->print_id, link->pmp, &vaf);
7047 else
7048 printk("%sata%u: %pV",
7049 level, link->ap->print_id, &vaf);
7050
7051 va_end(args);
7052 }
7053 EXPORT_SYMBOL(ata_link_printk);
7054
7055 void ata_dev_printk(const struct ata_device *dev, const char *level,
7056 const char *fmt, ...)
7057 {
7058 struct va_format vaf;
7059 va_list args;
7060
7061 va_start(args, fmt);
7062
7063 vaf.fmt = fmt;
7064 vaf.va = &args;
7065
7066 printk("%sata%u.%02u: %pV",
7067 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7068 &vaf);
7069
7070 va_end(args);
7071 }
7072 EXPORT_SYMBOL(ata_dev_printk);
7073
7074 void ata_print_version(const struct device *dev, const char *version)
7075 {
7076 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7077 }
7078 EXPORT_SYMBOL(ata_print_version);
7079
7080 /*
7081 * libata is essentially a library of internal helper functions for
7082 * low-level ATA host controller drivers. As such, the API/ABI is
7083 * likely to change as new drivers are added and updated.
7084 * Do not depend on ABI/API stability.
7085 */
7086 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7087 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7088 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7089 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7090 EXPORT_SYMBOL_GPL(sata_port_ops);
7091 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7092 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7093 EXPORT_SYMBOL_GPL(ata_link_next);
7094 EXPORT_SYMBOL_GPL(ata_dev_next);
7095 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7096 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7097 EXPORT_SYMBOL_GPL(ata_host_init);
7098 EXPORT_SYMBOL_GPL(ata_host_alloc);
7099 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7100 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7101 EXPORT_SYMBOL_GPL(ata_host_start);
7102 EXPORT_SYMBOL_GPL(ata_host_register);
7103 EXPORT_SYMBOL_GPL(ata_host_activate);
7104 EXPORT_SYMBOL_GPL(ata_host_detach);
7105 EXPORT_SYMBOL_GPL(ata_sg_init);
7106 EXPORT_SYMBOL_GPL(ata_qc_complete);
7107 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7108 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7109 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7110 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7111 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7112 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7113 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7114 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7115 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7116 EXPORT_SYMBOL_GPL(ata_mode_string);
7117 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7118 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7119 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7120 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7121 EXPORT_SYMBOL_GPL(ata_dev_disable);
7122 EXPORT_SYMBOL_GPL(sata_set_spd);
7123 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7124 EXPORT_SYMBOL_GPL(sata_link_debounce);
7125 EXPORT_SYMBOL_GPL(sata_link_resume);
7126 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7127 EXPORT_SYMBOL_GPL(ata_std_prereset);
7128 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7129 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7130 EXPORT_SYMBOL_GPL(ata_std_postreset);
7131 EXPORT_SYMBOL_GPL(ata_dev_classify);
7132 EXPORT_SYMBOL_GPL(ata_dev_pair);
7133 EXPORT_SYMBOL_GPL(ata_ratelimit);
7134 EXPORT_SYMBOL_GPL(ata_msleep);
7135 EXPORT_SYMBOL_GPL(ata_wait_register);
7136 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7137 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7138 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7139 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7140 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7141 EXPORT_SYMBOL_GPL(sata_scr_valid);
7142 EXPORT_SYMBOL_GPL(sata_scr_read);
7143 EXPORT_SYMBOL_GPL(sata_scr_write);
7144 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7145 EXPORT_SYMBOL_GPL(ata_link_online);
7146 EXPORT_SYMBOL_GPL(ata_link_offline);
7147 #ifdef CONFIG_PM
7148 EXPORT_SYMBOL_GPL(ata_host_suspend);
7149 EXPORT_SYMBOL_GPL(ata_host_resume);
7150 #endif /* CONFIG_PM */
7151 EXPORT_SYMBOL_GPL(ata_id_string);
7152 EXPORT_SYMBOL_GPL(ata_id_c_string);
7153 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7154 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7155
7156 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7157 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7158 EXPORT_SYMBOL_GPL(ata_timing_compute);
7159 EXPORT_SYMBOL_GPL(ata_timing_merge);
7160 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7161
7162 #ifdef CONFIG_PCI
7163 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7164 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7165 #ifdef CONFIG_PM
7166 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7167 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7168 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7169 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7170 #endif /* CONFIG_PM */
7171 #endif /* CONFIG_PCI */
7172
7173 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7174
7175 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7176 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7177 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7178 EXPORT_SYMBOL_GPL(ata_port_desc);
7179 #ifdef CONFIG_PCI
7180 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7181 #endif /* CONFIG_PCI */
7182 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7183 EXPORT_SYMBOL_GPL(ata_link_abort);
7184 EXPORT_SYMBOL_GPL(ata_port_abort);
7185 EXPORT_SYMBOL_GPL(ata_port_freeze);
7186 EXPORT_SYMBOL_GPL(sata_async_notification);
7187 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7188 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7189 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7190 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7191 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7192 EXPORT_SYMBOL_GPL(ata_do_eh);
7193 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7194
7195 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7196 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7197 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7198 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7199 EXPORT_SYMBOL_GPL(ata_cable_sata);