]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/ata/libata-core.c
Input: xpad - add USB ID for the drumkit controller from Rock Band
[mirror_ubuntu-jammy-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67
68 #include "libata.h"
69
70
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
80 };
81
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
84
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
87 };
88
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99
100 struct workqueue_struct *ata_aux_wq;
101
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
110 };
111
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
116 };
117
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166
167
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 return (sstatus & 0xf) == 0x3;
171 }
172
173 /**
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
178 *
179 * LOCKING:
180 * Host lock or EH context.
181 *
182 * RETURNS:
183 * Pointer to the next link.
184 */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
187 {
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190
191 /* NULL link indicates start of iteration */
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
201 }
202
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
212 return ap->slave_link;
213 /* fall through */
214 case ATA_LITER_EDGE:
215 return NULL;
216 }
217
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
221
222 /* we were over a PMP link */
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
225
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
228
229 return NULL;
230 }
231
232 /**
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
237 *
238 * LOCKING:
239 * Host lock or EH context.
240 *
241 * RETURNS:
242 * Pointer to the next device.
243 */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
246 {
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
261 }
262
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
276 }
277
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
283 }
284
285 /**
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
288 *
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
292 *
293 * LOCKING:
294 * Don't care.
295 *
296 * RETURNS:
297 * Pointer to the found physical link.
298 */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 struct ata_port *ap = dev->link->ap;
302
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
308 }
309
310 /**
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
313 *
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
319 *
320 * LOCKING:
321 * EH context.
322 */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 int i;
326
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
329
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
332
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
335
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
340 }
341 }
342
343 /**
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
346 *
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
355 *
356 * LOCKING:
357 * EH context.
358 */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
364
365 if (ata_is_host_link(link))
366 linkno += 15;
367
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
370
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
373
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
376
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
385
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
393 }
394 }
395
396 /**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
447 }
448 }
449
450 /**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
490 }
491 }
492
493 /**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
505 int atapi_cmd_type(u8 opcode)
506 {
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
528 }
529 }
530
531 /**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573 }
574
575 /**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602 }
603
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
619 0,
620 0,
621 0,
622 0,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
632 };
633
634 /**
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
638 *
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
641 *
642 * LOCKING:
643 * caller.
644 */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 u8 cmd;
648
649 int index, fua, lba48, write;
650
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
665 }
666
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
673 }
674
675 /**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect;
713 }
714
715 return block;
716 }
717
718 /**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 *
727 * LOCKING:
728 * None.
729 *
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
732 *
733 * RETURNS:
734 *
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
737 */
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 u64 block, u32 n_block, unsigned int tf_flags,
740 unsigned int tag)
741 {
742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 tf->flags |= tf_flags;
744
745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 /* yay, NCQ */
747 if (!lba_48_ok(block, n_block))
748 return -ERANGE;
749
750 tf->protocol = ATA_PROT_NCQ;
751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752
753 if (tf->flags & ATA_TFLAG_WRITE)
754 tf->command = ATA_CMD_FPDMA_WRITE;
755 else
756 tf->command = ATA_CMD_FPDMA_READ;
757
758 tf->nsect = tag << 3;
759 tf->hob_feature = (n_block >> 8) & 0xff;
760 tf->feature = n_block & 0xff;
761
762 tf->hob_lbah = (block >> 40) & 0xff;
763 tf->hob_lbam = (block >> 32) & 0xff;
764 tf->hob_lbal = (block >> 24) & 0xff;
765 tf->lbah = (block >> 16) & 0xff;
766 tf->lbam = (block >> 8) & 0xff;
767 tf->lbal = block & 0xff;
768
769 tf->device = 1 << 6;
770 if (tf->flags & ATA_TFLAG_FUA)
771 tf->device |= 1 << 7;
772 } else if (dev->flags & ATA_DFLAG_LBA) {
773 tf->flags |= ATA_TFLAG_LBA;
774
775 if (lba_28_ok(block, n_block)) {
776 /* use LBA28 */
777 tf->device |= (block >> 24) & 0xf;
778 } else if (lba_48_ok(block, n_block)) {
779 if (!(dev->flags & ATA_DFLAG_LBA48))
780 return -ERANGE;
781
782 /* use LBA48 */
783 tf->flags |= ATA_TFLAG_LBA48;
784
785 tf->hob_nsect = (n_block >> 8) & 0xff;
786
787 tf->hob_lbah = (block >> 40) & 0xff;
788 tf->hob_lbam = (block >> 32) & 0xff;
789 tf->hob_lbal = (block >> 24) & 0xff;
790 } else
791 /* request too large even for LBA48 */
792 return -ERANGE;
793
794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 return -EINVAL;
796
797 tf->nsect = n_block & 0xff;
798
799 tf->lbah = (block >> 16) & 0xff;
800 tf->lbam = (block >> 8) & 0xff;
801 tf->lbal = block & 0xff;
802
803 tf->device |= ATA_LBA;
804 } else {
805 /* CHS */
806 u32 sect, head, cyl, track;
807
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block, n_block))
810 return -ERANGE;
811
812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 return -EINVAL;
814
815 /* Convert LBA to CHS */
816 track = (u32)block / dev->sectors;
817 cyl = track / dev->heads;
818 head = track % dev->heads;
819 sect = (u32)block % dev->sectors + 1;
820
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32)block, track, cyl, head, sect);
823
824 /* Check whether the converted CHS can fit.
825 Cylinder: 0-65535
826 Head: 0-15
827 Sector: 1-255*/
828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 return -ERANGE;
830
831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 tf->lbal = sect;
833 tf->lbam = cyl;
834 tf->lbah = cyl >> 8;
835 tf->device |= head;
836 }
837
838 return 0;
839 }
840
841 /**
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
846 *
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Packed xfer_mask.
855 */
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 unsigned long mwdma_mask,
858 unsigned long udma_mask)
859 {
860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863 }
864
865 /**
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
871 *
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
874 */
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 {
878 if (pio_mask)
879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 if (mwdma_mask)
881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 if (udma_mask)
883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884 }
885
886 static const struct ata_xfer_ent {
887 int shift, bits;
888 u8 base;
889 } ata_xfer_tbl[] = {
890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 { -1, },
894 };
895
896 /**
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
899 *
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
902 *
903 * LOCKING:
904 * None.
905 *
906 * RETURNS:
907 * Matching XFER_* value, 0xff if no match found.
908 */
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 {
911 int highbit = fls(xfer_mask) - 1;
912 const struct ata_xfer_ent *ent;
913
914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 return ent->base + highbit - ent->shift;
917 return 0xff;
918 }
919
920 /**
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
923 *
924 * Return matching xfer_mask for @xfer_mode.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching xfer_mask, 0 if no match found.
931 */
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 {
934 const struct ata_xfer_ent *ent;
935
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 & ~((1 << ent->shift) - 1);
940 return 0;
941 }
942
943 /**
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_shift for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_shift, -1 if no match found.
954 */
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ent->shift;
962 return -1;
963 }
964
965 /**
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
968 *
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
978 */
979 const char *ata_mode_string(unsigned long xfer_mask)
980 {
981 static const char * const xfer_mode_str[] = {
982 "PIO0",
983 "PIO1",
984 "PIO2",
985 "PIO3",
986 "PIO4",
987 "PIO5",
988 "PIO6",
989 "MWDMA0",
990 "MWDMA1",
991 "MWDMA2",
992 "MWDMA3",
993 "MWDMA4",
994 "UDMA/16",
995 "UDMA/25",
996 "UDMA/33",
997 "UDMA/44",
998 "UDMA/66",
999 "UDMA/100",
1000 "UDMA/133",
1001 "UDMA7",
1002 };
1003 int highbit;
1004
1005 highbit = fls(xfer_mask) - 1;
1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 return xfer_mode_str[highbit];
1008 return "<n/a>";
1009 }
1010
1011 static const char *sata_spd_string(unsigned int spd)
1012 {
1013 static const char * const spd_str[] = {
1014 "1.5 Gbps",
1015 "3.0 Gbps",
1016 "6.0 Gbps",
1017 };
1018
1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return "<unknown>";
1021 return spd_str[spd - 1];
1022 }
1023
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 {
1026 struct ata_link *link = dev->link;
1027 struct ata_port *ap = link->ap;
1028 u32 scontrol;
1029 unsigned int err_mask;
1030 int rc;
1031
1032 /*
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1039 */
1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 ap->pm_policy = NOT_AVAILABLE;
1042 return -EINVAL;
1043 }
1044
1045 /*
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1048 *
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1054 */
1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 if (rc)
1057 return rc;
1058
1059 switch (policy) {
1060 case MIN_POWER:
1061 /* no restrictions on IPM transitions */
1062 scontrol &= ~(0x3 << 8);
1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 if (rc)
1065 return rc;
1066
1067 /* enable DIPM */
1068 if (dev->flags & ATA_DFLAG_DIPM)
1069 err_mask = ata_dev_set_feature(dev,
1070 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 break;
1072 case MEDIUM_POWER:
1073 /* allow IPM to PARTIAL */
1074 scontrol &= ~(0x1 << 8);
1075 scontrol |= (0x2 << 8);
1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 if (rc)
1078 return rc;
1079
1080 /*
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1084 */
1085 break;
1086 case NOT_AVAILABLE:
1087 case MAX_PERFORMANCE:
1088 /* disable all IPM transitions */
1089 scontrol |= (0x3 << 8);
1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 if (rc)
1092 return rc;
1093
1094 /*
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1098 */
1099 break;
1100 }
1101
1102 /* FIXME: handle SET FEATURES failure */
1103 (void) err_mask;
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1112 *
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1117 *
1118 * Locking: Caller.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 */
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 {
1123 int rc = 0;
1124 struct ata_port *ap = dev->link->ap;
1125
1126 /* set HIPM first, then DIPM */
1127 if (ap->ops->enable_pm)
1128 rc = ap->ops->enable_pm(ap, policy);
1129 if (rc)
1130 goto enable_pm_out;
1131 rc = ata_dev_set_dipm(dev, policy);
1132
1133 enable_pm_out:
1134 if (rc)
1135 ap->pm_policy = MAX_PERFORMANCE;
1136 else
1137 ap->pm_policy = policy;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1139 }
1140
1141 #ifdef CONFIG_PM
1142 /**
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1145 *
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1150 *
1151 * Locking: Caller.
1152 * Returns: void
1153 */
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1155 {
1156 struct ata_port *ap = dev->link->ap;
1157
1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 if (ap->ops->disable_pm)
1160 ap->ops->disable_pm(ap);
1161 }
1162 #endif /* CONFIG_PM */
1163
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 {
1166 ap->pm_policy = policy;
1167 ap->link.eh_info.action |= ATA_EH_LPM;
1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 ata_port_schedule_eh(ap);
1170 }
1171
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1174 {
1175 struct ata_link *link;
1176 struct ata_port *ap;
1177 struct ata_device *dev;
1178 int i;
1179
1180 for (i = 0; i < host->n_ports; i++) {
1181 ap = host->ports[i];
1182 ata_for_each_link(link, ap, EDGE) {
1183 ata_for_each_dev(dev, link, ALL)
1184 ata_dev_disable_pm(dev);
1185 }
1186 }
1187 }
1188
1189 static void ata_lpm_disable(struct ata_host *host)
1190 {
1191 int i;
1192
1193 for (i = 0; i < host->n_ports; i++) {
1194 struct ata_port *ap = host->ports[i];
1195 ata_lpm_schedule(ap, ap->pm_policy);
1196 }
1197 }
1198 #endif /* CONFIG_PM */
1199
1200 /**
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1203 *
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1207 *
1208 * LOCKING:
1209 * None.
1210 *
1211 * RETURNS:
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1214 */
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 {
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1220 *
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1230 * SerialATA.
1231 *
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 * SEMB signature. This is worked around in
1236 * ata_dev_read_id().
1237 */
1238 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239 DPRINTK("found ATA device by sig\n");
1240 return ATA_DEV_ATA;
1241 }
1242
1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244 DPRINTK("found ATAPI device by sig\n");
1245 return ATA_DEV_ATAPI;
1246 }
1247
1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 DPRINTK("found PMP device by sig\n");
1250 return ATA_DEV_PMP;
1251 }
1252
1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 return ATA_DEV_SEMB;
1256 }
1257
1258 DPRINTK("unknown device\n");
1259 return ATA_DEV_UNKNOWN;
1260 }
1261
1262 /**
1263 * ata_id_string - Convert IDENTIFY DEVICE page into string
1264 * @id: IDENTIFY DEVICE results we will examine
1265 * @s: string into which data is output
1266 * @ofs: offset into identify device page
1267 * @len: length of string to return. must be an even number.
1268 *
1269 * The strings in the IDENTIFY DEVICE page are broken up into
1270 * 16-bit chunks. Run through the string, and output each
1271 * 8-bit chunk linearly, regardless of platform.
1272 *
1273 * LOCKING:
1274 * caller.
1275 */
1276
1277 void ata_id_string(const u16 *id, unsigned char *s,
1278 unsigned int ofs, unsigned int len)
1279 {
1280 unsigned int c;
1281
1282 BUG_ON(len & 1);
1283
1284 while (len > 0) {
1285 c = id[ofs] >> 8;
1286 *s = c;
1287 s++;
1288
1289 c = id[ofs] & 0xff;
1290 *s = c;
1291 s++;
1292
1293 ofs++;
1294 len -= 2;
1295 }
1296 }
1297
1298 /**
1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300 * @id: IDENTIFY DEVICE results we will examine
1301 * @s: string into which data is output
1302 * @ofs: offset into identify device page
1303 * @len: length of string to return. must be an odd number.
1304 *
1305 * This function is identical to ata_id_string except that it
1306 * trims trailing spaces and terminates the resulting string with
1307 * null. @len must be actual maximum length (even number) + 1.
1308 *
1309 * LOCKING:
1310 * caller.
1311 */
1312 void ata_id_c_string(const u16 *id, unsigned char *s,
1313 unsigned int ofs, unsigned int len)
1314 {
1315 unsigned char *p;
1316
1317 ata_id_string(id, s, ofs, len - 1);
1318
1319 p = s + strnlen(s, len - 1);
1320 while (p > s && p[-1] == ' ')
1321 p--;
1322 *p = '\0';
1323 }
1324
1325 static u64 ata_id_n_sectors(const u16 *id)
1326 {
1327 if (ata_id_has_lba(id)) {
1328 if (ata_id_has_lba48(id))
1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330 else
1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332 } else {
1333 if (ata_id_current_chs_valid(id))
1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 id[ATA_ID_CUR_SECTORS];
1336 else
1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 id[ATA_ID_SECTORS];
1339 }
1340 }
1341
1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1343 {
1344 u64 sectors = 0;
1345
1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349 sectors |= (tf->lbah & 0xff) << 16;
1350 sectors |= (tf->lbam & 0xff) << 8;
1351 sectors |= (tf->lbal & 0xff);
1352
1353 return sectors;
1354 }
1355
1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1357 {
1358 u64 sectors = 0;
1359
1360 sectors |= (tf->device & 0x0f) << 24;
1361 sectors |= (tf->lbah & 0xff) << 16;
1362 sectors |= (tf->lbam & 0xff) << 8;
1363 sectors |= (tf->lbal & 0xff);
1364
1365 return sectors;
1366 }
1367
1368 /**
1369 * ata_read_native_max_address - Read native max address
1370 * @dev: target device
1371 * @max_sectors: out parameter for the result native max address
1372 *
1373 * Perform an LBA48 or LBA28 native size query upon the device in
1374 * question.
1375 *
1376 * RETURNS:
1377 * 0 on success, -EACCES if command is aborted by the drive.
1378 * -EIO on other errors.
1379 */
1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1381 {
1382 unsigned int err_mask;
1383 struct ata_taskfile tf;
1384 int lba48 = ata_id_has_lba48(dev->id);
1385
1386 ata_tf_init(dev, &tf);
1387
1388 /* always clear all address registers */
1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1390
1391 if (lba48) {
1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 tf.flags |= ATA_TFLAG_LBA48;
1394 } else
1395 tf.command = ATA_CMD_READ_NATIVE_MAX;
1396
1397 tf.protocol |= ATA_PROT_NODATA;
1398 tf.device |= ATA_LBA;
1399
1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401 if (err_mask) {
1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 "max address (err_mask=0x%x)\n", err_mask);
1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 return -EACCES;
1406 return -EIO;
1407 }
1408
1409 if (lba48)
1410 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1411 else
1412 *max_sectors = ata_tf_to_lba(&tf) + 1;
1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414 (*max_sectors)--;
1415 return 0;
1416 }
1417
1418 /**
1419 * ata_set_max_sectors - Set max sectors
1420 * @dev: target device
1421 * @new_sectors: new max sectors value to set for the device
1422 *
1423 * Set max sectors of @dev to @new_sectors.
1424 *
1425 * RETURNS:
1426 * 0 on success, -EACCES if command is aborted or denied (due to
1427 * previous non-volatile SET_MAX) by the drive. -EIO on other
1428 * errors.
1429 */
1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1431 {
1432 unsigned int err_mask;
1433 struct ata_taskfile tf;
1434 int lba48 = ata_id_has_lba48(dev->id);
1435
1436 new_sectors--;
1437
1438 ata_tf_init(dev, &tf);
1439
1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1441
1442 if (lba48) {
1443 tf.command = ATA_CMD_SET_MAX_EXT;
1444 tf.flags |= ATA_TFLAG_LBA48;
1445
1446 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449 } else {
1450 tf.command = ATA_CMD_SET_MAX;
1451
1452 tf.device |= (new_sectors >> 24) & 0xf;
1453 }
1454
1455 tf.protocol |= ATA_PROT_NODATA;
1456 tf.device |= ATA_LBA;
1457
1458 tf.lbal = (new_sectors >> 0) & 0xff;
1459 tf.lbam = (new_sectors >> 8) & 0xff;
1460 tf.lbah = (new_sectors >> 16) & 0xff;
1461
1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463 if (err_mask) {
1464 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 "max address (err_mask=0x%x)\n", err_mask);
1466 if (err_mask == AC_ERR_DEV &&
1467 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 return -EACCES;
1469 return -EIO;
1470 }
1471
1472 return 0;
1473 }
1474
1475 /**
1476 * ata_hpa_resize - Resize a device with an HPA set
1477 * @dev: Device to resize
1478 *
1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 * it if required to the full size of the media. The caller must check
1481 * the drive has the HPA feature set enabled.
1482 *
1483 * RETURNS:
1484 * 0 on success, -errno on failure.
1485 */
1486 static int ata_hpa_resize(struct ata_device *dev)
1487 {
1488 struct ata_eh_context *ehc = &dev->link->eh_context;
1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 u64 sectors = ata_id_n_sectors(dev->id);
1491 u64 native_sectors;
1492 int rc;
1493
1494 /* do we need to do it? */
1495 if (dev->class != ATA_DEV_ATA ||
1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498 return 0;
1499
1500 /* read native max address */
1501 rc = ata_read_native_max_address(dev, &native_sectors);
1502 if (rc) {
1503 /* If device aborted the command or HPA isn't going to
1504 * be unlocked, skip HPA resizing.
1505 */
1506 if (rc == -EACCES || !ata_ignore_hpa) {
1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508 "broken, skipping HPA handling\n");
1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510
1511 /* we can continue if device aborted the command */
1512 if (rc == -EACCES)
1513 rc = 0;
1514 }
1515
1516 return rc;
1517 }
1518
1519 /* nothing to do? */
1520 if (native_sectors <= sectors || !ata_ignore_hpa) {
1521 if (!print_info || native_sectors == sectors)
1522 return 0;
1523
1524 if (native_sectors > sectors)
1525 ata_dev_printk(dev, KERN_INFO,
1526 "HPA detected: current %llu, native %llu\n",
1527 (unsigned long long)sectors,
1528 (unsigned long long)native_sectors);
1529 else if (native_sectors < sectors)
1530 ata_dev_printk(dev, KERN_WARNING,
1531 "native sectors (%llu) is smaller than "
1532 "sectors (%llu)\n",
1533 (unsigned long long)native_sectors,
1534 (unsigned long long)sectors);
1535 return 0;
1536 }
1537
1538 /* let's unlock HPA */
1539 rc = ata_set_max_sectors(dev, native_sectors);
1540 if (rc == -EACCES) {
1541 /* if device aborted the command, skip HPA resizing */
1542 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543 "(%llu -> %llu), skipping HPA handling\n",
1544 (unsigned long long)sectors,
1545 (unsigned long long)native_sectors);
1546 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547 return 0;
1548 } else if (rc)
1549 return rc;
1550
1551 /* re-read IDENTIFY data */
1552 rc = ata_dev_reread_id(dev, 0);
1553 if (rc) {
1554 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555 "data after HPA resizing\n");
1556 return rc;
1557 }
1558
1559 if (print_info) {
1560 u64 new_sectors = ata_id_n_sectors(dev->id);
1561 ata_dev_printk(dev, KERN_INFO,
1562 "HPA unlocked: %llu -> %llu, native %llu\n",
1563 (unsigned long long)sectors,
1564 (unsigned long long)new_sectors,
1565 (unsigned long long)native_sectors);
1566 }
1567
1568 return 0;
1569 }
1570
1571 /**
1572 * ata_dump_id - IDENTIFY DEVICE info debugging output
1573 * @id: IDENTIFY DEVICE page to dump
1574 *
1575 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 * page.
1577 *
1578 * LOCKING:
1579 * caller.
1580 */
1581
1582 static inline void ata_dump_id(const u16 *id)
1583 {
1584 DPRINTK("49==0x%04x "
1585 "53==0x%04x "
1586 "63==0x%04x "
1587 "64==0x%04x "
1588 "75==0x%04x \n",
1589 id[49],
1590 id[53],
1591 id[63],
1592 id[64],
1593 id[75]);
1594 DPRINTK("80==0x%04x "
1595 "81==0x%04x "
1596 "82==0x%04x "
1597 "83==0x%04x "
1598 "84==0x%04x \n",
1599 id[80],
1600 id[81],
1601 id[82],
1602 id[83],
1603 id[84]);
1604 DPRINTK("88==0x%04x "
1605 "93==0x%04x\n",
1606 id[88],
1607 id[93]);
1608 }
1609
1610 /**
1611 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612 * @id: IDENTIFY data to compute xfer mask from
1613 *
1614 * Compute the xfermask for this device. This is not as trivial
1615 * as it seems if we must consider early devices correctly.
1616 *
1617 * FIXME: pre IDE drive timing (do we care ?).
1618 *
1619 * LOCKING:
1620 * None.
1621 *
1622 * RETURNS:
1623 * Computed xfermask
1624 */
1625 unsigned long ata_id_xfermask(const u16 *id)
1626 {
1627 unsigned long pio_mask, mwdma_mask, udma_mask;
1628
1629 /* Usual case. Word 53 indicates word 64 is valid */
1630 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632 pio_mask <<= 3;
1633 pio_mask |= 0x7;
1634 } else {
1635 /* If word 64 isn't valid then Word 51 high byte holds
1636 * the PIO timing number for the maximum. Turn it into
1637 * a mask.
1638 */
1639 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1640 if (mode < 5) /* Valid PIO range */
1641 pio_mask = (2 << mode) - 1;
1642 else
1643 pio_mask = 1;
1644
1645 /* But wait.. there's more. Design your standards by
1646 * committee and you too can get a free iordy field to
1647 * process. However its the speeds not the modes that
1648 * are supported... Note drivers using the timing API
1649 * will get this right anyway
1650 */
1651 }
1652
1653 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654
1655 if (ata_id_is_cfa(id)) {
1656 /*
1657 * Process compact flash extended modes
1658 */
1659 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1661
1662 if (pio)
1663 pio_mask |= (1 << 5);
1664 if (pio > 1)
1665 pio_mask |= (1 << 6);
1666 if (dma)
1667 mwdma_mask |= (1 << 3);
1668 if (dma > 1)
1669 mwdma_mask |= (1 << 4);
1670 }
1671
1672 udma_mask = 0;
1673 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675
1676 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1677 }
1678
1679 /**
1680 * ata_pio_queue_task - Queue port_task
1681 * @ap: The ata_port to queue port_task for
1682 * @data: data for @fn to use
1683 * @delay: delay time in msecs for workqueue function
1684 *
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1689 *
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1692 * synchronization.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
1697 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1698 {
1699 ap->port_task_data = data;
1700
1701 /* may fail if ata_port_flush_task() in progress */
1702 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1703 }
1704
1705 /**
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1708 *
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1711 *
1712 * LOCKING:
1713 * Kernel thread context (may sleep)
1714 */
1715 void ata_port_flush_task(struct ata_port *ap)
1716 {
1717 DPRINTK("ENTER\n");
1718
1719 cancel_rearming_delayed_work(&ap->port_task);
1720
1721 if (ata_msg_ctl(ap))
1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1723 }
1724
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1726 {
1727 struct completion *waiting = qc->private_data;
1728
1729 complete(waiting);
1730 }
1731
1732 /**
1733 * ata_exec_internal_sg - execute libata internal command
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
1736 * @cdb: CDB for packet command
1737 * @dma_dir: Data tranfer direction of the command
1738 * @sgl: sg list for the data buffer of the command
1739 * @n_elem: Number of sg entries
1740 * @timeout: Timeout in msecs (0 for default)
1741 *
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1747 *
1748 * LOCKING:
1749 * None. Should be called with kernel context, might sleep.
1750 *
1751 * RETURNS:
1752 * Zero on success, AC_ERR_* mask on failure
1753 */
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 struct ata_taskfile *tf, const u8 *cdb,
1756 int dma_dir, struct scatterlist *sgl,
1757 unsigned int n_elem, unsigned long timeout)
1758 {
1759 struct ata_link *link = dev->link;
1760 struct ata_port *ap = link->ap;
1761 u8 command = tf->command;
1762 int auto_timeout = 0;
1763 struct ata_queued_cmd *qc;
1764 unsigned int tag, preempted_tag;
1765 u32 preempted_sactive, preempted_qc_active;
1766 int preempted_nr_active_links;
1767 DECLARE_COMPLETION_ONSTACK(wait);
1768 unsigned long flags;
1769 unsigned int err_mask;
1770 int rc;
1771
1772 spin_lock_irqsave(ap->lock, flags);
1773
1774 /* no internal command while frozen */
1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 spin_unlock_irqrestore(ap->lock, flags);
1777 return AC_ERR_SYSTEM;
1778 }
1779
1780 /* initialize internal qc */
1781
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1786 */
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1791
1792 if (test_and_set_bit(tag, &ap->qc_allocated))
1793 BUG();
1794 qc = __ata_qc_from_tag(ap, tag);
1795
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1801
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
1804 preempted_qc_active = ap->qc_active;
1805 preempted_nr_active_links = ap->nr_active_links;
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
1808 ap->qc_active = 0;
1809 ap->nr_active_links = 0;
1810
1811 /* prepare & issue qc */
1812 qc->tf = *tf;
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
1818 unsigned int i, buflen = 0;
1819 struct scatterlist *sg;
1820
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
1823
1824 ata_sg_init(qc, sgl, n_elem);
1825 qc->nbytes = buflen;
1826 }
1827
1828 qc->private_data = &wait;
1829 qc->complete_fn = ata_qc_complete_internal;
1830
1831 ata_qc_issue(qc);
1832
1833 spin_unlock_irqrestore(ap->lock, flags);
1834
1835 if (!timeout) {
1836 if (ata_probe_timeout)
1837 timeout = ata_probe_timeout * 1000;
1838 else {
1839 timeout = ata_internal_cmd_timeout(dev, command);
1840 auto_timeout = 1;
1841 }
1842 }
1843
1844 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1845
1846 ata_port_flush_task(ap);
1847
1848 if (!rc) {
1849 spin_lock_irqsave(ap->lock, flags);
1850
1851 /* We're racing with irq here. If we lose, the
1852 * following test prevents us from completing the qc
1853 * twice. If we win, the port is frozen and will be
1854 * cleaned up by ->post_internal_cmd().
1855 */
1856 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1857 qc->err_mask |= AC_ERR_TIMEOUT;
1858
1859 if (ap->ops->error_handler)
1860 ata_port_freeze(ap);
1861 else
1862 ata_qc_complete(qc);
1863
1864 if (ata_msg_warn(ap))
1865 ata_dev_printk(dev, KERN_WARNING,
1866 "qc timeout (cmd 0x%x)\n", command);
1867 }
1868
1869 spin_unlock_irqrestore(ap->lock, flags);
1870 }
1871
1872 /* do post_internal_cmd */
1873 if (ap->ops->post_internal_cmd)
1874 ap->ops->post_internal_cmd(qc);
1875
1876 /* perform minimal error analysis */
1877 if (qc->flags & ATA_QCFLAG_FAILED) {
1878 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879 qc->err_mask |= AC_ERR_DEV;
1880
1881 if (!qc->err_mask)
1882 qc->err_mask |= AC_ERR_OTHER;
1883
1884 if (qc->err_mask & ~AC_ERR_OTHER)
1885 qc->err_mask &= ~AC_ERR_OTHER;
1886 }
1887
1888 /* finish up */
1889 spin_lock_irqsave(ap->lock, flags);
1890
1891 *tf = qc->result_tf;
1892 err_mask = qc->err_mask;
1893
1894 ata_qc_free(qc);
1895 link->active_tag = preempted_tag;
1896 link->sactive = preempted_sactive;
1897 ap->qc_active = preempted_qc_active;
1898 ap->nr_active_links = preempted_nr_active_links;
1899
1900 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901 * Until those drivers are fixed, we detect the condition
1902 * here, fail the command with AC_ERR_SYSTEM and reenable the
1903 * port.
1904 *
1905 * Note that this doesn't change any behavior as internal
1906 * command failure results in disabling the device in the
1907 * higher layer for LLDDs without new reset/EH callbacks.
1908 *
1909 * Kill the following code as soon as those drivers are fixed.
1910 */
1911 if (ap->flags & ATA_FLAG_DISABLED) {
1912 err_mask |= AC_ERR_SYSTEM;
1913 ata_port_probe(ap);
1914 }
1915
1916 spin_unlock_irqrestore(ap->lock, flags);
1917
1918 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919 ata_internal_cmd_timed_out(dev, command);
1920
1921 return err_mask;
1922 }
1923
1924 /**
1925 * ata_exec_internal - execute libata internal command
1926 * @dev: Device to which the command is sent
1927 * @tf: Taskfile registers for the command and the result
1928 * @cdb: CDB for packet command
1929 * @dma_dir: Data tranfer direction of the command
1930 * @buf: Data buffer of the command
1931 * @buflen: Length of data buffer
1932 * @timeout: Timeout in msecs (0 for default)
1933 *
1934 * Wrapper around ata_exec_internal_sg() which takes simple
1935 * buffer instead of sg list.
1936 *
1937 * LOCKING:
1938 * None. Should be called with kernel context, might sleep.
1939 *
1940 * RETURNS:
1941 * Zero on success, AC_ERR_* mask on failure
1942 */
1943 unsigned ata_exec_internal(struct ata_device *dev,
1944 struct ata_taskfile *tf, const u8 *cdb,
1945 int dma_dir, void *buf, unsigned int buflen,
1946 unsigned long timeout)
1947 {
1948 struct scatterlist *psg = NULL, sg;
1949 unsigned int n_elem = 0;
1950
1951 if (dma_dir != DMA_NONE) {
1952 WARN_ON(!buf);
1953 sg_init_one(&sg, buf, buflen);
1954 psg = &sg;
1955 n_elem++;
1956 }
1957
1958 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959 timeout);
1960 }
1961
1962 /**
1963 * ata_do_simple_cmd - execute simple internal command
1964 * @dev: Device to which the command is sent
1965 * @cmd: Opcode to execute
1966 *
1967 * Execute a 'simple' command, that only consists of the opcode
1968 * 'cmd' itself, without filling any other registers
1969 *
1970 * LOCKING:
1971 * Kernel thread context (may sleep).
1972 *
1973 * RETURNS:
1974 * Zero on success, AC_ERR_* mask on failure
1975 */
1976 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1977 {
1978 struct ata_taskfile tf;
1979
1980 ata_tf_init(dev, &tf);
1981
1982 tf.command = cmd;
1983 tf.flags |= ATA_TFLAG_DEVICE;
1984 tf.protocol = ATA_PROT_NODATA;
1985
1986 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1987 }
1988
1989 /**
1990 * ata_pio_need_iordy - check if iordy needed
1991 * @adev: ATA device
1992 *
1993 * Check if the current speed of the device requires IORDY. Used
1994 * by various controllers for chip configuration.
1995 */
1996 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1997 {
1998 /* Don't set IORDY if we're preparing for reset. IORDY may
1999 * lead to controller lock up on certain controllers if the
2000 * port is not occupied. See bko#11703 for details.
2001 */
2002 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2003 return 0;
2004 /* Controller doesn't support IORDY. Probably a pointless
2005 * check as the caller should know this.
2006 */
2007 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2008 return 0;
2009 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2010 if (ata_id_is_cfa(adev->id)
2011 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2012 return 0;
2013 /* PIO3 and higher it is mandatory */
2014 if (adev->pio_mode > XFER_PIO_2)
2015 return 1;
2016 /* We turn it on when possible */
2017 if (ata_id_has_iordy(adev->id))
2018 return 1;
2019 return 0;
2020 }
2021
2022 /**
2023 * ata_pio_mask_no_iordy - Return the non IORDY mask
2024 * @adev: ATA device
2025 *
2026 * Compute the highest mode possible if we are not using iordy. Return
2027 * -1 if no iordy mode is available.
2028 */
2029 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2030 {
2031 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2032 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2033 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2034 /* Is the speed faster than the drive allows non IORDY ? */
2035 if (pio) {
2036 /* This is cycle times not frequency - watch the logic! */
2037 if (pio > 240) /* PIO2 is 240nS per cycle */
2038 return 3 << ATA_SHIFT_PIO;
2039 return 7 << ATA_SHIFT_PIO;
2040 }
2041 }
2042 return 3 << ATA_SHIFT_PIO;
2043 }
2044
2045 /**
2046 * ata_do_dev_read_id - default ID read method
2047 * @dev: device
2048 * @tf: proposed taskfile
2049 * @id: data buffer
2050 *
2051 * Issue the identify taskfile and hand back the buffer containing
2052 * identify data. For some RAID controllers and for pre ATA devices
2053 * this function is wrapped or replaced by the driver
2054 */
2055 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2056 struct ata_taskfile *tf, u16 *id)
2057 {
2058 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2059 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2060 }
2061
2062 /**
2063 * ata_dev_read_id - Read ID data from the specified device
2064 * @dev: target device
2065 * @p_class: pointer to class of the target device (may be changed)
2066 * @flags: ATA_READID_* flags
2067 * @id: buffer to read IDENTIFY data into
2068 *
2069 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2070 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2071 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2072 * for pre-ATA4 drives.
2073 *
2074 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2075 * now we abort if we hit that case.
2076 *
2077 * LOCKING:
2078 * Kernel thread context (may sleep)
2079 *
2080 * RETURNS:
2081 * 0 on success, -errno otherwise.
2082 */
2083 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2084 unsigned int flags, u16 *id)
2085 {
2086 struct ata_port *ap = dev->link->ap;
2087 unsigned int class = *p_class;
2088 struct ata_taskfile tf;
2089 unsigned int err_mask = 0;
2090 const char *reason;
2091 bool is_semb = class == ATA_DEV_SEMB;
2092 int may_fallback = 1, tried_spinup = 0;
2093 int rc;
2094
2095 if (ata_msg_ctl(ap))
2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2097
2098 retry:
2099 ata_tf_init(dev, &tf);
2100
2101 switch (class) {
2102 case ATA_DEV_SEMB:
2103 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2104 case ATA_DEV_ATA:
2105 tf.command = ATA_CMD_ID_ATA;
2106 break;
2107 case ATA_DEV_ATAPI:
2108 tf.command = ATA_CMD_ID_ATAPI;
2109 break;
2110 default:
2111 rc = -ENODEV;
2112 reason = "unsupported class";
2113 goto err_out;
2114 }
2115
2116 tf.protocol = ATA_PROT_PIO;
2117
2118 /* Some devices choke if TF registers contain garbage. Make
2119 * sure those are properly initialized.
2120 */
2121 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2122
2123 /* Device presence detection is unreliable on some
2124 * controllers. Always poll IDENTIFY if available.
2125 */
2126 tf.flags |= ATA_TFLAG_POLLING;
2127
2128 if (ap->ops->read_id)
2129 err_mask = ap->ops->read_id(dev, &tf, id);
2130 else
2131 err_mask = ata_do_dev_read_id(dev, &tf, id);
2132
2133 if (err_mask) {
2134 if (err_mask & AC_ERR_NODEV_HINT) {
2135 ata_dev_printk(dev, KERN_DEBUG,
2136 "NODEV after polling detection\n");
2137 return -ENOENT;
2138 }
2139
2140 if (is_semb) {
2141 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2142 "device w/ SEMB sig, disabled\n");
2143 /* SEMB is not supported yet */
2144 *p_class = ATA_DEV_SEMB_UNSUP;
2145 return 0;
2146 }
2147
2148 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2149 /* Device or controller might have reported
2150 * the wrong device class. Give a shot at the
2151 * other IDENTIFY if the current one is
2152 * aborted by the device.
2153 */
2154 if (may_fallback) {
2155 may_fallback = 0;
2156
2157 if (class == ATA_DEV_ATA)
2158 class = ATA_DEV_ATAPI;
2159 else
2160 class = ATA_DEV_ATA;
2161 goto retry;
2162 }
2163
2164 /* Control reaches here iff the device aborted
2165 * both flavors of IDENTIFYs which happens
2166 * sometimes with phantom devices.
2167 */
2168 ata_dev_printk(dev, KERN_DEBUG,
2169 "both IDENTIFYs aborted, assuming NODEV\n");
2170 return -ENOENT;
2171 }
2172
2173 rc = -EIO;
2174 reason = "I/O error";
2175 goto err_out;
2176 }
2177
2178 /* Falling back doesn't make sense if ID data was read
2179 * successfully at least once.
2180 */
2181 may_fallback = 0;
2182
2183 swap_buf_le16(id, ATA_ID_WORDS);
2184
2185 /* sanity check */
2186 rc = -EINVAL;
2187 reason = "device reports invalid type";
2188
2189 if (class == ATA_DEV_ATA) {
2190 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2191 goto err_out;
2192 } else {
2193 if (ata_id_is_ata(id))
2194 goto err_out;
2195 }
2196
2197 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2198 tried_spinup = 1;
2199 /*
2200 * Drive powered-up in standby mode, and requires a specific
2201 * SET_FEATURES spin-up subcommand before it will accept
2202 * anything other than the original IDENTIFY command.
2203 */
2204 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2205 if (err_mask && id[2] != 0x738c) {
2206 rc = -EIO;
2207 reason = "SPINUP failed";
2208 goto err_out;
2209 }
2210 /*
2211 * If the drive initially returned incomplete IDENTIFY info,
2212 * we now must reissue the IDENTIFY command.
2213 */
2214 if (id[2] == 0x37c8)
2215 goto retry;
2216 }
2217
2218 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2219 /*
2220 * The exact sequence expected by certain pre-ATA4 drives is:
2221 * SRST RESET
2222 * IDENTIFY (optional in early ATA)
2223 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2224 * anything else..
2225 * Some drives were very specific about that exact sequence.
2226 *
2227 * Note that ATA4 says lba is mandatory so the second check
2228 * shoud never trigger.
2229 */
2230 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2231 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2232 if (err_mask) {
2233 rc = -EIO;
2234 reason = "INIT_DEV_PARAMS failed";
2235 goto err_out;
2236 }
2237
2238 /* current CHS translation info (id[53-58]) might be
2239 * changed. reread the identify device info.
2240 */
2241 flags &= ~ATA_READID_POSTRESET;
2242 goto retry;
2243 }
2244 }
2245
2246 *p_class = class;
2247
2248 return 0;
2249
2250 err_out:
2251 if (ata_msg_warn(ap))
2252 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2253 "(%s, err_mask=0x%x)\n", reason, err_mask);
2254 return rc;
2255 }
2256
2257 static int ata_do_link_spd_horkage(struct ata_device *dev)
2258 {
2259 struct ata_link *plink = ata_dev_phys_link(dev);
2260 u32 target, target_limit;
2261
2262 if (!sata_scr_valid(plink))
2263 return 0;
2264
2265 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2266 target = 1;
2267 else
2268 return 0;
2269
2270 target_limit = (1 << target) - 1;
2271
2272 /* if already on stricter limit, no need to push further */
2273 if (plink->sata_spd_limit <= target_limit)
2274 return 0;
2275
2276 plink->sata_spd_limit = target_limit;
2277
2278 /* Request another EH round by returning -EAGAIN if link is
2279 * going faster than the target speed. Forward progress is
2280 * guaranteed by setting sata_spd_limit to target_limit above.
2281 */
2282 if (plink->sata_spd > target) {
2283 ata_dev_printk(dev, KERN_INFO,
2284 "applying link speed limit horkage to %s\n",
2285 sata_spd_string(target));
2286 return -EAGAIN;
2287 }
2288 return 0;
2289 }
2290
2291 static inline u8 ata_dev_knobble(struct ata_device *dev)
2292 {
2293 struct ata_port *ap = dev->link->ap;
2294
2295 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2296 return 0;
2297
2298 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2299 }
2300
2301 static void ata_dev_config_ncq(struct ata_device *dev,
2302 char *desc, size_t desc_sz)
2303 {
2304 struct ata_port *ap = dev->link->ap;
2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306
2307 if (!ata_id_has_ncq(dev->id)) {
2308 desc[0] = '\0';
2309 return;
2310 }
2311 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2312 snprintf(desc, desc_sz, "NCQ (not used)");
2313 return;
2314 }
2315 if (ap->flags & ATA_FLAG_NCQ) {
2316 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2317 dev->flags |= ATA_DFLAG_NCQ;
2318 }
2319
2320 if (hdepth >= ddepth)
2321 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2322 else
2323 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2324 }
2325
2326 /**
2327 * ata_dev_configure - Configure the specified ATA/ATAPI device
2328 * @dev: Target device to configure
2329 *
2330 * Configure @dev according to @dev->id. Generic and low-level
2331 * driver specific fixups are also applied.
2332 *
2333 * LOCKING:
2334 * Kernel thread context (may sleep)
2335 *
2336 * RETURNS:
2337 * 0 on success, -errno otherwise
2338 */
2339 int ata_dev_configure(struct ata_device *dev)
2340 {
2341 struct ata_port *ap = dev->link->ap;
2342 struct ata_eh_context *ehc = &dev->link->eh_context;
2343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2344 const u16 *id = dev->id;
2345 unsigned long xfer_mask;
2346 char revbuf[7]; /* XYZ-99\0 */
2347 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2348 char modelbuf[ATA_ID_PROD_LEN+1];
2349 int rc;
2350
2351 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2352 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2353 __func__);
2354 return 0;
2355 }
2356
2357 if (ata_msg_probe(ap))
2358 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2359
2360 /* set horkage */
2361 dev->horkage |= ata_dev_blacklisted(dev);
2362 ata_force_horkage(dev);
2363
2364 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2365 ata_dev_printk(dev, KERN_INFO,
2366 "unsupported device, disabling\n");
2367 ata_dev_disable(dev);
2368 return 0;
2369 }
2370
2371 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2372 dev->class == ATA_DEV_ATAPI) {
2373 ata_dev_printk(dev, KERN_WARNING,
2374 "WARNING: ATAPI is %s, device ignored.\n",
2375 atapi_enabled ? "not supported with this driver"
2376 : "disabled");
2377 ata_dev_disable(dev);
2378 return 0;
2379 }
2380
2381 rc = ata_do_link_spd_horkage(dev);
2382 if (rc)
2383 return rc;
2384
2385 /* let ACPI work its magic */
2386 rc = ata_acpi_on_devcfg(dev);
2387 if (rc)
2388 return rc;
2389
2390 /* massage HPA, do it early as it might change IDENTIFY data */
2391 rc = ata_hpa_resize(dev);
2392 if (rc)
2393 return rc;
2394
2395 /* print device capabilities */
2396 if (ata_msg_probe(ap))
2397 ata_dev_printk(dev, KERN_DEBUG,
2398 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2399 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2400 __func__,
2401 id[49], id[82], id[83], id[84],
2402 id[85], id[86], id[87], id[88]);
2403
2404 /* initialize to-be-configured parameters */
2405 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2406 dev->max_sectors = 0;
2407 dev->cdb_len = 0;
2408 dev->n_sectors = 0;
2409 dev->cylinders = 0;
2410 dev->heads = 0;
2411 dev->sectors = 0;
2412 dev->multi_count = 0;
2413
2414 /*
2415 * common ATA, ATAPI feature tests
2416 */
2417
2418 /* find max transfer mode; for printk only */
2419 xfer_mask = ata_id_xfermask(id);
2420
2421 if (ata_msg_probe(ap))
2422 ata_dump_id(id);
2423
2424 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2425 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2426 sizeof(fwrevbuf));
2427
2428 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2429 sizeof(modelbuf));
2430
2431 /* ATA-specific feature tests */
2432 if (dev->class == ATA_DEV_ATA) {
2433 if (ata_id_is_cfa(id)) {
2434 /* CPRM may make this media unusable */
2435 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2436 ata_dev_printk(dev, KERN_WARNING,
2437 "supports DRM functions and may "
2438 "not be fully accessable.\n");
2439 snprintf(revbuf, 7, "CFA");
2440 } else {
2441 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2442 /* Warn the user if the device has TPM extensions */
2443 if (ata_id_has_tpm(id))
2444 ata_dev_printk(dev, KERN_WARNING,
2445 "supports DRM functions and may "
2446 "not be fully accessable.\n");
2447 }
2448
2449 dev->n_sectors = ata_id_n_sectors(id);
2450
2451 /* get current R/W Multiple count setting */
2452 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2453 unsigned int max = dev->id[47] & 0xff;
2454 unsigned int cnt = dev->id[59] & 0xff;
2455 /* only recognize/allow powers of two here */
2456 if (is_power_of_2(max) && is_power_of_2(cnt))
2457 if (cnt <= max)
2458 dev->multi_count = cnt;
2459 }
2460
2461 if (ata_id_has_lba(id)) {
2462 const char *lba_desc;
2463 char ncq_desc[20];
2464
2465 lba_desc = "LBA";
2466 dev->flags |= ATA_DFLAG_LBA;
2467 if (ata_id_has_lba48(id)) {
2468 dev->flags |= ATA_DFLAG_LBA48;
2469 lba_desc = "LBA48";
2470
2471 if (dev->n_sectors >= (1UL << 28) &&
2472 ata_id_has_flush_ext(id))
2473 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2474 }
2475
2476 /* config NCQ */
2477 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2478
2479 /* print device info to dmesg */
2480 if (ata_msg_drv(ap) && print_info) {
2481 ata_dev_printk(dev, KERN_INFO,
2482 "%s: %s, %s, max %s\n",
2483 revbuf, modelbuf, fwrevbuf,
2484 ata_mode_string(xfer_mask));
2485 ata_dev_printk(dev, KERN_INFO,
2486 "%Lu sectors, multi %u: %s %s\n",
2487 (unsigned long long)dev->n_sectors,
2488 dev->multi_count, lba_desc, ncq_desc);
2489 }
2490 } else {
2491 /* CHS */
2492
2493 /* Default translation */
2494 dev->cylinders = id[1];
2495 dev->heads = id[3];
2496 dev->sectors = id[6];
2497
2498 if (ata_id_current_chs_valid(id)) {
2499 /* Current CHS translation is valid. */
2500 dev->cylinders = id[54];
2501 dev->heads = id[55];
2502 dev->sectors = id[56];
2503 }
2504
2505 /* print device info to dmesg */
2506 if (ata_msg_drv(ap) && print_info) {
2507 ata_dev_printk(dev, KERN_INFO,
2508 "%s: %s, %s, max %s\n",
2509 revbuf, modelbuf, fwrevbuf,
2510 ata_mode_string(xfer_mask));
2511 ata_dev_printk(dev, KERN_INFO,
2512 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2513 (unsigned long long)dev->n_sectors,
2514 dev->multi_count, dev->cylinders,
2515 dev->heads, dev->sectors);
2516 }
2517 }
2518
2519 dev->cdb_len = 16;
2520 }
2521
2522 /* ATAPI-specific feature tests */
2523 else if (dev->class == ATA_DEV_ATAPI) {
2524 const char *cdb_intr_string = "";
2525 const char *atapi_an_string = "";
2526 const char *dma_dir_string = "";
2527 u32 sntf;
2528
2529 rc = atapi_cdb_len(id);
2530 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2531 if (ata_msg_warn(ap))
2532 ata_dev_printk(dev, KERN_WARNING,
2533 "unsupported CDB len\n");
2534 rc = -EINVAL;
2535 goto err_out_nosup;
2536 }
2537 dev->cdb_len = (unsigned int) rc;
2538
2539 /* Enable ATAPI AN if both the host and device have
2540 * the support. If PMP is attached, SNTF is required
2541 * to enable ATAPI AN to discern between PHY status
2542 * changed notifications and ATAPI ANs.
2543 */
2544 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2545 (!sata_pmp_attached(ap) ||
2546 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2547 unsigned int err_mask;
2548
2549 /* issue SET feature command to turn this on */
2550 err_mask = ata_dev_set_feature(dev,
2551 SETFEATURES_SATA_ENABLE, SATA_AN);
2552 if (err_mask)
2553 ata_dev_printk(dev, KERN_ERR,
2554 "failed to enable ATAPI AN "
2555 "(err_mask=0x%x)\n", err_mask);
2556 else {
2557 dev->flags |= ATA_DFLAG_AN;
2558 atapi_an_string = ", ATAPI AN";
2559 }
2560 }
2561
2562 if (ata_id_cdb_intr(dev->id)) {
2563 dev->flags |= ATA_DFLAG_CDB_INTR;
2564 cdb_intr_string = ", CDB intr";
2565 }
2566
2567 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2568 dev->flags |= ATA_DFLAG_DMADIR;
2569 dma_dir_string = ", DMADIR";
2570 }
2571
2572 /* print device info to dmesg */
2573 if (ata_msg_drv(ap) && print_info)
2574 ata_dev_printk(dev, KERN_INFO,
2575 "ATAPI: %s, %s, max %s%s%s%s\n",
2576 modelbuf, fwrevbuf,
2577 ata_mode_string(xfer_mask),
2578 cdb_intr_string, atapi_an_string,
2579 dma_dir_string);
2580 }
2581
2582 /* determine max_sectors */
2583 dev->max_sectors = ATA_MAX_SECTORS;
2584 if (dev->flags & ATA_DFLAG_LBA48)
2585 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2586
2587 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2588 if (ata_id_has_hipm(dev->id))
2589 dev->flags |= ATA_DFLAG_HIPM;
2590 if (ata_id_has_dipm(dev->id))
2591 dev->flags |= ATA_DFLAG_DIPM;
2592 }
2593
2594 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2595 200 sectors */
2596 if (ata_dev_knobble(dev)) {
2597 if (ata_msg_drv(ap) && print_info)
2598 ata_dev_printk(dev, KERN_INFO,
2599 "applying bridge limits\n");
2600 dev->udma_mask &= ATA_UDMA5;
2601 dev->max_sectors = ATA_MAX_SECTORS;
2602 }
2603
2604 if ((dev->class == ATA_DEV_ATAPI) &&
2605 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2606 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2607 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2608 }
2609
2610 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2611 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2612 dev->max_sectors);
2613
2614 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2615 dev->horkage |= ATA_HORKAGE_IPM;
2616
2617 /* reset link pm_policy for this port to no pm */
2618 ap->pm_policy = MAX_PERFORMANCE;
2619 }
2620
2621 if (ap->ops->dev_config)
2622 ap->ops->dev_config(dev);
2623
2624 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2625 /* Let the user know. We don't want to disallow opens for
2626 rescue purposes, or in case the vendor is just a blithering
2627 idiot. Do this after the dev_config call as some controllers
2628 with buggy firmware may want to avoid reporting false device
2629 bugs */
2630
2631 if (print_info) {
2632 ata_dev_printk(dev, KERN_WARNING,
2633 "Drive reports diagnostics failure. This may indicate a drive\n");
2634 ata_dev_printk(dev, KERN_WARNING,
2635 "fault or invalid emulation. Contact drive vendor for information.\n");
2636 }
2637 }
2638
2639 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2640 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2641 "firmware update to be fully functional.\n");
2642 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2643 "or visit http://ata.wiki.kernel.org.\n");
2644 }
2645
2646 return 0;
2647
2648 err_out_nosup:
2649 if (ata_msg_probe(ap))
2650 ata_dev_printk(dev, KERN_DEBUG,
2651 "%s: EXIT, err\n", __func__);
2652 return rc;
2653 }
2654
2655 /**
2656 * ata_cable_40wire - return 40 wire cable type
2657 * @ap: port
2658 *
2659 * Helper method for drivers which want to hardwire 40 wire cable
2660 * detection.
2661 */
2662
2663 int ata_cable_40wire(struct ata_port *ap)
2664 {
2665 return ATA_CBL_PATA40;
2666 }
2667
2668 /**
2669 * ata_cable_80wire - return 80 wire cable type
2670 * @ap: port
2671 *
2672 * Helper method for drivers which want to hardwire 80 wire cable
2673 * detection.
2674 */
2675
2676 int ata_cable_80wire(struct ata_port *ap)
2677 {
2678 return ATA_CBL_PATA80;
2679 }
2680
2681 /**
2682 * ata_cable_unknown - return unknown PATA cable.
2683 * @ap: port
2684 *
2685 * Helper method for drivers which have no PATA cable detection.
2686 */
2687
2688 int ata_cable_unknown(struct ata_port *ap)
2689 {
2690 return ATA_CBL_PATA_UNK;
2691 }
2692
2693 /**
2694 * ata_cable_ignore - return ignored PATA cable.
2695 * @ap: port
2696 *
2697 * Helper method for drivers which don't use cable type to limit
2698 * transfer mode.
2699 */
2700 int ata_cable_ignore(struct ata_port *ap)
2701 {
2702 return ATA_CBL_PATA_IGN;
2703 }
2704
2705 /**
2706 * ata_cable_sata - return SATA cable type
2707 * @ap: port
2708 *
2709 * Helper method for drivers which have SATA cables
2710 */
2711
2712 int ata_cable_sata(struct ata_port *ap)
2713 {
2714 return ATA_CBL_SATA;
2715 }
2716
2717 /**
2718 * ata_bus_probe - Reset and probe ATA bus
2719 * @ap: Bus to probe
2720 *
2721 * Master ATA bus probing function. Initiates a hardware-dependent
2722 * bus reset, then attempts to identify any devices found on
2723 * the bus.
2724 *
2725 * LOCKING:
2726 * PCI/etc. bus probe sem.
2727 *
2728 * RETURNS:
2729 * Zero on success, negative errno otherwise.
2730 */
2731
2732 int ata_bus_probe(struct ata_port *ap)
2733 {
2734 unsigned int classes[ATA_MAX_DEVICES];
2735 int tries[ATA_MAX_DEVICES];
2736 int rc;
2737 struct ata_device *dev;
2738
2739 ata_port_probe(ap);
2740
2741 ata_for_each_dev(dev, &ap->link, ALL)
2742 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2743
2744 retry:
2745 ata_for_each_dev(dev, &ap->link, ALL) {
2746 /* If we issue an SRST then an ATA drive (not ATAPI)
2747 * may change configuration and be in PIO0 timing. If
2748 * we do a hard reset (or are coming from power on)
2749 * this is true for ATA or ATAPI. Until we've set a
2750 * suitable controller mode we should not touch the
2751 * bus as we may be talking too fast.
2752 */
2753 dev->pio_mode = XFER_PIO_0;
2754
2755 /* If the controller has a pio mode setup function
2756 * then use it to set the chipset to rights. Don't
2757 * touch the DMA setup as that will be dealt with when
2758 * configuring devices.
2759 */
2760 if (ap->ops->set_piomode)
2761 ap->ops->set_piomode(ap, dev);
2762 }
2763
2764 /* reset and determine device classes */
2765 ap->ops->phy_reset(ap);
2766
2767 ata_for_each_dev(dev, &ap->link, ALL) {
2768 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2769 dev->class != ATA_DEV_UNKNOWN)
2770 classes[dev->devno] = dev->class;
2771 else
2772 classes[dev->devno] = ATA_DEV_NONE;
2773
2774 dev->class = ATA_DEV_UNKNOWN;
2775 }
2776
2777 ata_port_probe(ap);
2778
2779 /* read IDENTIFY page and configure devices. We have to do the identify
2780 specific sequence bass-ackwards so that PDIAG- is released by
2781 the slave device */
2782
2783 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2784 if (tries[dev->devno])
2785 dev->class = classes[dev->devno];
2786
2787 if (!ata_dev_enabled(dev))
2788 continue;
2789
2790 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2791 dev->id);
2792 if (rc)
2793 goto fail;
2794 }
2795
2796 /* Now ask for the cable type as PDIAG- should have been released */
2797 if (ap->ops->cable_detect)
2798 ap->cbl = ap->ops->cable_detect(ap);
2799
2800 /* We may have SATA bridge glue hiding here irrespective of
2801 * the reported cable types and sensed types. When SATA
2802 * drives indicate we have a bridge, we don't know which end
2803 * of the link the bridge is which is a problem.
2804 */
2805 ata_for_each_dev(dev, &ap->link, ENABLED)
2806 if (ata_id_is_sata(dev->id))
2807 ap->cbl = ATA_CBL_SATA;
2808
2809 /* After the identify sequence we can now set up the devices. We do
2810 this in the normal order so that the user doesn't get confused */
2811
2812 ata_for_each_dev(dev, &ap->link, ENABLED) {
2813 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2814 rc = ata_dev_configure(dev);
2815 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2816 if (rc)
2817 goto fail;
2818 }
2819
2820 /* configure transfer mode */
2821 rc = ata_set_mode(&ap->link, &dev);
2822 if (rc)
2823 goto fail;
2824
2825 ata_for_each_dev(dev, &ap->link, ENABLED)
2826 return 0;
2827
2828 /* no device present, disable port */
2829 ata_port_disable(ap);
2830 return -ENODEV;
2831
2832 fail:
2833 tries[dev->devno]--;
2834
2835 switch (rc) {
2836 case -EINVAL:
2837 /* eeek, something went very wrong, give up */
2838 tries[dev->devno] = 0;
2839 break;
2840
2841 case -ENODEV:
2842 /* give it just one more chance */
2843 tries[dev->devno] = min(tries[dev->devno], 1);
2844 case -EIO:
2845 if (tries[dev->devno] == 1) {
2846 /* This is the last chance, better to slow
2847 * down than lose it.
2848 */
2849 sata_down_spd_limit(&ap->link, 0);
2850 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2851 }
2852 }
2853
2854 if (!tries[dev->devno])
2855 ata_dev_disable(dev);
2856
2857 goto retry;
2858 }
2859
2860 /**
2861 * ata_port_probe - Mark port as enabled
2862 * @ap: Port for which we indicate enablement
2863 *
2864 * Modify @ap data structure such that the system
2865 * thinks that the entire port is enabled.
2866 *
2867 * LOCKING: host lock, or some other form of
2868 * serialization.
2869 */
2870
2871 void ata_port_probe(struct ata_port *ap)
2872 {
2873 ap->flags &= ~ATA_FLAG_DISABLED;
2874 }
2875
2876 /**
2877 * sata_print_link_status - Print SATA link status
2878 * @link: SATA link to printk link status about
2879 *
2880 * This function prints link speed and status of a SATA link.
2881 *
2882 * LOCKING:
2883 * None.
2884 */
2885 static void sata_print_link_status(struct ata_link *link)
2886 {
2887 u32 sstatus, scontrol, tmp;
2888
2889 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2890 return;
2891 sata_scr_read(link, SCR_CONTROL, &scontrol);
2892
2893 if (ata_phys_link_online(link)) {
2894 tmp = (sstatus >> 4) & 0xf;
2895 ata_link_printk(link, KERN_INFO,
2896 "SATA link up %s (SStatus %X SControl %X)\n",
2897 sata_spd_string(tmp), sstatus, scontrol);
2898 } else {
2899 ata_link_printk(link, KERN_INFO,
2900 "SATA link down (SStatus %X SControl %X)\n",
2901 sstatus, scontrol);
2902 }
2903 }
2904
2905 /**
2906 * ata_dev_pair - return other device on cable
2907 * @adev: device
2908 *
2909 * Obtain the other device on the same cable, or if none is
2910 * present NULL is returned
2911 */
2912
2913 struct ata_device *ata_dev_pair(struct ata_device *adev)
2914 {
2915 struct ata_link *link = adev->link;
2916 struct ata_device *pair = &link->device[1 - adev->devno];
2917 if (!ata_dev_enabled(pair))
2918 return NULL;
2919 return pair;
2920 }
2921
2922 /**
2923 * ata_port_disable - Disable port.
2924 * @ap: Port to be disabled.
2925 *
2926 * Modify @ap data structure such that the system
2927 * thinks that the entire port is disabled, and should
2928 * never attempt to probe or communicate with devices
2929 * on this port.
2930 *
2931 * LOCKING: host lock, or some other form of
2932 * serialization.
2933 */
2934
2935 void ata_port_disable(struct ata_port *ap)
2936 {
2937 ap->link.device[0].class = ATA_DEV_NONE;
2938 ap->link.device[1].class = ATA_DEV_NONE;
2939 ap->flags |= ATA_FLAG_DISABLED;
2940 }
2941
2942 /**
2943 * sata_down_spd_limit - adjust SATA spd limit downward
2944 * @link: Link to adjust SATA spd limit for
2945 * @spd_limit: Additional limit
2946 *
2947 * Adjust SATA spd limit of @link downward. Note that this
2948 * function only adjusts the limit. The change must be applied
2949 * using sata_set_spd().
2950 *
2951 * If @spd_limit is non-zero, the speed is limited to equal to or
2952 * lower than @spd_limit if such speed is supported. If
2953 * @spd_limit is slower than any supported speed, only the lowest
2954 * supported speed is allowed.
2955 *
2956 * LOCKING:
2957 * Inherited from caller.
2958 *
2959 * RETURNS:
2960 * 0 on success, negative errno on failure
2961 */
2962 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2963 {
2964 u32 sstatus, spd, mask;
2965 int rc, bit;
2966
2967 if (!sata_scr_valid(link))
2968 return -EOPNOTSUPP;
2969
2970 /* If SCR can be read, use it to determine the current SPD.
2971 * If not, use cached value in link->sata_spd.
2972 */
2973 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2974 if (rc == 0 && ata_sstatus_online(sstatus))
2975 spd = (sstatus >> 4) & 0xf;
2976 else
2977 spd = link->sata_spd;
2978
2979 mask = link->sata_spd_limit;
2980 if (mask <= 1)
2981 return -EINVAL;
2982
2983 /* unconditionally mask off the highest bit */
2984 bit = fls(mask) - 1;
2985 mask &= ~(1 << bit);
2986
2987 /* Mask off all speeds higher than or equal to the current
2988 * one. Force 1.5Gbps if current SPD is not available.
2989 */
2990 if (spd > 1)
2991 mask &= (1 << (spd - 1)) - 1;
2992 else
2993 mask &= 1;
2994
2995 /* were we already at the bottom? */
2996 if (!mask)
2997 return -EINVAL;
2998
2999 if (spd_limit) {
3000 if (mask & ((1 << spd_limit) - 1))
3001 mask &= (1 << spd_limit) - 1;
3002 else {
3003 bit = ffs(mask) - 1;
3004 mask = 1 << bit;
3005 }
3006 }
3007
3008 link->sata_spd_limit = mask;
3009
3010 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3011 sata_spd_string(fls(mask)));
3012
3013 return 0;
3014 }
3015
3016 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3017 {
3018 struct ata_link *host_link = &link->ap->link;
3019 u32 limit, target, spd;
3020
3021 limit = link->sata_spd_limit;
3022
3023 /* Don't configure downstream link faster than upstream link.
3024 * It doesn't speed up anything and some PMPs choke on such
3025 * configuration.
3026 */
3027 if (!ata_is_host_link(link) && host_link->sata_spd)
3028 limit &= (1 << host_link->sata_spd) - 1;
3029
3030 if (limit == UINT_MAX)
3031 target = 0;
3032 else
3033 target = fls(limit);
3034
3035 spd = (*scontrol >> 4) & 0xf;
3036 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3037
3038 return spd != target;
3039 }
3040
3041 /**
3042 * sata_set_spd_needed - is SATA spd configuration needed
3043 * @link: Link in question
3044 *
3045 * Test whether the spd limit in SControl matches
3046 * @link->sata_spd_limit. This function is used to determine
3047 * whether hardreset is necessary to apply SATA spd
3048 * configuration.
3049 *
3050 * LOCKING:
3051 * Inherited from caller.
3052 *
3053 * RETURNS:
3054 * 1 if SATA spd configuration is needed, 0 otherwise.
3055 */
3056 static int sata_set_spd_needed(struct ata_link *link)
3057 {
3058 u32 scontrol;
3059
3060 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3061 return 1;
3062
3063 return __sata_set_spd_needed(link, &scontrol);
3064 }
3065
3066 /**
3067 * sata_set_spd - set SATA spd according to spd limit
3068 * @link: Link to set SATA spd for
3069 *
3070 * Set SATA spd of @link according to sata_spd_limit.
3071 *
3072 * LOCKING:
3073 * Inherited from caller.
3074 *
3075 * RETURNS:
3076 * 0 if spd doesn't need to be changed, 1 if spd has been
3077 * changed. Negative errno if SCR registers are inaccessible.
3078 */
3079 int sata_set_spd(struct ata_link *link)
3080 {
3081 u32 scontrol;
3082 int rc;
3083
3084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3085 return rc;
3086
3087 if (!__sata_set_spd_needed(link, &scontrol))
3088 return 0;
3089
3090 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3091 return rc;
3092
3093 return 1;
3094 }
3095
3096 /*
3097 * This mode timing computation functionality is ported over from
3098 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3099 */
3100 /*
3101 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3102 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3103 * for UDMA6, which is currently supported only by Maxtor drives.
3104 *
3105 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3106 */
3107
3108 static const struct ata_timing ata_timing[] = {
3109 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3110 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3111 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3112 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3113 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3114 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3115 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3116 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3117
3118 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3119 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3120 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3121
3122 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3123 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3124 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3125 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3126 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3127
3128 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3129 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3130 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3131 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3132 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3133 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3134 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3135 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3136
3137 { 0xFF }
3138 };
3139
3140 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3141 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3142
3143 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3144 {
3145 q->setup = EZ(t->setup * 1000, T);
3146 q->act8b = EZ(t->act8b * 1000, T);
3147 q->rec8b = EZ(t->rec8b * 1000, T);
3148 q->cyc8b = EZ(t->cyc8b * 1000, T);
3149 q->active = EZ(t->active * 1000, T);
3150 q->recover = EZ(t->recover * 1000, T);
3151 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3152 q->cycle = EZ(t->cycle * 1000, T);
3153 q->udma = EZ(t->udma * 1000, UT);
3154 }
3155
3156 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3157 struct ata_timing *m, unsigned int what)
3158 {
3159 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3160 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3161 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3162 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3163 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3164 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3165 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3166 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3167 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3168 }
3169
3170 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3171 {
3172 const struct ata_timing *t = ata_timing;
3173
3174 while (xfer_mode > t->mode)
3175 t++;
3176
3177 if (xfer_mode == t->mode)
3178 return t;
3179 return NULL;
3180 }
3181
3182 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3183 struct ata_timing *t, int T, int UT)
3184 {
3185 const struct ata_timing *s;
3186 struct ata_timing p;
3187
3188 /*
3189 * Find the mode.
3190 */
3191
3192 if (!(s = ata_timing_find_mode(speed)))
3193 return -EINVAL;
3194
3195 memcpy(t, s, sizeof(*s));
3196
3197 /*
3198 * If the drive is an EIDE drive, it can tell us it needs extended
3199 * PIO/MW_DMA cycle timing.
3200 */
3201
3202 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3203 memset(&p, 0, sizeof(p));
3204 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3205 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3206 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3207 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3208 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3209 }
3210 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3211 }
3212
3213 /*
3214 * Convert the timing to bus clock counts.
3215 */
3216
3217 ata_timing_quantize(t, t, T, UT);
3218
3219 /*
3220 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3221 * S.M.A.R.T * and some other commands. We have to ensure that the
3222 * DMA cycle timing is slower/equal than the fastest PIO timing.
3223 */
3224
3225 if (speed > XFER_PIO_6) {
3226 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3227 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3228 }
3229
3230 /*
3231 * Lengthen active & recovery time so that cycle time is correct.
3232 */
3233
3234 if (t->act8b + t->rec8b < t->cyc8b) {
3235 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3236 t->rec8b = t->cyc8b - t->act8b;
3237 }
3238
3239 if (t->active + t->recover < t->cycle) {
3240 t->active += (t->cycle - (t->active + t->recover)) / 2;
3241 t->recover = t->cycle - t->active;
3242 }
3243
3244 /* In a few cases quantisation may produce enough errors to
3245 leave t->cycle too low for the sum of active and recovery
3246 if so we must correct this */
3247 if (t->active + t->recover > t->cycle)
3248 t->cycle = t->active + t->recover;
3249
3250 return 0;
3251 }
3252
3253 /**
3254 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3255 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3256 * @cycle: cycle duration in ns
3257 *
3258 * Return matching xfer mode for @cycle. The returned mode is of
3259 * the transfer type specified by @xfer_shift. If @cycle is too
3260 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3261 * than the fastest known mode, the fasted mode is returned.
3262 *
3263 * LOCKING:
3264 * None.
3265 *
3266 * RETURNS:
3267 * Matching xfer_mode, 0xff if no match found.
3268 */
3269 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3270 {
3271 u8 base_mode = 0xff, last_mode = 0xff;
3272 const struct ata_xfer_ent *ent;
3273 const struct ata_timing *t;
3274
3275 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3276 if (ent->shift == xfer_shift)
3277 base_mode = ent->base;
3278
3279 for (t = ata_timing_find_mode(base_mode);
3280 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3281 unsigned short this_cycle;
3282
3283 switch (xfer_shift) {
3284 case ATA_SHIFT_PIO:
3285 case ATA_SHIFT_MWDMA:
3286 this_cycle = t->cycle;
3287 break;
3288 case ATA_SHIFT_UDMA:
3289 this_cycle = t->udma;
3290 break;
3291 default:
3292 return 0xff;
3293 }
3294
3295 if (cycle > this_cycle)
3296 break;
3297
3298 last_mode = t->mode;
3299 }
3300
3301 return last_mode;
3302 }
3303
3304 /**
3305 * ata_down_xfermask_limit - adjust dev xfer masks downward
3306 * @dev: Device to adjust xfer masks
3307 * @sel: ATA_DNXFER_* selector
3308 *
3309 * Adjust xfer masks of @dev downward. Note that this function
3310 * does not apply the change. Invoking ata_set_mode() afterwards
3311 * will apply the limit.
3312 *
3313 * LOCKING:
3314 * Inherited from caller.
3315 *
3316 * RETURNS:
3317 * 0 on success, negative errno on failure
3318 */
3319 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3320 {
3321 char buf[32];
3322 unsigned long orig_mask, xfer_mask;
3323 unsigned long pio_mask, mwdma_mask, udma_mask;
3324 int quiet, highbit;
3325
3326 quiet = !!(sel & ATA_DNXFER_QUIET);
3327 sel &= ~ATA_DNXFER_QUIET;
3328
3329 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3330 dev->mwdma_mask,
3331 dev->udma_mask);
3332 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3333
3334 switch (sel) {
3335 case ATA_DNXFER_PIO:
3336 highbit = fls(pio_mask) - 1;
3337 pio_mask &= ~(1 << highbit);
3338 break;
3339
3340 case ATA_DNXFER_DMA:
3341 if (udma_mask) {
3342 highbit = fls(udma_mask) - 1;
3343 udma_mask &= ~(1 << highbit);
3344 if (!udma_mask)
3345 return -ENOENT;
3346 } else if (mwdma_mask) {
3347 highbit = fls(mwdma_mask) - 1;
3348 mwdma_mask &= ~(1 << highbit);
3349 if (!mwdma_mask)
3350 return -ENOENT;
3351 }
3352 break;
3353
3354 case ATA_DNXFER_40C:
3355 udma_mask &= ATA_UDMA_MASK_40C;
3356 break;
3357
3358 case ATA_DNXFER_FORCE_PIO0:
3359 pio_mask &= 1;
3360 case ATA_DNXFER_FORCE_PIO:
3361 mwdma_mask = 0;
3362 udma_mask = 0;
3363 break;
3364
3365 default:
3366 BUG();
3367 }
3368
3369 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3370
3371 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3372 return -ENOENT;
3373
3374 if (!quiet) {
3375 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3376 snprintf(buf, sizeof(buf), "%s:%s",
3377 ata_mode_string(xfer_mask),
3378 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3379 else
3380 snprintf(buf, sizeof(buf), "%s",
3381 ata_mode_string(xfer_mask));
3382
3383 ata_dev_printk(dev, KERN_WARNING,
3384 "limiting speed to %s\n", buf);
3385 }
3386
3387 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3388 &dev->udma_mask);
3389
3390 return 0;
3391 }
3392
3393 static int ata_dev_set_mode(struct ata_device *dev)
3394 {
3395 struct ata_port *ap = dev->link->ap;
3396 struct ata_eh_context *ehc = &dev->link->eh_context;
3397 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3398 const char *dev_err_whine = "";
3399 int ign_dev_err = 0;
3400 unsigned int err_mask = 0;
3401 int rc;
3402
3403 dev->flags &= ~ATA_DFLAG_PIO;
3404 if (dev->xfer_shift == ATA_SHIFT_PIO)
3405 dev->flags |= ATA_DFLAG_PIO;
3406
3407 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3408 dev_err_whine = " (SET_XFERMODE skipped)";
3409 else {
3410 if (nosetxfer)
3411 ata_dev_printk(dev, KERN_WARNING,
3412 "NOSETXFER but PATA detected - can't "
3413 "skip SETXFER, might malfunction\n");
3414 err_mask = ata_dev_set_xfermode(dev);
3415 }
3416
3417 if (err_mask & ~AC_ERR_DEV)
3418 goto fail;
3419
3420 /* revalidate */
3421 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3422 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3423 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3424 if (rc)
3425 return rc;
3426
3427 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3428 /* Old CFA may refuse this command, which is just fine */
3429 if (ata_id_is_cfa(dev->id))
3430 ign_dev_err = 1;
3431 /* Catch several broken garbage emulations plus some pre
3432 ATA devices */
3433 if (ata_id_major_version(dev->id) == 0 &&
3434 dev->pio_mode <= XFER_PIO_2)
3435 ign_dev_err = 1;
3436 /* Some very old devices and some bad newer ones fail
3437 any kind of SET_XFERMODE request but support PIO0-2
3438 timings and no IORDY */
3439 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3440 ign_dev_err = 1;
3441 }
3442 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3443 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3444 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3445 dev->dma_mode == XFER_MW_DMA_0 &&
3446 (dev->id[63] >> 8) & 1)
3447 ign_dev_err = 1;
3448
3449 /* if the device is actually configured correctly, ignore dev err */
3450 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3451 ign_dev_err = 1;
3452
3453 if (err_mask & AC_ERR_DEV) {
3454 if (!ign_dev_err)
3455 goto fail;
3456 else
3457 dev_err_whine = " (device error ignored)";
3458 }
3459
3460 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3461 dev->xfer_shift, (int)dev->xfer_mode);
3462
3463 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3464 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3465 dev_err_whine);
3466
3467 return 0;
3468
3469 fail:
3470 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3471 "(err_mask=0x%x)\n", err_mask);
3472 return -EIO;
3473 }
3474
3475 /**
3476 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3477 * @link: link on which timings will be programmed
3478 * @r_failed_dev: out parameter for failed device
3479 *
3480 * Standard implementation of the function used to tune and set
3481 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3482 * ata_dev_set_mode() fails, pointer to the failing device is
3483 * returned in @r_failed_dev.
3484 *
3485 * LOCKING:
3486 * PCI/etc. bus probe sem.
3487 *
3488 * RETURNS:
3489 * 0 on success, negative errno otherwise
3490 */
3491
3492 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3493 {
3494 struct ata_port *ap = link->ap;
3495 struct ata_device *dev;
3496 int rc = 0, used_dma = 0, found = 0;
3497
3498 /* step 1: calculate xfer_mask */
3499 ata_for_each_dev(dev, link, ENABLED) {
3500 unsigned long pio_mask, dma_mask;
3501 unsigned int mode_mask;
3502
3503 mode_mask = ATA_DMA_MASK_ATA;
3504 if (dev->class == ATA_DEV_ATAPI)
3505 mode_mask = ATA_DMA_MASK_ATAPI;
3506 else if (ata_id_is_cfa(dev->id))
3507 mode_mask = ATA_DMA_MASK_CFA;
3508
3509 ata_dev_xfermask(dev);
3510 ata_force_xfermask(dev);
3511
3512 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3513 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3514
3515 if (libata_dma_mask & mode_mask)
3516 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3517 else
3518 dma_mask = 0;
3519
3520 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3521 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3522
3523 found = 1;
3524 if (ata_dma_enabled(dev))
3525 used_dma = 1;
3526 }
3527 if (!found)
3528 goto out;
3529
3530 /* step 2: always set host PIO timings */
3531 ata_for_each_dev(dev, link, ENABLED) {
3532 if (dev->pio_mode == 0xff) {
3533 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3534 rc = -EINVAL;
3535 goto out;
3536 }
3537
3538 dev->xfer_mode = dev->pio_mode;
3539 dev->xfer_shift = ATA_SHIFT_PIO;
3540 if (ap->ops->set_piomode)
3541 ap->ops->set_piomode(ap, dev);
3542 }
3543
3544 /* step 3: set host DMA timings */
3545 ata_for_each_dev(dev, link, ENABLED) {
3546 if (!ata_dma_enabled(dev))
3547 continue;
3548
3549 dev->xfer_mode = dev->dma_mode;
3550 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3551 if (ap->ops->set_dmamode)
3552 ap->ops->set_dmamode(ap, dev);
3553 }
3554
3555 /* step 4: update devices' xfer mode */
3556 ata_for_each_dev(dev, link, ENABLED) {
3557 rc = ata_dev_set_mode(dev);
3558 if (rc)
3559 goto out;
3560 }
3561
3562 /* Record simplex status. If we selected DMA then the other
3563 * host channels are not permitted to do so.
3564 */
3565 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3566 ap->host->simplex_claimed = ap;
3567
3568 out:
3569 if (rc)
3570 *r_failed_dev = dev;
3571 return rc;
3572 }
3573
3574 /**
3575 * ata_wait_ready - wait for link to become ready
3576 * @link: link to be waited on
3577 * @deadline: deadline jiffies for the operation
3578 * @check_ready: callback to check link readiness
3579 *
3580 * Wait for @link to become ready. @check_ready should return
3581 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3582 * link doesn't seem to be occupied, other errno for other error
3583 * conditions.
3584 *
3585 * Transient -ENODEV conditions are allowed for
3586 * ATA_TMOUT_FF_WAIT.
3587 *
3588 * LOCKING:
3589 * EH context.
3590 *
3591 * RETURNS:
3592 * 0 if @linke is ready before @deadline; otherwise, -errno.
3593 */
3594 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3595 int (*check_ready)(struct ata_link *link))
3596 {
3597 unsigned long start = jiffies;
3598 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3599 int warned = 0;
3600
3601 /* Slave readiness can't be tested separately from master. On
3602 * M/S emulation configuration, this function should be called
3603 * only on the master and it will handle both master and slave.
3604 */
3605 WARN_ON(link == link->ap->slave_link);
3606
3607 if (time_after(nodev_deadline, deadline))
3608 nodev_deadline = deadline;
3609
3610 while (1) {
3611 unsigned long now = jiffies;
3612 int ready, tmp;
3613
3614 ready = tmp = check_ready(link);
3615 if (ready > 0)
3616 return 0;
3617
3618 /* -ENODEV could be transient. Ignore -ENODEV if link
3619 * is online. Also, some SATA devices take a long
3620 * time to clear 0xff after reset. For example,
3621 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3622 * GoVault needs even more than that. Wait for
3623 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3624 *
3625 * Note that some PATA controllers (pata_ali) explode
3626 * if status register is read more than once when
3627 * there's no device attached.
3628 */
3629 if (ready == -ENODEV) {
3630 if (ata_link_online(link))
3631 ready = 0;
3632 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3633 !ata_link_offline(link) &&
3634 time_before(now, nodev_deadline))
3635 ready = 0;
3636 }
3637
3638 if (ready)
3639 return ready;
3640 if (time_after(now, deadline))
3641 return -EBUSY;
3642
3643 if (!warned && time_after(now, start + 5 * HZ) &&
3644 (deadline - now > 3 * HZ)) {
3645 ata_link_printk(link, KERN_WARNING,
3646 "link is slow to respond, please be patient "
3647 "(ready=%d)\n", tmp);
3648 warned = 1;
3649 }
3650
3651 msleep(50);
3652 }
3653 }
3654
3655 /**
3656 * ata_wait_after_reset - wait for link to become ready after reset
3657 * @link: link to be waited on
3658 * @deadline: deadline jiffies for the operation
3659 * @check_ready: callback to check link readiness
3660 *
3661 * Wait for @link to become ready after reset.
3662 *
3663 * LOCKING:
3664 * EH context.
3665 *
3666 * RETURNS:
3667 * 0 if @linke is ready before @deadline; otherwise, -errno.
3668 */
3669 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3670 int (*check_ready)(struct ata_link *link))
3671 {
3672 msleep(ATA_WAIT_AFTER_RESET);
3673
3674 return ata_wait_ready(link, deadline, check_ready);
3675 }
3676
3677 /**
3678 * sata_link_debounce - debounce SATA phy status
3679 * @link: ATA link to debounce SATA phy status for
3680 * @params: timing parameters { interval, duratinon, timeout } in msec
3681 * @deadline: deadline jiffies for the operation
3682 *
3683 * Make sure SStatus of @link reaches stable state, determined by
3684 * holding the same value where DET is not 1 for @duration polled
3685 * every @interval, before @timeout. Timeout constraints the
3686 * beginning of the stable state. Because DET gets stuck at 1 on
3687 * some controllers after hot unplugging, this functions waits
3688 * until timeout then returns 0 if DET is stable at 1.
3689 *
3690 * @timeout is further limited by @deadline. The sooner of the
3691 * two is used.
3692 *
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3695 *
3696 * RETURNS:
3697 * 0 on success, -errno on failure.
3698 */
3699 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3700 unsigned long deadline)
3701 {
3702 unsigned long interval = params[0];
3703 unsigned long duration = params[1];
3704 unsigned long last_jiffies, t;
3705 u32 last, cur;
3706 int rc;
3707
3708 t = ata_deadline(jiffies, params[2]);
3709 if (time_before(t, deadline))
3710 deadline = t;
3711
3712 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3713 return rc;
3714 cur &= 0xf;
3715
3716 last = cur;
3717 last_jiffies = jiffies;
3718
3719 while (1) {
3720 msleep(interval);
3721 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3722 return rc;
3723 cur &= 0xf;
3724
3725 /* DET stable? */
3726 if (cur == last) {
3727 if (cur == 1 && time_before(jiffies, deadline))
3728 continue;
3729 if (time_after(jiffies,
3730 ata_deadline(last_jiffies, duration)))
3731 return 0;
3732 continue;
3733 }
3734
3735 /* unstable, start over */
3736 last = cur;
3737 last_jiffies = jiffies;
3738
3739 /* Check deadline. If debouncing failed, return
3740 * -EPIPE to tell upper layer to lower link speed.
3741 */
3742 if (time_after(jiffies, deadline))
3743 return -EPIPE;
3744 }
3745 }
3746
3747 /**
3748 * sata_link_resume - resume SATA link
3749 * @link: ATA link to resume SATA
3750 * @params: timing parameters { interval, duratinon, timeout } in msec
3751 * @deadline: deadline jiffies for the operation
3752 *
3753 * Resume SATA phy @link and debounce it.
3754 *
3755 * LOCKING:
3756 * Kernel thread context (may sleep)
3757 *
3758 * RETURNS:
3759 * 0 on success, -errno on failure.
3760 */
3761 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3762 unsigned long deadline)
3763 {
3764 u32 scontrol, serror;
3765 int rc;
3766
3767 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768 return rc;
3769
3770 scontrol = (scontrol & 0x0f0) | 0x300;
3771
3772 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3773 return rc;
3774
3775 /* Some PHYs react badly if SStatus is pounded immediately
3776 * after resuming. Delay 200ms before debouncing.
3777 */
3778 msleep(200);
3779
3780 if ((rc = sata_link_debounce(link, params, deadline)))
3781 return rc;
3782
3783 /* clear SError, some PHYs require this even for SRST to work */
3784 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3785 rc = sata_scr_write(link, SCR_ERROR, serror);
3786
3787 return rc != -EINVAL ? rc : 0;
3788 }
3789
3790 /**
3791 * ata_std_prereset - prepare for reset
3792 * @link: ATA link to be reset
3793 * @deadline: deadline jiffies for the operation
3794 *
3795 * @link is about to be reset. Initialize it. Failure from
3796 * prereset makes libata abort whole reset sequence and give up
3797 * that port, so prereset should be best-effort. It does its
3798 * best to prepare for reset sequence but if things go wrong, it
3799 * should just whine, not fail.
3800 *
3801 * LOCKING:
3802 * Kernel thread context (may sleep)
3803 *
3804 * RETURNS:
3805 * 0 on success, -errno otherwise.
3806 */
3807 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3808 {
3809 struct ata_port *ap = link->ap;
3810 struct ata_eh_context *ehc = &link->eh_context;
3811 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3812 int rc;
3813
3814 /* if we're about to do hardreset, nothing more to do */
3815 if (ehc->i.action & ATA_EH_HARDRESET)
3816 return 0;
3817
3818 /* if SATA, resume link */
3819 if (ap->flags & ATA_FLAG_SATA) {
3820 rc = sata_link_resume(link, timing, deadline);
3821 /* whine about phy resume failure but proceed */
3822 if (rc && rc != -EOPNOTSUPP)
3823 ata_link_printk(link, KERN_WARNING, "failed to resume "
3824 "link for reset (errno=%d)\n", rc);
3825 }
3826
3827 /* no point in trying softreset on offline link */
3828 if (ata_phys_link_offline(link))
3829 ehc->i.action &= ~ATA_EH_SOFTRESET;
3830
3831 return 0;
3832 }
3833
3834 /**
3835 * sata_link_hardreset - reset link via SATA phy reset
3836 * @link: link to reset
3837 * @timing: timing parameters { interval, duratinon, timeout } in msec
3838 * @deadline: deadline jiffies for the operation
3839 * @online: optional out parameter indicating link onlineness
3840 * @check_ready: optional callback to check link readiness
3841 *
3842 * SATA phy-reset @link using DET bits of SControl register.
3843 * After hardreset, link readiness is waited upon using
3844 * ata_wait_ready() if @check_ready is specified. LLDs are
3845 * allowed to not specify @check_ready and wait itself after this
3846 * function returns. Device classification is LLD's
3847 * responsibility.
3848 *
3849 * *@online is set to one iff reset succeeded and @link is online
3850 * after reset.
3851 *
3852 * LOCKING:
3853 * Kernel thread context (may sleep)
3854 *
3855 * RETURNS:
3856 * 0 on success, -errno otherwise.
3857 */
3858 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3859 unsigned long deadline,
3860 bool *online, int (*check_ready)(struct ata_link *))
3861 {
3862 u32 scontrol;
3863 int rc;
3864
3865 DPRINTK("ENTER\n");
3866
3867 if (online)
3868 *online = false;
3869
3870 if (sata_set_spd_needed(link)) {
3871 /* SATA spec says nothing about how to reconfigure
3872 * spd. To be on the safe side, turn off phy during
3873 * reconfiguration. This works for at least ICH7 AHCI
3874 * and Sil3124.
3875 */
3876 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3877 goto out;
3878
3879 scontrol = (scontrol & 0x0f0) | 0x304;
3880
3881 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3882 goto out;
3883
3884 sata_set_spd(link);
3885 }
3886
3887 /* issue phy wake/reset */
3888 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3889 goto out;
3890
3891 scontrol = (scontrol & 0x0f0) | 0x301;
3892
3893 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3894 goto out;
3895
3896 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3897 * 10.4.2 says at least 1 ms.
3898 */
3899 msleep(1);
3900
3901 /* bring link back */
3902 rc = sata_link_resume(link, timing, deadline);
3903 if (rc)
3904 goto out;
3905 /* if link is offline nothing more to do */
3906 if (ata_phys_link_offline(link))
3907 goto out;
3908
3909 /* Link is online. From this point, -ENODEV too is an error. */
3910 if (online)
3911 *online = true;
3912
3913 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3914 /* If PMP is supported, we have to do follow-up SRST.
3915 * Some PMPs don't send D2H Reg FIS after hardreset if
3916 * the first port is empty. Wait only for
3917 * ATA_TMOUT_PMP_SRST_WAIT.
3918 */
3919 if (check_ready) {
3920 unsigned long pmp_deadline;
3921
3922 pmp_deadline = ata_deadline(jiffies,
3923 ATA_TMOUT_PMP_SRST_WAIT);
3924 if (time_after(pmp_deadline, deadline))
3925 pmp_deadline = deadline;
3926 ata_wait_ready(link, pmp_deadline, check_ready);
3927 }
3928 rc = -EAGAIN;
3929 goto out;
3930 }
3931
3932 rc = 0;
3933 if (check_ready)
3934 rc = ata_wait_ready(link, deadline, check_ready);
3935 out:
3936 if (rc && rc != -EAGAIN) {
3937 /* online is set iff link is online && reset succeeded */
3938 if (online)
3939 *online = false;
3940 ata_link_printk(link, KERN_ERR,
3941 "COMRESET failed (errno=%d)\n", rc);
3942 }
3943 DPRINTK("EXIT, rc=%d\n", rc);
3944 return rc;
3945 }
3946
3947 /**
3948 * sata_std_hardreset - COMRESET w/o waiting or classification
3949 * @link: link to reset
3950 * @class: resulting class of attached device
3951 * @deadline: deadline jiffies for the operation
3952 *
3953 * Standard SATA COMRESET w/o waiting or classification.
3954 *
3955 * LOCKING:
3956 * Kernel thread context (may sleep)
3957 *
3958 * RETURNS:
3959 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3960 */
3961 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3962 unsigned long deadline)
3963 {
3964 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3965 bool online;
3966 int rc;
3967
3968 /* do hardreset */
3969 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3970 return online ? -EAGAIN : rc;
3971 }
3972
3973 /**
3974 * ata_std_postreset - standard postreset callback
3975 * @link: the target ata_link
3976 * @classes: classes of attached devices
3977 *
3978 * This function is invoked after a successful reset. Note that
3979 * the device might have been reset more than once using
3980 * different reset methods before postreset is invoked.
3981 *
3982 * LOCKING:
3983 * Kernel thread context (may sleep)
3984 */
3985 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3986 {
3987 u32 serror;
3988
3989 DPRINTK("ENTER\n");
3990
3991 /* reset complete, clear SError */
3992 if (!sata_scr_read(link, SCR_ERROR, &serror))
3993 sata_scr_write(link, SCR_ERROR, serror);
3994
3995 /* print link status */
3996 sata_print_link_status(link);
3997
3998 DPRINTK("EXIT\n");
3999 }
4000
4001 /**
4002 * ata_dev_same_device - Determine whether new ID matches configured device
4003 * @dev: device to compare against
4004 * @new_class: class of the new device
4005 * @new_id: IDENTIFY page of the new device
4006 *
4007 * Compare @new_class and @new_id against @dev and determine
4008 * whether @dev is the device indicated by @new_class and
4009 * @new_id.
4010 *
4011 * LOCKING:
4012 * None.
4013 *
4014 * RETURNS:
4015 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4016 */
4017 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4018 const u16 *new_id)
4019 {
4020 const u16 *old_id = dev->id;
4021 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4022 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4023
4024 if (dev->class != new_class) {
4025 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4026 dev->class, new_class);
4027 return 0;
4028 }
4029
4030 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4031 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4032 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4033 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4034
4035 if (strcmp(model[0], model[1])) {
4036 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4037 "'%s' != '%s'\n", model[0], model[1]);
4038 return 0;
4039 }
4040
4041 if (strcmp(serial[0], serial[1])) {
4042 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4043 "'%s' != '%s'\n", serial[0], serial[1]);
4044 return 0;
4045 }
4046
4047 return 1;
4048 }
4049
4050 /**
4051 * ata_dev_reread_id - Re-read IDENTIFY data
4052 * @dev: target ATA device
4053 * @readid_flags: read ID flags
4054 *
4055 * Re-read IDENTIFY page and make sure @dev is still attached to
4056 * the port.
4057 *
4058 * LOCKING:
4059 * Kernel thread context (may sleep)
4060 *
4061 * RETURNS:
4062 * 0 on success, negative errno otherwise
4063 */
4064 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4065 {
4066 unsigned int class = dev->class;
4067 u16 *id = (void *)dev->link->ap->sector_buf;
4068 int rc;
4069
4070 /* read ID data */
4071 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4072 if (rc)
4073 return rc;
4074
4075 /* is the device still there? */
4076 if (!ata_dev_same_device(dev, class, id))
4077 return -ENODEV;
4078
4079 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4080 return 0;
4081 }
4082
4083 /**
4084 * ata_dev_revalidate - Revalidate ATA device
4085 * @dev: device to revalidate
4086 * @new_class: new class code
4087 * @readid_flags: read ID flags
4088 *
4089 * Re-read IDENTIFY page, make sure @dev is still attached to the
4090 * port and reconfigure it according to the new IDENTIFY page.
4091 *
4092 * LOCKING:
4093 * Kernel thread context (may sleep)
4094 *
4095 * RETURNS:
4096 * 0 on success, negative errno otherwise
4097 */
4098 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4099 unsigned int readid_flags)
4100 {
4101 u64 n_sectors = dev->n_sectors;
4102 int rc;
4103
4104 if (!ata_dev_enabled(dev))
4105 return -ENODEV;
4106
4107 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4108 if (ata_class_enabled(new_class) &&
4109 new_class != ATA_DEV_ATA &&
4110 new_class != ATA_DEV_ATAPI &&
4111 new_class != ATA_DEV_SEMB) {
4112 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4113 dev->class, new_class);
4114 rc = -ENODEV;
4115 goto fail;
4116 }
4117
4118 /* re-read ID */
4119 rc = ata_dev_reread_id(dev, readid_flags);
4120 if (rc)
4121 goto fail;
4122
4123 /* configure device according to the new ID */
4124 rc = ata_dev_configure(dev);
4125 if (rc)
4126 goto fail;
4127
4128 /* verify n_sectors hasn't changed */
4129 if (dev->class == ATA_DEV_ATA && n_sectors &&
4130 dev->n_sectors != n_sectors) {
4131 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4132 "%llu != %llu\n",
4133 (unsigned long long)n_sectors,
4134 (unsigned long long)dev->n_sectors);
4135
4136 /* restore original n_sectors */
4137 dev->n_sectors = n_sectors;
4138
4139 rc = -ENODEV;
4140 goto fail;
4141 }
4142
4143 return 0;
4144
4145 fail:
4146 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4147 return rc;
4148 }
4149
4150 struct ata_blacklist_entry {
4151 const char *model_num;
4152 const char *model_rev;
4153 unsigned long horkage;
4154 };
4155
4156 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4157 /* Devices with DMA related problems under Linux */
4158 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4159 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4160 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4161 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4164 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4165 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4166 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4167 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4168 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4170 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4171 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4172 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4173 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4174 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4175 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4176 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4177 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4178 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4179 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4180 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4181 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4182 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4183 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4184 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4185 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4186 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4187 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4188 /* Odd clown on sil3726/4726 PMPs */
4189 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4190
4191 /* Weird ATAPI devices */
4192 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4193 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4194
4195 /* Devices we expect to fail diagnostics */
4196
4197 /* Devices where NCQ should be avoided */
4198 /* NCQ is slow */
4199 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4200 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4201 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4202 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4203 /* NCQ is broken */
4204 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4205 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4206 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4207 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4208 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4209
4210 /* Seagate NCQ + FLUSH CACHE firmware bug */
4211 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4212 ATA_HORKAGE_FIRMWARE_WARN },
4213 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4216 ATA_HORKAGE_FIRMWARE_WARN },
4217 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4218 ATA_HORKAGE_FIRMWARE_WARN },
4219 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4220 ATA_HORKAGE_FIRMWARE_WARN },
4221
4222 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4224 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4229 ATA_HORKAGE_FIRMWARE_WARN },
4230 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4231 ATA_HORKAGE_FIRMWARE_WARN },
4232
4233 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4239 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4240 ATA_HORKAGE_FIRMWARE_WARN },
4241 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4242 ATA_HORKAGE_FIRMWARE_WARN },
4243
4244 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4251 ATA_HORKAGE_FIRMWARE_WARN },
4252 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4253 ATA_HORKAGE_FIRMWARE_WARN },
4254
4255 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4262 ATA_HORKAGE_FIRMWARE_WARN },
4263 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4264 ATA_HORKAGE_FIRMWARE_WARN },
4265
4266 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4269 ATA_HORKAGE_FIRMWARE_WARN },
4270 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4271 ATA_HORKAGE_FIRMWARE_WARN },
4272 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4273 ATA_HORKAGE_FIRMWARE_WARN },
4274 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4275 ATA_HORKAGE_FIRMWARE_WARN },
4276
4277 /* Blacklist entries taken from Silicon Image 3124/3132
4278 Windows driver .inf file - also several Linux problem reports */
4279 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4280 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4281 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4282
4283 /* devices which puke on READ_NATIVE_MAX */
4284 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4285 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4286 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4287 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4288
4289 /* Devices which report 1 sector over size HPA */
4290 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4291 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4292 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4293
4294 /* Devices which get the IVB wrong */
4295 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4296 /* Maybe we should just blacklist TSSTcorp... */
4297 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4298 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4299 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4300 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4301 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4302 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4303
4304 /* Devices that do not need bridging limits applied */
4305 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4306
4307 /* Devices which aren't very happy with higher link speeds */
4308 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4309
4310 /*
4311 * Devices which choke on SETXFER. Applies only if both the
4312 * device and controller are SATA.
4313 */
4314 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4315
4316 /* End Marker */
4317 { }
4318 };
4319
4320 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4321 {
4322 const char *p;
4323 int len;
4324
4325 /*
4326 * check for trailing wildcard: *\0
4327 */
4328 p = strchr(patt, wildchar);
4329 if (p && ((*(p + 1)) == 0))
4330 len = p - patt;
4331 else {
4332 len = strlen(name);
4333 if (!len) {
4334 if (!*patt)
4335 return 0;
4336 return -1;
4337 }
4338 }
4339
4340 return strncmp(patt, name, len);
4341 }
4342
4343 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4344 {
4345 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4346 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4347 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4348
4349 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4350 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4351
4352 while (ad->model_num) {
4353 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4354 if (ad->model_rev == NULL)
4355 return ad->horkage;
4356 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4357 return ad->horkage;
4358 }
4359 ad++;
4360 }
4361 return 0;
4362 }
4363
4364 static int ata_dma_blacklisted(const struct ata_device *dev)
4365 {
4366 /* We don't support polling DMA.
4367 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4368 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4369 */
4370 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4371 (dev->flags & ATA_DFLAG_CDB_INTR))
4372 return 1;
4373 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4374 }
4375
4376 /**
4377 * ata_is_40wire - check drive side detection
4378 * @dev: device
4379 *
4380 * Perform drive side detection decoding, allowing for device vendors
4381 * who can't follow the documentation.
4382 */
4383
4384 static int ata_is_40wire(struct ata_device *dev)
4385 {
4386 if (dev->horkage & ATA_HORKAGE_IVB)
4387 return ata_drive_40wire_relaxed(dev->id);
4388 return ata_drive_40wire(dev->id);
4389 }
4390
4391 /**
4392 * cable_is_40wire - 40/80/SATA decider
4393 * @ap: port to consider
4394 *
4395 * This function encapsulates the policy for speed management
4396 * in one place. At the moment we don't cache the result but
4397 * there is a good case for setting ap->cbl to the result when
4398 * we are called with unknown cables (and figuring out if it
4399 * impacts hotplug at all).
4400 *
4401 * Return 1 if the cable appears to be 40 wire.
4402 */
4403
4404 static int cable_is_40wire(struct ata_port *ap)
4405 {
4406 struct ata_link *link;
4407 struct ata_device *dev;
4408
4409 /* If the controller thinks we are 40 wire, we are. */
4410 if (ap->cbl == ATA_CBL_PATA40)
4411 return 1;
4412
4413 /* If the controller thinks we are 80 wire, we are. */
4414 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4415 return 0;
4416
4417 /* If the system is known to be 40 wire short cable (eg
4418 * laptop), then we allow 80 wire modes even if the drive
4419 * isn't sure.
4420 */
4421 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4422 return 0;
4423
4424 /* If the controller doesn't know, we scan.
4425 *
4426 * Note: We look for all 40 wire detects at this point. Any
4427 * 80 wire detect is taken to be 80 wire cable because
4428 * - in many setups only the one drive (slave if present) will
4429 * give a valid detect
4430 * - if you have a non detect capable drive you don't want it
4431 * to colour the choice
4432 */
4433 ata_for_each_link(link, ap, EDGE) {
4434 ata_for_each_dev(dev, link, ENABLED) {
4435 if (!ata_is_40wire(dev))
4436 return 0;
4437 }
4438 }
4439 return 1;
4440 }
4441
4442 /**
4443 * ata_dev_xfermask - Compute supported xfermask of the given device
4444 * @dev: Device to compute xfermask for
4445 *
4446 * Compute supported xfermask of @dev and store it in
4447 * dev->*_mask. This function is responsible for applying all
4448 * known limits including host controller limits, device
4449 * blacklist, etc...
4450 *
4451 * LOCKING:
4452 * None.
4453 */
4454 static void ata_dev_xfermask(struct ata_device *dev)
4455 {
4456 struct ata_link *link = dev->link;
4457 struct ata_port *ap = link->ap;
4458 struct ata_host *host = ap->host;
4459 unsigned long xfer_mask;
4460
4461 /* controller modes available */
4462 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4463 ap->mwdma_mask, ap->udma_mask);
4464
4465 /* drive modes available */
4466 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4467 dev->mwdma_mask, dev->udma_mask);
4468 xfer_mask &= ata_id_xfermask(dev->id);
4469
4470 /*
4471 * CFA Advanced TrueIDE timings are not allowed on a shared
4472 * cable
4473 */
4474 if (ata_dev_pair(dev)) {
4475 /* No PIO5 or PIO6 */
4476 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4477 /* No MWDMA3 or MWDMA 4 */
4478 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4479 }
4480
4481 if (ata_dma_blacklisted(dev)) {
4482 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4483 ata_dev_printk(dev, KERN_WARNING,
4484 "device is on DMA blacklist, disabling DMA\n");
4485 }
4486
4487 if ((host->flags & ATA_HOST_SIMPLEX) &&
4488 host->simplex_claimed && host->simplex_claimed != ap) {
4489 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4490 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4491 "other device, disabling DMA\n");
4492 }
4493
4494 if (ap->flags & ATA_FLAG_NO_IORDY)
4495 xfer_mask &= ata_pio_mask_no_iordy(dev);
4496
4497 if (ap->ops->mode_filter)
4498 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4499
4500 /* Apply cable rule here. Don't apply it early because when
4501 * we handle hot plug the cable type can itself change.
4502 * Check this last so that we know if the transfer rate was
4503 * solely limited by the cable.
4504 * Unknown or 80 wire cables reported host side are checked
4505 * drive side as well. Cases where we know a 40wire cable
4506 * is used safely for 80 are not checked here.
4507 */
4508 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4509 /* UDMA/44 or higher would be available */
4510 if (cable_is_40wire(ap)) {
4511 ata_dev_printk(dev, KERN_WARNING,
4512 "limited to UDMA/33 due to 40-wire cable\n");
4513 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4514 }
4515
4516 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4517 &dev->mwdma_mask, &dev->udma_mask);
4518 }
4519
4520 /**
4521 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4522 * @dev: Device to which command will be sent
4523 *
4524 * Issue SET FEATURES - XFER MODE command to device @dev
4525 * on port @ap.
4526 *
4527 * LOCKING:
4528 * PCI/etc. bus probe sem.
4529 *
4530 * RETURNS:
4531 * 0 on success, AC_ERR_* mask otherwise.
4532 */
4533
4534 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4535 {
4536 struct ata_taskfile tf;
4537 unsigned int err_mask;
4538
4539 /* set up set-features taskfile */
4540 DPRINTK("set features - xfer mode\n");
4541
4542 /* Some controllers and ATAPI devices show flaky interrupt
4543 * behavior after setting xfer mode. Use polling instead.
4544 */
4545 ata_tf_init(dev, &tf);
4546 tf.command = ATA_CMD_SET_FEATURES;
4547 tf.feature = SETFEATURES_XFER;
4548 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4549 tf.protocol = ATA_PROT_NODATA;
4550 /* If we are using IORDY we must send the mode setting command */
4551 if (ata_pio_need_iordy(dev))
4552 tf.nsect = dev->xfer_mode;
4553 /* If the device has IORDY and the controller does not - turn it off */
4554 else if (ata_id_has_iordy(dev->id))
4555 tf.nsect = 0x01;
4556 else /* In the ancient relic department - skip all of this */
4557 return 0;
4558
4559 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4560
4561 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4562 return err_mask;
4563 }
4564 /**
4565 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4566 * @dev: Device to which command will be sent
4567 * @enable: Whether to enable or disable the feature
4568 * @feature: The sector count represents the feature to set
4569 *
4570 * Issue SET FEATURES - SATA FEATURES command to device @dev
4571 * on port @ap with sector count
4572 *
4573 * LOCKING:
4574 * PCI/etc. bus probe sem.
4575 *
4576 * RETURNS:
4577 * 0 on success, AC_ERR_* mask otherwise.
4578 */
4579 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4580 u8 feature)
4581 {
4582 struct ata_taskfile tf;
4583 unsigned int err_mask;
4584
4585 /* set up set-features taskfile */
4586 DPRINTK("set features - SATA features\n");
4587
4588 ata_tf_init(dev, &tf);
4589 tf.command = ATA_CMD_SET_FEATURES;
4590 tf.feature = enable;
4591 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4592 tf.protocol = ATA_PROT_NODATA;
4593 tf.nsect = feature;
4594
4595 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4596
4597 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4598 return err_mask;
4599 }
4600
4601 /**
4602 * ata_dev_init_params - Issue INIT DEV PARAMS command
4603 * @dev: Device to which command will be sent
4604 * @heads: Number of heads (taskfile parameter)
4605 * @sectors: Number of sectors (taskfile parameter)
4606 *
4607 * LOCKING:
4608 * Kernel thread context (may sleep)
4609 *
4610 * RETURNS:
4611 * 0 on success, AC_ERR_* mask otherwise.
4612 */
4613 static unsigned int ata_dev_init_params(struct ata_device *dev,
4614 u16 heads, u16 sectors)
4615 {
4616 struct ata_taskfile tf;
4617 unsigned int err_mask;
4618
4619 /* Number of sectors per track 1-255. Number of heads 1-16 */
4620 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4621 return AC_ERR_INVALID;
4622
4623 /* set up init dev params taskfile */
4624 DPRINTK("init dev params \n");
4625
4626 ata_tf_init(dev, &tf);
4627 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4628 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4629 tf.protocol = ATA_PROT_NODATA;
4630 tf.nsect = sectors;
4631 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4632
4633 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4634 /* A clean abort indicates an original or just out of spec drive
4635 and we should continue as we issue the setup based on the
4636 drive reported working geometry */
4637 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4638 err_mask = 0;
4639
4640 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4641 return err_mask;
4642 }
4643
4644 /**
4645 * ata_sg_clean - Unmap DMA memory associated with command
4646 * @qc: Command containing DMA memory to be released
4647 *
4648 * Unmap all mapped DMA memory associated with this command.
4649 *
4650 * LOCKING:
4651 * spin_lock_irqsave(host lock)
4652 */
4653 void ata_sg_clean(struct ata_queued_cmd *qc)
4654 {
4655 struct ata_port *ap = qc->ap;
4656 struct scatterlist *sg = qc->sg;
4657 int dir = qc->dma_dir;
4658
4659 WARN_ON_ONCE(sg == NULL);
4660
4661 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4662
4663 if (qc->n_elem)
4664 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4665
4666 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4667 qc->sg = NULL;
4668 }
4669
4670 /**
4671 * atapi_check_dma - Check whether ATAPI DMA can be supported
4672 * @qc: Metadata associated with taskfile to check
4673 *
4674 * Allow low-level driver to filter ATA PACKET commands, returning
4675 * a status indicating whether or not it is OK to use DMA for the
4676 * supplied PACKET command.
4677 *
4678 * LOCKING:
4679 * spin_lock_irqsave(host lock)
4680 *
4681 * RETURNS: 0 when ATAPI DMA can be used
4682 * nonzero otherwise
4683 */
4684 int atapi_check_dma(struct ata_queued_cmd *qc)
4685 {
4686 struct ata_port *ap = qc->ap;
4687
4688 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4689 * few ATAPI devices choke on such DMA requests.
4690 */
4691 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4692 unlikely(qc->nbytes & 15))
4693 return 1;
4694
4695 if (ap->ops->check_atapi_dma)
4696 return ap->ops->check_atapi_dma(qc);
4697
4698 return 0;
4699 }
4700
4701 /**
4702 * ata_std_qc_defer - Check whether a qc needs to be deferred
4703 * @qc: ATA command in question
4704 *
4705 * Non-NCQ commands cannot run with any other command, NCQ or
4706 * not. As upper layer only knows the queue depth, we are
4707 * responsible for maintaining exclusion. This function checks
4708 * whether a new command @qc can be issued.
4709 *
4710 * LOCKING:
4711 * spin_lock_irqsave(host lock)
4712 *
4713 * RETURNS:
4714 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4715 */
4716 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4717 {
4718 struct ata_link *link = qc->dev->link;
4719
4720 if (qc->tf.protocol == ATA_PROT_NCQ) {
4721 if (!ata_tag_valid(link->active_tag))
4722 return 0;
4723 } else {
4724 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4725 return 0;
4726 }
4727
4728 return ATA_DEFER_LINK;
4729 }
4730
4731 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4732
4733 /**
4734 * ata_sg_init - Associate command with scatter-gather table.
4735 * @qc: Command to be associated
4736 * @sg: Scatter-gather table.
4737 * @n_elem: Number of elements in s/g table.
4738 *
4739 * Initialize the data-related elements of queued_cmd @qc
4740 * to point to a scatter-gather table @sg, containing @n_elem
4741 * elements.
4742 *
4743 * LOCKING:
4744 * spin_lock_irqsave(host lock)
4745 */
4746 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4747 unsigned int n_elem)
4748 {
4749 qc->sg = sg;
4750 qc->n_elem = n_elem;
4751 qc->cursg = qc->sg;
4752 }
4753
4754 /**
4755 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4756 * @qc: Command with scatter-gather table to be mapped.
4757 *
4758 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4759 *
4760 * LOCKING:
4761 * spin_lock_irqsave(host lock)
4762 *
4763 * RETURNS:
4764 * Zero on success, negative on error.
4765 *
4766 */
4767 static int ata_sg_setup(struct ata_queued_cmd *qc)
4768 {
4769 struct ata_port *ap = qc->ap;
4770 unsigned int n_elem;
4771
4772 VPRINTK("ENTER, ata%u\n", ap->print_id);
4773
4774 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4775 if (n_elem < 1)
4776 return -1;
4777
4778 DPRINTK("%d sg elements mapped\n", n_elem);
4779 qc->orig_n_elem = qc->n_elem;
4780 qc->n_elem = n_elem;
4781 qc->flags |= ATA_QCFLAG_DMAMAP;
4782
4783 return 0;
4784 }
4785
4786 /**
4787 * swap_buf_le16 - swap halves of 16-bit words in place
4788 * @buf: Buffer to swap
4789 * @buf_words: Number of 16-bit words in buffer.
4790 *
4791 * Swap halves of 16-bit words if needed to convert from
4792 * little-endian byte order to native cpu byte order, or
4793 * vice-versa.
4794 *
4795 * LOCKING:
4796 * Inherited from caller.
4797 */
4798 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4799 {
4800 #ifdef __BIG_ENDIAN
4801 unsigned int i;
4802
4803 for (i = 0; i < buf_words; i++)
4804 buf[i] = le16_to_cpu(buf[i]);
4805 #endif /* __BIG_ENDIAN */
4806 }
4807
4808 /**
4809 * ata_qc_new - Request an available ATA command, for queueing
4810 * @ap: target port
4811 *
4812 * LOCKING:
4813 * None.
4814 */
4815
4816 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4817 {
4818 struct ata_queued_cmd *qc = NULL;
4819 unsigned int i;
4820
4821 /* no command while frozen */
4822 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4823 return NULL;
4824
4825 /* the last tag is reserved for internal command. */
4826 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4827 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4828 qc = __ata_qc_from_tag(ap, i);
4829 break;
4830 }
4831
4832 if (qc)
4833 qc->tag = i;
4834
4835 return qc;
4836 }
4837
4838 /**
4839 * ata_qc_new_init - Request an available ATA command, and initialize it
4840 * @dev: Device from whom we request an available command structure
4841 *
4842 * LOCKING:
4843 * None.
4844 */
4845
4846 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4847 {
4848 struct ata_port *ap = dev->link->ap;
4849 struct ata_queued_cmd *qc;
4850
4851 qc = ata_qc_new(ap);
4852 if (qc) {
4853 qc->scsicmd = NULL;
4854 qc->ap = ap;
4855 qc->dev = dev;
4856
4857 ata_qc_reinit(qc);
4858 }
4859
4860 return qc;
4861 }
4862
4863 /**
4864 * ata_qc_free - free unused ata_queued_cmd
4865 * @qc: Command to complete
4866 *
4867 * Designed to free unused ata_queued_cmd object
4868 * in case something prevents using it.
4869 *
4870 * LOCKING:
4871 * spin_lock_irqsave(host lock)
4872 */
4873 void ata_qc_free(struct ata_queued_cmd *qc)
4874 {
4875 struct ata_port *ap = qc->ap;
4876 unsigned int tag;
4877
4878 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4879
4880 qc->flags = 0;
4881 tag = qc->tag;
4882 if (likely(ata_tag_valid(tag))) {
4883 qc->tag = ATA_TAG_POISON;
4884 clear_bit(tag, &ap->qc_allocated);
4885 }
4886 }
4887
4888 void __ata_qc_complete(struct ata_queued_cmd *qc)
4889 {
4890 struct ata_port *ap = qc->ap;
4891 struct ata_link *link = qc->dev->link;
4892
4893 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4894 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4895
4896 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 ata_sg_clean(qc);
4898
4899 /* command should be marked inactive atomically with qc completion */
4900 if (qc->tf.protocol == ATA_PROT_NCQ) {
4901 link->sactive &= ~(1 << qc->tag);
4902 if (!link->sactive)
4903 ap->nr_active_links--;
4904 } else {
4905 link->active_tag = ATA_TAG_POISON;
4906 ap->nr_active_links--;
4907 }
4908
4909 /* clear exclusive status */
4910 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 ap->excl_link == link))
4912 ap->excl_link = NULL;
4913
4914 /* atapi: mark qc as inactive to prevent the interrupt handler
4915 * from completing the command twice later, before the error handler
4916 * is called. (when rc != 0 and atapi request sense is needed)
4917 */
4918 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4919 ap->qc_active &= ~(1 << qc->tag);
4920
4921 /* call completion callback */
4922 qc->complete_fn(qc);
4923 }
4924
4925 static void fill_result_tf(struct ata_queued_cmd *qc)
4926 {
4927 struct ata_port *ap = qc->ap;
4928
4929 qc->result_tf.flags = qc->tf.flags;
4930 ap->ops->qc_fill_rtf(qc);
4931 }
4932
4933 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4934 {
4935 struct ata_device *dev = qc->dev;
4936
4937 if (ata_tag_internal(qc->tag))
4938 return;
4939
4940 if (ata_is_nodata(qc->tf.protocol))
4941 return;
4942
4943 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 return;
4945
4946 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4947 }
4948
4949 /**
4950 * ata_qc_complete - Complete an active ATA command
4951 * @qc: Command to complete
4952 *
4953 * Indicate to the mid and upper layers that an ATA
4954 * command has completed, with either an ok or not-ok status.
4955 *
4956 * LOCKING:
4957 * spin_lock_irqsave(host lock)
4958 */
4959 void ata_qc_complete(struct ata_queued_cmd *qc)
4960 {
4961 struct ata_port *ap = qc->ap;
4962
4963 /* XXX: New EH and old EH use different mechanisms to
4964 * synchronize EH with regular execution path.
4965 *
4966 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 * Normal execution path is responsible for not accessing a
4968 * failed qc. libata core enforces the rule by returning NULL
4969 * from ata_qc_from_tag() for failed qcs.
4970 *
4971 * Old EH depends on ata_qc_complete() nullifying completion
4972 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4973 * not synchronize with interrupt handler. Only PIO task is
4974 * taken care of.
4975 */
4976 if (ap->ops->error_handler) {
4977 struct ata_device *dev = qc->dev;
4978 struct ata_eh_info *ehi = &dev->link->eh_info;
4979
4980 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4981
4982 if (unlikely(qc->err_mask))
4983 qc->flags |= ATA_QCFLAG_FAILED;
4984
4985 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986 if (!ata_tag_internal(qc->tag)) {
4987 /* always fill result TF for failed qc */
4988 fill_result_tf(qc);
4989 ata_qc_schedule_eh(qc);
4990 return;
4991 }
4992 }
4993
4994 /* read result TF if requested */
4995 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4996 fill_result_tf(qc);
4997
4998 /* Some commands need post-processing after successful
4999 * completion.
5000 */
5001 switch (qc->tf.command) {
5002 case ATA_CMD_SET_FEATURES:
5003 if (qc->tf.feature != SETFEATURES_WC_ON &&
5004 qc->tf.feature != SETFEATURES_WC_OFF)
5005 break;
5006 /* fall through */
5007 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5008 case ATA_CMD_SET_MULTI: /* multi_count changed */
5009 /* revalidate device */
5010 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5011 ata_port_schedule_eh(ap);
5012 break;
5013
5014 case ATA_CMD_SLEEP:
5015 dev->flags |= ATA_DFLAG_SLEEPING;
5016 break;
5017 }
5018
5019 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5020 ata_verify_xfer(qc);
5021
5022 __ata_qc_complete(qc);
5023 } else {
5024 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5025 return;
5026
5027 /* read result TF if failed or requested */
5028 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5029 fill_result_tf(qc);
5030
5031 __ata_qc_complete(qc);
5032 }
5033 }
5034
5035 /**
5036 * ata_qc_complete_multiple - Complete multiple qcs successfully
5037 * @ap: port in question
5038 * @qc_active: new qc_active mask
5039 *
5040 * Complete in-flight commands. This functions is meant to be
5041 * called from low-level driver's interrupt routine to complete
5042 * requests normally. ap->qc_active and @qc_active is compared
5043 * and commands are completed accordingly.
5044 *
5045 * LOCKING:
5046 * spin_lock_irqsave(host lock)
5047 *
5048 * RETURNS:
5049 * Number of completed commands on success, -errno otherwise.
5050 */
5051 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5052 {
5053 int nr_done = 0;
5054 u32 done_mask;
5055
5056 done_mask = ap->qc_active ^ qc_active;
5057
5058 if (unlikely(done_mask & qc_active)) {
5059 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5060 "(%08x->%08x)\n", ap->qc_active, qc_active);
5061 return -EINVAL;
5062 }
5063
5064 while (done_mask) {
5065 struct ata_queued_cmd *qc;
5066 unsigned int tag = __ffs(done_mask);
5067
5068 qc = ata_qc_from_tag(ap, tag);
5069 if (qc) {
5070 ata_qc_complete(qc);
5071 nr_done++;
5072 }
5073 done_mask &= ~(1 << tag);
5074 }
5075
5076 return nr_done;
5077 }
5078
5079 /**
5080 * ata_qc_issue - issue taskfile to device
5081 * @qc: command to issue to device
5082 *
5083 * Prepare an ATA command to submission to device.
5084 * This includes mapping the data into a DMA-able
5085 * area, filling in the S/G table, and finally
5086 * writing the taskfile to hardware, starting the command.
5087 *
5088 * LOCKING:
5089 * spin_lock_irqsave(host lock)
5090 */
5091 void ata_qc_issue(struct ata_queued_cmd *qc)
5092 {
5093 struct ata_port *ap = qc->ap;
5094 struct ata_link *link = qc->dev->link;
5095 u8 prot = qc->tf.protocol;
5096
5097 /* Make sure only one non-NCQ command is outstanding. The
5098 * check is skipped for old EH because it reuses active qc to
5099 * request ATAPI sense.
5100 */
5101 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5102
5103 if (ata_is_ncq(prot)) {
5104 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5105
5106 if (!link->sactive)
5107 ap->nr_active_links++;
5108 link->sactive |= 1 << qc->tag;
5109 } else {
5110 WARN_ON_ONCE(link->sactive);
5111
5112 ap->nr_active_links++;
5113 link->active_tag = qc->tag;
5114 }
5115
5116 qc->flags |= ATA_QCFLAG_ACTIVE;
5117 ap->qc_active |= 1 << qc->tag;
5118
5119 /* We guarantee to LLDs that they will have at least one
5120 * non-zero sg if the command is a data command.
5121 */
5122 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5123
5124 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5125 (ap->flags & ATA_FLAG_PIO_DMA)))
5126 if (ata_sg_setup(qc))
5127 goto sg_err;
5128
5129 /* if device is sleeping, schedule reset and abort the link */
5130 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5131 link->eh_info.action |= ATA_EH_RESET;
5132 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5133 ata_link_abort(link);
5134 return;
5135 }
5136
5137 ap->ops->qc_prep(qc);
5138
5139 qc->err_mask |= ap->ops->qc_issue(qc);
5140 if (unlikely(qc->err_mask))
5141 goto err;
5142 return;
5143
5144 sg_err:
5145 qc->err_mask |= AC_ERR_SYSTEM;
5146 err:
5147 ata_qc_complete(qc);
5148 }
5149
5150 /**
5151 * sata_scr_valid - test whether SCRs are accessible
5152 * @link: ATA link to test SCR accessibility for
5153 *
5154 * Test whether SCRs are accessible for @link.
5155 *
5156 * LOCKING:
5157 * None.
5158 *
5159 * RETURNS:
5160 * 1 if SCRs are accessible, 0 otherwise.
5161 */
5162 int sata_scr_valid(struct ata_link *link)
5163 {
5164 struct ata_port *ap = link->ap;
5165
5166 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5167 }
5168
5169 /**
5170 * sata_scr_read - read SCR register of the specified port
5171 * @link: ATA link to read SCR for
5172 * @reg: SCR to read
5173 * @val: Place to store read value
5174 *
5175 * Read SCR register @reg of @link into *@val. This function is
5176 * guaranteed to succeed if @link is ap->link, the cable type of
5177 * the port is SATA and the port implements ->scr_read.
5178 *
5179 * LOCKING:
5180 * None if @link is ap->link. Kernel thread context otherwise.
5181 *
5182 * RETURNS:
5183 * 0 on success, negative errno on failure.
5184 */
5185 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5186 {
5187 if (ata_is_host_link(link)) {
5188 if (sata_scr_valid(link))
5189 return link->ap->ops->scr_read(link, reg, val);
5190 return -EOPNOTSUPP;
5191 }
5192
5193 return sata_pmp_scr_read(link, reg, val);
5194 }
5195
5196 /**
5197 * sata_scr_write - write SCR register of the specified port
5198 * @link: ATA link to write SCR for
5199 * @reg: SCR to write
5200 * @val: value to write
5201 *
5202 * Write @val to SCR register @reg of @link. This function is
5203 * guaranteed to succeed if @link is ap->link, the cable type of
5204 * the port is SATA and the port implements ->scr_read.
5205 *
5206 * LOCKING:
5207 * None if @link is ap->link. Kernel thread context otherwise.
5208 *
5209 * RETURNS:
5210 * 0 on success, negative errno on failure.
5211 */
5212 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5213 {
5214 if (ata_is_host_link(link)) {
5215 if (sata_scr_valid(link))
5216 return link->ap->ops->scr_write(link, reg, val);
5217 return -EOPNOTSUPP;
5218 }
5219
5220 return sata_pmp_scr_write(link, reg, val);
5221 }
5222
5223 /**
5224 * sata_scr_write_flush - write SCR register of the specified port and flush
5225 * @link: ATA link to write SCR for
5226 * @reg: SCR to write
5227 * @val: value to write
5228 *
5229 * This function is identical to sata_scr_write() except that this
5230 * function performs flush after writing to the register.
5231 *
5232 * LOCKING:
5233 * None if @link is ap->link. Kernel thread context otherwise.
5234 *
5235 * RETURNS:
5236 * 0 on success, negative errno on failure.
5237 */
5238 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5239 {
5240 if (ata_is_host_link(link)) {
5241 int rc;
5242
5243 if (sata_scr_valid(link)) {
5244 rc = link->ap->ops->scr_write(link, reg, val);
5245 if (rc == 0)
5246 rc = link->ap->ops->scr_read(link, reg, &val);
5247 return rc;
5248 }
5249 return -EOPNOTSUPP;
5250 }
5251
5252 return sata_pmp_scr_write(link, reg, val);
5253 }
5254
5255 /**
5256 * ata_phys_link_online - test whether the given link is online
5257 * @link: ATA link to test
5258 *
5259 * Test whether @link is online. Note that this function returns
5260 * 0 if online status of @link cannot be obtained, so
5261 * ata_link_online(link) != !ata_link_offline(link).
5262 *
5263 * LOCKING:
5264 * None.
5265 *
5266 * RETURNS:
5267 * True if the port online status is available and online.
5268 */
5269 bool ata_phys_link_online(struct ata_link *link)
5270 {
5271 u32 sstatus;
5272
5273 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5274 ata_sstatus_online(sstatus))
5275 return true;
5276 return false;
5277 }
5278
5279 /**
5280 * ata_phys_link_offline - test whether the given link is offline
5281 * @link: ATA link to test
5282 *
5283 * Test whether @link is offline. Note that this function
5284 * returns 0 if offline status of @link cannot be obtained, so
5285 * ata_link_online(link) != !ata_link_offline(link).
5286 *
5287 * LOCKING:
5288 * None.
5289 *
5290 * RETURNS:
5291 * True if the port offline status is available and offline.
5292 */
5293 bool ata_phys_link_offline(struct ata_link *link)
5294 {
5295 u32 sstatus;
5296
5297 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5298 !ata_sstatus_online(sstatus))
5299 return true;
5300 return false;
5301 }
5302
5303 /**
5304 * ata_link_online - test whether the given link is online
5305 * @link: ATA link to test
5306 *
5307 * Test whether @link is online. This is identical to
5308 * ata_phys_link_online() when there's no slave link. When
5309 * there's a slave link, this function should only be called on
5310 * the master link and will return true if any of M/S links is
5311 * online.
5312 *
5313 * LOCKING:
5314 * None.
5315 *
5316 * RETURNS:
5317 * True if the port online status is available and online.
5318 */
5319 bool ata_link_online(struct ata_link *link)
5320 {
5321 struct ata_link *slave = link->ap->slave_link;
5322
5323 WARN_ON(link == slave); /* shouldn't be called on slave link */
5324
5325 return ata_phys_link_online(link) ||
5326 (slave && ata_phys_link_online(slave));
5327 }
5328
5329 /**
5330 * ata_link_offline - test whether the given link is offline
5331 * @link: ATA link to test
5332 *
5333 * Test whether @link is offline. This is identical to
5334 * ata_phys_link_offline() when there's no slave link. When
5335 * there's a slave link, this function should only be called on
5336 * the master link and will return true if both M/S links are
5337 * offline.
5338 *
5339 * LOCKING:
5340 * None.
5341 *
5342 * RETURNS:
5343 * True if the port offline status is available and offline.
5344 */
5345 bool ata_link_offline(struct ata_link *link)
5346 {
5347 struct ata_link *slave = link->ap->slave_link;
5348
5349 WARN_ON(link == slave); /* shouldn't be called on slave link */
5350
5351 return ata_phys_link_offline(link) &&
5352 (!slave || ata_phys_link_offline(slave));
5353 }
5354
5355 #ifdef CONFIG_PM
5356 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5357 unsigned int action, unsigned int ehi_flags,
5358 int wait)
5359 {
5360 unsigned long flags;
5361 int i, rc;
5362
5363 for (i = 0; i < host->n_ports; i++) {
5364 struct ata_port *ap = host->ports[i];
5365 struct ata_link *link;
5366
5367 /* Previous resume operation might still be in
5368 * progress. Wait for PM_PENDING to clear.
5369 */
5370 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5371 ata_port_wait_eh(ap);
5372 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5373 }
5374
5375 /* request PM ops to EH */
5376 spin_lock_irqsave(ap->lock, flags);
5377
5378 ap->pm_mesg = mesg;
5379 if (wait) {
5380 rc = 0;
5381 ap->pm_result = &rc;
5382 }
5383
5384 ap->pflags |= ATA_PFLAG_PM_PENDING;
5385 ata_for_each_link(link, ap, HOST_FIRST) {
5386 link->eh_info.action |= action;
5387 link->eh_info.flags |= ehi_flags;
5388 }
5389
5390 ata_port_schedule_eh(ap);
5391
5392 spin_unlock_irqrestore(ap->lock, flags);
5393
5394 /* wait and check result */
5395 if (wait) {
5396 ata_port_wait_eh(ap);
5397 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5398 if (rc)
5399 return rc;
5400 }
5401 }
5402
5403 return 0;
5404 }
5405
5406 /**
5407 * ata_host_suspend - suspend host
5408 * @host: host to suspend
5409 * @mesg: PM message
5410 *
5411 * Suspend @host. Actual operation is performed by EH. This
5412 * function requests EH to perform PM operations and waits for EH
5413 * to finish.
5414 *
5415 * LOCKING:
5416 * Kernel thread context (may sleep).
5417 *
5418 * RETURNS:
5419 * 0 on success, -errno on failure.
5420 */
5421 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5422 {
5423 int rc;
5424
5425 /*
5426 * disable link pm on all ports before requesting
5427 * any pm activity
5428 */
5429 ata_lpm_enable(host);
5430
5431 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5432 if (rc == 0)
5433 host->dev->power.power_state = mesg;
5434 return rc;
5435 }
5436
5437 /**
5438 * ata_host_resume - resume host
5439 * @host: host to resume
5440 *
5441 * Resume @host. Actual operation is performed by EH. This
5442 * function requests EH to perform PM operations and returns.
5443 * Note that all resume operations are performed parallely.
5444 *
5445 * LOCKING:
5446 * Kernel thread context (may sleep).
5447 */
5448 void ata_host_resume(struct ata_host *host)
5449 {
5450 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5451 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5452 host->dev->power.power_state = PMSG_ON;
5453
5454 /* reenable link pm */
5455 ata_lpm_disable(host);
5456 }
5457 #endif
5458
5459 /**
5460 * ata_port_start - Set port up for dma.
5461 * @ap: Port to initialize
5462 *
5463 * Called just after data structures for each port are
5464 * initialized. Allocates space for PRD table.
5465 *
5466 * May be used as the port_start() entry in ata_port_operations.
5467 *
5468 * LOCKING:
5469 * Inherited from caller.
5470 */
5471 int ata_port_start(struct ata_port *ap)
5472 {
5473 struct device *dev = ap->dev;
5474
5475 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5476 GFP_KERNEL);
5477 if (!ap->prd)
5478 return -ENOMEM;
5479
5480 return 0;
5481 }
5482
5483 /**
5484 * ata_dev_init - Initialize an ata_device structure
5485 * @dev: Device structure to initialize
5486 *
5487 * Initialize @dev in preparation for probing.
5488 *
5489 * LOCKING:
5490 * Inherited from caller.
5491 */
5492 void ata_dev_init(struct ata_device *dev)
5493 {
5494 struct ata_link *link = ata_dev_phys_link(dev);
5495 struct ata_port *ap = link->ap;
5496 unsigned long flags;
5497
5498 /* SATA spd limit is bound to the attached device, reset together */
5499 link->sata_spd_limit = link->hw_sata_spd_limit;
5500 link->sata_spd = 0;
5501
5502 /* High bits of dev->flags are used to record warm plug
5503 * requests which occur asynchronously. Synchronize using
5504 * host lock.
5505 */
5506 spin_lock_irqsave(ap->lock, flags);
5507 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5508 dev->horkage = 0;
5509 spin_unlock_irqrestore(ap->lock, flags);
5510
5511 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5512 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5513 dev->pio_mask = UINT_MAX;
5514 dev->mwdma_mask = UINT_MAX;
5515 dev->udma_mask = UINT_MAX;
5516 }
5517
5518 /**
5519 * ata_link_init - Initialize an ata_link structure
5520 * @ap: ATA port link is attached to
5521 * @link: Link structure to initialize
5522 * @pmp: Port multiplier port number
5523 *
5524 * Initialize @link.
5525 *
5526 * LOCKING:
5527 * Kernel thread context (may sleep)
5528 */
5529 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5530 {
5531 int i;
5532
5533 /* clear everything except for devices */
5534 memset(link, 0, offsetof(struct ata_link, device[0]));
5535
5536 link->ap = ap;
5537 link->pmp = pmp;
5538 link->active_tag = ATA_TAG_POISON;
5539 link->hw_sata_spd_limit = UINT_MAX;
5540
5541 /* can't use iterator, ap isn't initialized yet */
5542 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5543 struct ata_device *dev = &link->device[i];
5544
5545 dev->link = link;
5546 dev->devno = dev - link->device;
5547 ata_dev_init(dev);
5548 }
5549 }
5550
5551 /**
5552 * sata_link_init_spd - Initialize link->sata_spd_limit
5553 * @link: Link to configure sata_spd_limit for
5554 *
5555 * Initialize @link->[hw_]sata_spd_limit to the currently
5556 * configured value.
5557 *
5558 * LOCKING:
5559 * Kernel thread context (may sleep).
5560 *
5561 * RETURNS:
5562 * 0 on success, -errno on failure.
5563 */
5564 int sata_link_init_spd(struct ata_link *link)
5565 {
5566 u8 spd;
5567 int rc;
5568
5569 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5570 if (rc)
5571 return rc;
5572
5573 spd = (link->saved_scontrol >> 4) & 0xf;
5574 if (spd)
5575 link->hw_sata_spd_limit &= (1 << spd) - 1;
5576
5577 ata_force_link_limits(link);
5578
5579 link->sata_spd_limit = link->hw_sata_spd_limit;
5580
5581 return 0;
5582 }
5583
5584 /**
5585 * ata_port_alloc - allocate and initialize basic ATA port resources
5586 * @host: ATA host this allocated port belongs to
5587 *
5588 * Allocate and initialize basic ATA port resources.
5589 *
5590 * RETURNS:
5591 * Allocate ATA port on success, NULL on failure.
5592 *
5593 * LOCKING:
5594 * Inherited from calling layer (may sleep).
5595 */
5596 struct ata_port *ata_port_alloc(struct ata_host *host)
5597 {
5598 struct ata_port *ap;
5599
5600 DPRINTK("ENTER\n");
5601
5602 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5603 if (!ap)
5604 return NULL;
5605
5606 ap->pflags |= ATA_PFLAG_INITIALIZING;
5607 ap->lock = &host->lock;
5608 ap->flags = ATA_FLAG_DISABLED;
5609 ap->print_id = -1;
5610 ap->ctl = ATA_DEVCTL_OBS;
5611 ap->host = host;
5612 ap->dev = host->dev;
5613 ap->last_ctl = 0xFF;
5614
5615 #if defined(ATA_VERBOSE_DEBUG)
5616 /* turn on all debugging levels */
5617 ap->msg_enable = 0x00FF;
5618 #elif defined(ATA_DEBUG)
5619 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5620 #else
5621 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5622 #endif
5623
5624 #ifdef CONFIG_ATA_SFF
5625 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5626 #else
5627 INIT_DELAYED_WORK(&ap->port_task, NULL);
5628 #endif
5629 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5630 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5631 INIT_LIST_HEAD(&ap->eh_done_q);
5632 init_waitqueue_head(&ap->eh_wait_q);
5633 init_completion(&ap->park_req_pending);
5634 init_timer_deferrable(&ap->fastdrain_timer);
5635 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5636 ap->fastdrain_timer.data = (unsigned long)ap;
5637
5638 ap->cbl = ATA_CBL_NONE;
5639
5640 ata_link_init(ap, &ap->link, 0);
5641
5642 #ifdef ATA_IRQ_TRAP
5643 ap->stats.unhandled_irq = 1;
5644 ap->stats.idle_irq = 1;
5645 #endif
5646 return ap;
5647 }
5648
5649 static void ata_host_release(struct device *gendev, void *res)
5650 {
5651 struct ata_host *host = dev_get_drvdata(gendev);
5652 int i;
5653
5654 for (i = 0; i < host->n_ports; i++) {
5655 struct ata_port *ap = host->ports[i];
5656
5657 if (!ap)
5658 continue;
5659
5660 if (ap->scsi_host)
5661 scsi_host_put(ap->scsi_host);
5662
5663 kfree(ap->pmp_link);
5664 kfree(ap->slave_link);
5665 kfree(ap);
5666 host->ports[i] = NULL;
5667 }
5668
5669 dev_set_drvdata(gendev, NULL);
5670 }
5671
5672 /**
5673 * ata_host_alloc - allocate and init basic ATA host resources
5674 * @dev: generic device this host is associated with
5675 * @max_ports: maximum number of ATA ports associated with this host
5676 *
5677 * Allocate and initialize basic ATA host resources. LLD calls
5678 * this function to allocate a host, initializes it fully and
5679 * attaches it using ata_host_register().
5680 *
5681 * @max_ports ports are allocated and host->n_ports is
5682 * initialized to @max_ports. The caller is allowed to decrease
5683 * host->n_ports before calling ata_host_register(). The unused
5684 * ports will be automatically freed on registration.
5685 *
5686 * RETURNS:
5687 * Allocate ATA host on success, NULL on failure.
5688 *
5689 * LOCKING:
5690 * Inherited from calling layer (may sleep).
5691 */
5692 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5693 {
5694 struct ata_host *host;
5695 size_t sz;
5696 int i;
5697
5698 DPRINTK("ENTER\n");
5699
5700 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5701 return NULL;
5702
5703 /* alloc a container for our list of ATA ports (buses) */
5704 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5705 /* alloc a container for our list of ATA ports (buses) */
5706 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5707 if (!host)
5708 goto err_out;
5709
5710 devres_add(dev, host);
5711 dev_set_drvdata(dev, host);
5712
5713 spin_lock_init(&host->lock);
5714 host->dev = dev;
5715 host->n_ports = max_ports;
5716
5717 /* allocate ports bound to this host */
5718 for (i = 0; i < max_ports; i++) {
5719 struct ata_port *ap;
5720
5721 ap = ata_port_alloc(host);
5722 if (!ap)
5723 goto err_out;
5724
5725 ap->port_no = i;
5726 host->ports[i] = ap;
5727 }
5728
5729 devres_remove_group(dev, NULL);
5730 return host;
5731
5732 err_out:
5733 devres_release_group(dev, NULL);
5734 return NULL;
5735 }
5736
5737 /**
5738 * ata_host_alloc_pinfo - alloc host and init with port_info array
5739 * @dev: generic device this host is associated with
5740 * @ppi: array of ATA port_info to initialize host with
5741 * @n_ports: number of ATA ports attached to this host
5742 *
5743 * Allocate ATA host and initialize with info from @ppi. If NULL
5744 * terminated, @ppi may contain fewer entries than @n_ports. The
5745 * last entry will be used for the remaining ports.
5746 *
5747 * RETURNS:
5748 * Allocate ATA host on success, NULL on failure.
5749 *
5750 * LOCKING:
5751 * Inherited from calling layer (may sleep).
5752 */
5753 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5754 const struct ata_port_info * const * ppi,
5755 int n_ports)
5756 {
5757 const struct ata_port_info *pi;
5758 struct ata_host *host;
5759 int i, j;
5760
5761 host = ata_host_alloc(dev, n_ports);
5762 if (!host)
5763 return NULL;
5764
5765 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5766 struct ata_port *ap = host->ports[i];
5767
5768 if (ppi[j])
5769 pi = ppi[j++];
5770
5771 ap->pio_mask = pi->pio_mask;
5772 ap->mwdma_mask = pi->mwdma_mask;
5773 ap->udma_mask = pi->udma_mask;
5774 ap->flags |= pi->flags;
5775 ap->link.flags |= pi->link_flags;
5776 ap->ops = pi->port_ops;
5777
5778 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5779 host->ops = pi->port_ops;
5780 }
5781
5782 return host;
5783 }
5784
5785 /**
5786 * ata_slave_link_init - initialize slave link
5787 * @ap: port to initialize slave link for
5788 *
5789 * Create and initialize slave link for @ap. This enables slave
5790 * link handling on the port.
5791 *
5792 * In libata, a port contains links and a link contains devices.
5793 * There is single host link but if a PMP is attached to it,
5794 * there can be multiple fan-out links. On SATA, there's usually
5795 * a single device connected to a link but PATA and SATA
5796 * controllers emulating TF based interface can have two - master
5797 * and slave.
5798 *
5799 * However, there are a few controllers which don't fit into this
5800 * abstraction too well - SATA controllers which emulate TF
5801 * interface with both master and slave devices but also have
5802 * separate SCR register sets for each device. These controllers
5803 * need separate links for physical link handling
5804 * (e.g. onlineness, link speed) but should be treated like a
5805 * traditional M/S controller for everything else (e.g. command
5806 * issue, softreset).
5807 *
5808 * slave_link is libata's way of handling this class of
5809 * controllers without impacting core layer too much. For
5810 * anything other than physical link handling, the default host
5811 * link is used for both master and slave. For physical link
5812 * handling, separate @ap->slave_link is used. All dirty details
5813 * are implemented inside libata core layer. From LLD's POV, the
5814 * only difference is that prereset, hardreset and postreset are
5815 * called once more for the slave link, so the reset sequence
5816 * looks like the following.
5817 *
5818 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5819 * softreset(M) -> postreset(M) -> postreset(S)
5820 *
5821 * Note that softreset is called only for the master. Softreset
5822 * resets both M/S by definition, so SRST on master should handle
5823 * both (the standard method will work just fine).
5824 *
5825 * LOCKING:
5826 * Should be called before host is registered.
5827 *
5828 * RETURNS:
5829 * 0 on success, -errno on failure.
5830 */
5831 int ata_slave_link_init(struct ata_port *ap)
5832 {
5833 struct ata_link *link;
5834
5835 WARN_ON(ap->slave_link);
5836 WARN_ON(ap->flags & ATA_FLAG_PMP);
5837
5838 link = kzalloc(sizeof(*link), GFP_KERNEL);
5839 if (!link)
5840 return -ENOMEM;
5841
5842 ata_link_init(ap, link, 1);
5843 ap->slave_link = link;
5844 return 0;
5845 }
5846
5847 static void ata_host_stop(struct device *gendev, void *res)
5848 {
5849 struct ata_host *host = dev_get_drvdata(gendev);
5850 int i;
5851
5852 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5853
5854 for (i = 0; i < host->n_ports; i++) {
5855 struct ata_port *ap = host->ports[i];
5856
5857 if (ap->ops->port_stop)
5858 ap->ops->port_stop(ap);
5859 }
5860
5861 if (host->ops->host_stop)
5862 host->ops->host_stop(host);
5863 }
5864
5865 /**
5866 * ata_finalize_port_ops - finalize ata_port_operations
5867 * @ops: ata_port_operations to finalize
5868 *
5869 * An ata_port_operations can inherit from another ops and that
5870 * ops can again inherit from another. This can go on as many
5871 * times as necessary as long as there is no loop in the
5872 * inheritance chain.
5873 *
5874 * Ops tables are finalized when the host is started. NULL or
5875 * unspecified entries are inherited from the closet ancestor
5876 * which has the method and the entry is populated with it.
5877 * After finalization, the ops table directly points to all the
5878 * methods and ->inherits is no longer necessary and cleared.
5879 *
5880 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5881 *
5882 * LOCKING:
5883 * None.
5884 */
5885 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5886 {
5887 static DEFINE_SPINLOCK(lock);
5888 const struct ata_port_operations *cur;
5889 void **begin = (void **)ops;
5890 void **end = (void **)&ops->inherits;
5891 void **pp;
5892
5893 if (!ops || !ops->inherits)
5894 return;
5895
5896 spin_lock(&lock);
5897
5898 for (cur = ops->inherits; cur; cur = cur->inherits) {
5899 void **inherit = (void **)cur;
5900
5901 for (pp = begin; pp < end; pp++, inherit++)
5902 if (!*pp)
5903 *pp = *inherit;
5904 }
5905
5906 for (pp = begin; pp < end; pp++)
5907 if (IS_ERR(*pp))
5908 *pp = NULL;
5909
5910 ops->inherits = NULL;
5911
5912 spin_unlock(&lock);
5913 }
5914
5915 /**
5916 * ata_host_start - start and freeze ports of an ATA host
5917 * @host: ATA host to start ports for
5918 *
5919 * Start and then freeze ports of @host. Started status is
5920 * recorded in host->flags, so this function can be called
5921 * multiple times. Ports are guaranteed to get started only
5922 * once. If host->ops isn't initialized yet, its set to the
5923 * first non-dummy port ops.
5924 *
5925 * LOCKING:
5926 * Inherited from calling layer (may sleep).
5927 *
5928 * RETURNS:
5929 * 0 if all ports are started successfully, -errno otherwise.
5930 */
5931 int ata_host_start(struct ata_host *host)
5932 {
5933 int have_stop = 0;
5934 void *start_dr = NULL;
5935 int i, rc;
5936
5937 if (host->flags & ATA_HOST_STARTED)
5938 return 0;
5939
5940 ata_finalize_port_ops(host->ops);
5941
5942 for (i = 0; i < host->n_ports; i++) {
5943 struct ata_port *ap = host->ports[i];
5944
5945 ata_finalize_port_ops(ap->ops);
5946
5947 if (!host->ops && !ata_port_is_dummy(ap))
5948 host->ops = ap->ops;
5949
5950 if (ap->ops->port_stop)
5951 have_stop = 1;
5952 }
5953
5954 if (host->ops->host_stop)
5955 have_stop = 1;
5956
5957 if (have_stop) {
5958 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5959 if (!start_dr)
5960 return -ENOMEM;
5961 }
5962
5963 for (i = 0; i < host->n_ports; i++) {
5964 struct ata_port *ap = host->ports[i];
5965
5966 if (ap->ops->port_start) {
5967 rc = ap->ops->port_start(ap);
5968 if (rc) {
5969 if (rc != -ENODEV)
5970 dev_printk(KERN_ERR, host->dev,
5971 "failed to start port %d "
5972 "(errno=%d)\n", i, rc);
5973 goto err_out;
5974 }
5975 }
5976 ata_eh_freeze_port(ap);
5977 }
5978
5979 if (start_dr)
5980 devres_add(host->dev, start_dr);
5981 host->flags |= ATA_HOST_STARTED;
5982 return 0;
5983
5984 err_out:
5985 while (--i >= 0) {
5986 struct ata_port *ap = host->ports[i];
5987
5988 if (ap->ops->port_stop)
5989 ap->ops->port_stop(ap);
5990 }
5991 devres_free(start_dr);
5992 return rc;
5993 }
5994
5995 /**
5996 * ata_sas_host_init - Initialize a host struct
5997 * @host: host to initialize
5998 * @dev: device host is attached to
5999 * @flags: host flags
6000 * @ops: port_ops
6001 *
6002 * LOCKING:
6003 * PCI/etc. bus probe sem.
6004 *
6005 */
6006 /* KILLME - the only user left is ipr */
6007 void ata_host_init(struct ata_host *host, struct device *dev,
6008 unsigned long flags, struct ata_port_operations *ops)
6009 {
6010 spin_lock_init(&host->lock);
6011 host->dev = dev;
6012 host->flags = flags;
6013 host->ops = ops;
6014 }
6015
6016
6017 static void async_port_probe(void *data, async_cookie_t cookie)
6018 {
6019 int rc;
6020 struct ata_port *ap = data;
6021
6022 /*
6023 * If we're not allowed to scan this host in parallel,
6024 * we need to wait until all previous scans have completed
6025 * before going further.
6026 * Jeff Garzik says this is only within a controller, so we
6027 * don't need to wait for port 0, only for later ports.
6028 */
6029 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6030 async_synchronize_cookie(cookie);
6031
6032 /* probe */
6033 if (ap->ops->error_handler) {
6034 struct ata_eh_info *ehi = &ap->link.eh_info;
6035 unsigned long flags;
6036
6037 ata_port_probe(ap);
6038
6039 /* kick EH for boot probing */
6040 spin_lock_irqsave(ap->lock, flags);
6041
6042 ehi->probe_mask |= ATA_ALL_DEVICES;
6043 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6044 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6045
6046 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6047 ap->pflags |= ATA_PFLAG_LOADING;
6048 ata_port_schedule_eh(ap);
6049
6050 spin_unlock_irqrestore(ap->lock, flags);
6051
6052 /* wait for EH to finish */
6053 ata_port_wait_eh(ap);
6054 } else {
6055 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6056 rc = ata_bus_probe(ap);
6057 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6058
6059 if (rc) {
6060 /* FIXME: do something useful here?
6061 * Current libata behavior will
6062 * tear down everything when
6063 * the module is removed
6064 * or the h/w is unplugged.
6065 */
6066 }
6067 }
6068
6069 /* in order to keep device order, we need to synchronize at this point */
6070 async_synchronize_cookie(cookie);
6071
6072 ata_scsi_scan_host(ap, 1);
6073
6074 }
6075 /**
6076 * ata_host_register - register initialized ATA host
6077 * @host: ATA host to register
6078 * @sht: template for SCSI host
6079 *
6080 * Register initialized ATA host. @host is allocated using
6081 * ata_host_alloc() and fully initialized by LLD. This function
6082 * starts ports, registers @host with ATA and SCSI layers and
6083 * probe registered devices.
6084 *
6085 * LOCKING:
6086 * Inherited from calling layer (may sleep).
6087 *
6088 * RETURNS:
6089 * 0 on success, -errno otherwise.
6090 */
6091 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6092 {
6093 int i, rc;
6094
6095 /* host must have been started */
6096 if (!(host->flags & ATA_HOST_STARTED)) {
6097 dev_printk(KERN_ERR, host->dev,
6098 "BUG: trying to register unstarted host\n");
6099 WARN_ON(1);
6100 return -EINVAL;
6101 }
6102
6103 /* Blow away unused ports. This happens when LLD can't
6104 * determine the exact number of ports to allocate at
6105 * allocation time.
6106 */
6107 for (i = host->n_ports; host->ports[i]; i++)
6108 kfree(host->ports[i]);
6109
6110 /* give ports names and add SCSI hosts */
6111 for (i = 0; i < host->n_ports; i++)
6112 host->ports[i]->print_id = ata_print_id++;
6113
6114 rc = ata_scsi_add_hosts(host, sht);
6115 if (rc)
6116 return rc;
6117
6118 /* associate with ACPI nodes */
6119 ata_acpi_associate(host);
6120
6121 /* set cable, sata_spd_limit and report */
6122 for (i = 0; i < host->n_ports; i++) {
6123 struct ata_port *ap = host->ports[i];
6124 unsigned long xfer_mask;
6125
6126 /* set SATA cable type if still unset */
6127 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6128 ap->cbl = ATA_CBL_SATA;
6129
6130 /* init sata_spd_limit to the current value */
6131 sata_link_init_spd(&ap->link);
6132 if (ap->slave_link)
6133 sata_link_init_spd(ap->slave_link);
6134
6135 /* print per-port info to dmesg */
6136 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6137 ap->udma_mask);
6138
6139 if (!ata_port_is_dummy(ap)) {
6140 ata_port_printk(ap, KERN_INFO,
6141 "%cATA max %s %s\n",
6142 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6143 ata_mode_string(xfer_mask),
6144 ap->link.eh_info.desc);
6145 ata_ehi_clear_desc(&ap->link.eh_info);
6146 } else
6147 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6148 }
6149
6150 /* perform each probe asynchronously */
6151 for (i = 0; i < host->n_ports; i++) {
6152 struct ata_port *ap = host->ports[i];
6153 async_schedule(async_port_probe, ap);
6154 }
6155
6156 return 0;
6157 }
6158
6159 /**
6160 * ata_host_activate - start host, request IRQ and register it
6161 * @host: target ATA host
6162 * @irq: IRQ to request
6163 * @irq_handler: irq_handler used when requesting IRQ
6164 * @irq_flags: irq_flags used when requesting IRQ
6165 * @sht: scsi_host_template to use when registering the host
6166 *
6167 * After allocating an ATA host and initializing it, most libata
6168 * LLDs perform three steps to activate the host - start host,
6169 * request IRQ and register it. This helper takes necessasry
6170 * arguments and performs the three steps in one go.
6171 *
6172 * An invalid IRQ skips the IRQ registration and expects the host to
6173 * have set polling mode on the port. In this case, @irq_handler
6174 * should be NULL.
6175 *
6176 * LOCKING:
6177 * Inherited from calling layer (may sleep).
6178 *
6179 * RETURNS:
6180 * 0 on success, -errno otherwise.
6181 */
6182 int ata_host_activate(struct ata_host *host, int irq,
6183 irq_handler_t irq_handler, unsigned long irq_flags,
6184 struct scsi_host_template *sht)
6185 {
6186 int i, rc;
6187
6188 rc = ata_host_start(host);
6189 if (rc)
6190 return rc;
6191
6192 /* Special case for polling mode */
6193 if (!irq) {
6194 WARN_ON(irq_handler);
6195 return ata_host_register(host, sht);
6196 }
6197
6198 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6199 dev_driver_string(host->dev), host);
6200 if (rc)
6201 return rc;
6202
6203 for (i = 0; i < host->n_ports; i++)
6204 ata_port_desc(host->ports[i], "irq %d", irq);
6205
6206 rc = ata_host_register(host, sht);
6207 /* if failed, just free the IRQ and leave ports alone */
6208 if (rc)
6209 devm_free_irq(host->dev, irq, host);
6210
6211 return rc;
6212 }
6213
6214 /**
6215 * ata_port_detach - Detach ATA port in prepration of device removal
6216 * @ap: ATA port to be detached
6217 *
6218 * Detach all ATA devices and the associated SCSI devices of @ap;
6219 * then, remove the associated SCSI host. @ap is guaranteed to
6220 * be quiescent on return from this function.
6221 *
6222 * LOCKING:
6223 * Kernel thread context (may sleep).
6224 */
6225 static void ata_port_detach(struct ata_port *ap)
6226 {
6227 unsigned long flags;
6228
6229 if (!ap->ops->error_handler)
6230 goto skip_eh;
6231
6232 /* tell EH we're leaving & flush EH */
6233 spin_lock_irqsave(ap->lock, flags);
6234 ap->pflags |= ATA_PFLAG_UNLOADING;
6235 ata_port_schedule_eh(ap);
6236 spin_unlock_irqrestore(ap->lock, flags);
6237
6238 /* wait till EH commits suicide */
6239 ata_port_wait_eh(ap);
6240
6241 /* it better be dead now */
6242 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6243
6244 cancel_rearming_delayed_work(&ap->hotplug_task);
6245
6246 skip_eh:
6247 /* remove the associated SCSI host */
6248 scsi_remove_host(ap->scsi_host);
6249 }
6250
6251 /**
6252 * ata_host_detach - Detach all ports of an ATA host
6253 * @host: Host to detach
6254 *
6255 * Detach all ports of @host.
6256 *
6257 * LOCKING:
6258 * Kernel thread context (may sleep).
6259 */
6260 void ata_host_detach(struct ata_host *host)
6261 {
6262 int i;
6263
6264 for (i = 0; i < host->n_ports; i++)
6265 ata_port_detach(host->ports[i]);
6266
6267 /* the host is dead now, dissociate ACPI */
6268 ata_acpi_dissociate(host);
6269 }
6270
6271 #ifdef CONFIG_PCI
6272
6273 /**
6274 * ata_pci_remove_one - PCI layer callback for device removal
6275 * @pdev: PCI device that was removed
6276 *
6277 * PCI layer indicates to libata via this hook that hot-unplug or
6278 * module unload event has occurred. Detach all ports. Resource
6279 * release is handled via devres.
6280 *
6281 * LOCKING:
6282 * Inherited from PCI layer (may sleep).
6283 */
6284 void ata_pci_remove_one(struct pci_dev *pdev)
6285 {
6286 struct device *dev = &pdev->dev;
6287 struct ata_host *host = dev_get_drvdata(dev);
6288
6289 ata_host_detach(host);
6290 }
6291
6292 /* move to PCI subsystem */
6293 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6294 {
6295 unsigned long tmp = 0;
6296
6297 switch (bits->width) {
6298 case 1: {
6299 u8 tmp8 = 0;
6300 pci_read_config_byte(pdev, bits->reg, &tmp8);
6301 tmp = tmp8;
6302 break;
6303 }
6304 case 2: {
6305 u16 tmp16 = 0;
6306 pci_read_config_word(pdev, bits->reg, &tmp16);
6307 tmp = tmp16;
6308 break;
6309 }
6310 case 4: {
6311 u32 tmp32 = 0;
6312 pci_read_config_dword(pdev, bits->reg, &tmp32);
6313 tmp = tmp32;
6314 break;
6315 }
6316
6317 default:
6318 return -EINVAL;
6319 }
6320
6321 tmp &= bits->mask;
6322
6323 return (tmp == bits->val) ? 1 : 0;
6324 }
6325
6326 #ifdef CONFIG_PM
6327 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6328 {
6329 pci_save_state(pdev);
6330 pci_disable_device(pdev);
6331
6332 if (mesg.event & PM_EVENT_SLEEP)
6333 pci_set_power_state(pdev, PCI_D3hot);
6334 }
6335
6336 int ata_pci_device_do_resume(struct pci_dev *pdev)
6337 {
6338 int rc;
6339
6340 pci_set_power_state(pdev, PCI_D0);
6341 pci_restore_state(pdev);
6342
6343 rc = pcim_enable_device(pdev);
6344 if (rc) {
6345 dev_printk(KERN_ERR, &pdev->dev,
6346 "failed to enable device after resume (%d)\n", rc);
6347 return rc;
6348 }
6349
6350 pci_set_master(pdev);
6351 return 0;
6352 }
6353
6354 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6355 {
6356 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6357 int rc = 0;
6358
6359 rc = ata_host_suspend(host, mesg);
6360 if (rc)
6361 return rc;
6362
6363 ata_pci_device_do_suspend(pdev, mesg);
6364
6365 return 0;
6366 }
6367
6368 int ata_pci_device_resume(struct pci_dev *pdev)
6369 {
6370 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6371 int rc;
6372
6373 rc = ata_pci_device_do_resume(pdev);
6374 if (rc == 0)
6375 ata_host_resume(host);
6376 return rc;
6377 }
6378 #endif /* CONFIG_PM */
6379
6380 #endif /* CONFIG_PCI */
6381
6382 static int __init ata_parse_force_one(char **cur,
6383 struct ata_force_ent *force_ent,
6384 const char **reason)
6385 {
6386 /* FIXME: Currently, there's no way to tag init const data and
6387 * using __initdata causes build failure on some versions of
6388 * gcc. Once __initdataconst is implemented, add const to the
6389 * following structure.
6390 */
6391 static struct ata_force_param force_tbl[] __initdata = {
6392 { "40c", .cbl = ATA_CBL_PATA40 },
6393 { "80c", .cbl = ATA_CBL_PATA80 },
6394 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6395 { "unk", .cbl = ATA_CBL_PATA_UNK },
6396 { "ign", .cbl = ATA_CBL_PATA_IGN },
6397 { "sata", .cbl = ATA_CBL_SATA },
6398 { "1.5Gbps", .spd_limit = 1 },
6399 { "3.0Gbps", .spd_limit = 2 },
6400 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6401 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6402 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6403 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6404 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6405 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6406 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6407 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6408 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6409 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6410 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6411 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6412 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6413 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6414 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6415 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6416 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6417 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6418 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6419 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6420 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6421 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6422 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6423 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6424 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6425 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6426 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6427 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6428 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6429 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6430 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6431 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6432 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6433 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6434 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6435 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6436 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6437 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6438 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6439 };
6440 char *start = *cur, *p = *cur;
6441 char *id, *val, *endp;
6442 const struct ata_force_param *match_fp = NULL;
6443 int nr_matches = 0, i;
6444
6445 /* find where this param ends and update *cur */
6446 while (*p != '\0' && *p != ',')
6447 p++;
6448
6449 if (*p == '\0')
6450 *cur = p;
6451 else
6452 *cur = p + 1;
6453
6454 *p = '\0';
6455
6456 /* parse */
6457 p = strchr(start, ':');
6458 if (!p) {
6459 val = strstrip(start);
6460 goto parse_val;
6461 }
6462 *p = '\0';
6463
6464 id = strstrip(start);
6465 val = strstrip(p + 1);
6466
6467 /* parse id */
6468 p = strchr(id, '.');
6469 if (p) {
6470 *p++ = '\0';
6471 force_ent->device = simple_strtoul(p, &endp, 10);
6472 if (p == endp || *endp != '\0') {
6473 *reason = "invalid device";
6474 return -EINVAL;
6475 }
6476 }
6477
6478 force_ent->port = simple_strtoul(id, &endp, 10);
6479 if (p == endp || *endp != '\0') {
6480 *reason = "invalid port/link";
6481 return -EINVAL;
6482 }
6483
6484 parse_val:
6485 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6486 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6487 const struct ata_force_param *fp = &force_tbl[i];
6488
6489 if (strncasecmp(val, fp->name, strlen(val)))
6490 continue;
6491
6492 nr_matches++;
6493 match_fp = fp;
6494
6495 if (strcasecmp(val, fp->name) == 0) {
6496 nr_matches = 1;
6497 break;
6498 }
6499 }
6500
6501 if (!nr_matches) {
6502 *reason = "unknown value";
6503 return -EINVAL;
6504 }
6505 if (nr_matches > 1) {
6506 *reason = "ambigious value";
6507 return -EINVAL;
6508 }
6509
6510 force_ent->param = *match_fp;
6511
6512 return 0;
6513 }
6514
6515 static void __init ata_parse_force_param(void)
6516 {
6517 int idx = 0, size = 1;
6518 int last_port = -1, last_device = -1;
6519 char *p, *cur, *next;
6520
6521 /* calculate maximum number of params and allocate force_tbl */
6522 for (p = ata_force_param_buf; *p; p++)
6523 if (*p == ',')
6524 size++;
6525
6526 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6527 if (!ata_force_tbl) {
6528 printk(KERN_WARNING "ata: failed to extend force table, "
6529 "libata.force ignored\n");
6530 return;
6531 }
6532
6533 /* parse and populate the table */
6534 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6535 const char *reason = "";
6536 struct ata_force_ent te = { .port = -1, .device = -1 };
6537
6538 next = cur;
6539 if (ata_parse_force_one(&next, &te, &reason)) {
6540 printk(KERN_WARNING "ata: failed to parse force "
6541 "parameter \"%s\" (%s)\n",
6542 cur, reason);
6543 continue;
6544 }
6545
6546 if (te.port == -1) {
6547 te.port = last_port;
6548 te.device = last_device;
6549 }
6550
6551 ata_force_tbl[idx++] = te;
6552
6553 last_port = te.port;
6554 last_device = te.device;
6555 }
6556
6557 ata_force_tbl_size = idx;
6558 }
6559
6560 static int __init ata_init(void)
6561 {
6562 ata_parse_force_param();
6563
6564 ata_wq = create_workqueue("ata");
6565 if (!ata_wq)
6566 goto free_force_tbl;
6567
6568 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6569 if (!ata_aux_wq)
6570 goto free_wq;
6571
6572 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6573 return 0;
6574
6575 free_wq:
6576 destroy_workqueue(ata_wq);
6577 free_force_tbl:
6578 kfree(ata_force_tbl);
6579 return -ENOMEM;
6580 }
6581
6582 static void __exit ata_exit(void)
6583 {
6584 kfree(ata_force_tbl);
6585 destroy_workqueue(ata_wq);
6586 destroy_workqueue(ata_aux_wq);
6587 }
6588
6589 subsys_initcall(ata_init);
6590 module_exit(ata_exit);
6591
6592 static unsigned long ratelimit_time;
6593 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6594
6595 int ata_ratelimit(void)
6596 {
6597 int rc;
6598 unsigned long flags;
6599
6600 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6601
6602 if (time_after(jiffies, ratelimit_time)) {
6603 rc = 1;
6604 ratelimit_time = jiffies + (HZ/5);
6605 } else
6606 rc = 0;
6607
6608 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6609
6610 return rc;
6611 }
6612
6613 /**
6614 * ata_wait_register - wait until register value changes
6615 * @reg: IO-mapped register
6616 * @mask: Mask to apply to read register value
6617 * @val: Wait condition
6618 * @interval: polling interval in milliseconds
6619 * @timeout: timeout in milliseconds
6620 *
6621 * Waiting for some bits of register to change is a common
6622 * operation for ATA controllers. This function reads 32bit LE
6623 * IO-mapped register @reg and tests for the following condition.
6624 *
6625 * (*@reg & mask) != val
6626 *
6627 * If the condition is met, it returns; otherwise, the process is
6628 * repeated after @interval_msec until timeout.
6629 *
6630 * LOCKING:
6631 * Kernel thread context (may sleep)
6632 *
6633 * RETURNS:
6634 * The final register value.
6635 */
6636 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6637 unsigned long interval, unsigned long timeout)
6638 {
6639 unsigned long deadline;
6640 u32 tmp;
6641
6642 tmp = ioread32(reg);
6643
6644 /* Calculate timeout _after_ the first read to make sure
6645 * preceding writes reach the controller before starting to
6646 * eat away the timeout.
6647 */
6648 deadline = ata_deadline(jiffies, timeout);
6649
6650 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6651 msleep(interval);
6652 tmp = ioread32(reg);
6653 }
6654
6655 return tmp;
6656 }
6657
6658 /*
6659 * Dummy port_ops
6660 */
6661 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6662 {
6663 return AC_ERR_SYSTEM;
6664 }
6665
6666 static void ata_dummy_error_handler(struct ata_port *ap)
6667 {
6668 /* truly dummy */
6669 }
6670
6671 struct ata_port_operations ata_dummy_port_ops = {
6672 .qc_prep = ata_noop_qc_prep,
6673 .qc_issue = ata_dummy_qc_issue,
6674 .error_handler = ata_dummy_error_handler,
6675 };
6676
6677 const struct ata_port_info ata_dummy_port_info = {
6678 .port_ops = &ata_dummy_port_ops,
6679 };
6680
6681 /*
6682 * libata is essentially a library of internal helper functions for
6683 * low-level ATA host controller drivers. As such, the API/ABI is
6684 * likely to change as new drivers are added and updated.
6685 * Do not depend on ABI/API stability.
6686 */
6687 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6688 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6689 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6690 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6691 EXPORT_SYMBOL_GPL(sata_port_ops);
6692 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6693 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6694 EXPORT_SYMBOL_GPL(ata_link_next);
6695 EXPORT_SYMBOL_GPL(ata_dev_next);
6696 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6697 EXPORT_SYMBOL_GPL(ata_host_init);
6698 EXPORT_SYMBOL_GPL(ata_host_alloc);
6699 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6700 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6701 EXPORT_SYMBOL_GPL(ata_host_start);
6702 EXPORT_SYMBOL_GPL(ata_host_register);
6703 EXPORT_SYMBOL_GPL(ata_host_activate);
6704 EXPORT_SYMBOL_GPL(ata_host_detach);
6705 EXPORT_SYMBOL_GPL(ata_sg_init);
6706 EXPORT_SYMBOL_GPL(ata_qc_complete);
6707 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6708 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6709 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6710 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6711 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6712 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6713 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6714 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6715 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6716 EXPORT_SYMBOL_GPL(ata_mode_string);
6717 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6718 EXPORT_SYMBOL_GPL(ata_port_start);
6719 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6720 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6721 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6722 EXPORT_SYMBOL_GPL(ata_port_probe);
6723 EXPORT_SYMBOL_GPL(ata_dev_disable);
6724 EXPORT_SYMBOL_GPL(sata_set_spd);
6725 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6726 EXPORT_SYMBOL_GPL(sata_link_debounce);
6727 EXPORT_SYMBOL_GPL(sata_link_resume);
6728 EXPORT_SYMBOL_GPL(ata_std_prereset);
6729 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6730 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6731 EXPORT_SYMBOL_GPL(ata_std_postreset);
6732 EXPORT_SYMBOL_GPL(ata_dev_classify);
6733 EXPORT_SYMBOL_GPL(ata_dev_pair);
6734 EXPORT_SYMBOL_GPL(ata_port_disable);
6735 EXPORT_SYMBOL_GPL(ata_ratelimit);
6736 EXPORT_SYMBOL_GPL(ata_wait_register);
6737 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6738 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6739 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6740 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6741 EXPORT_SYMBOL_GPL(sata_scr_valid);
6742 EXPORT_SYMBOL_GPL(sata_scr_read);
6743 EXPORT_SYMBOL_GPL(sata_scr_write);
6744 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6745 EXPORT_SYMBOL_GPL(ata_link_online);
6746 EXPORT_SYMBOL_GPL(ata_link_offline);
6747 #ifdef CONFIG_PM
6748 EXPORT_SYMBOL_GPL(ata_host_suspend);
6749 EXPORT_SYMBOL_GPL(ata_host_resume);
6750 #endif /* CONFIG_PM */
6751 EXPORT_SYMBOL_GPL(ata_id_string);
6752 EXPORT_SYMBOL_GPL(ata_id_c_string);
6753 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6754 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6755
6756 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6757 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6758 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6759 EXPORT_SYMBOL_GPL(ata_timing_compute);
6760 EXPORT_SYMBOL_GPL(ata_timing_merge);
6761 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6762
6763 #ifdef CONFIG_PCI
6764 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6765 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6766 #ifdef CONFIG_PM
6767 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6768 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6769 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6770 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6771 #endif /* CONFIG_PM */
6772 #endif /* CONFIG_PCI */
6773
6774 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6775 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6776 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6777 EXPORT_SYMBOL_GPL(ata_port_desc);
6778 #ifdef CONFIG_PCI
6779 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6780 #endif /* CONFIG_PCI */
6781 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6782 EXPORT_SYMBOL_GPL(ata_link_abort);
6783 EXPORT_SYMBOL_GPL(ata_port_abort);
6784 EXPORT_SYMBOL_GPL(ata_port_freeze);
6785 EXPORT_SYMBOL_GPL(sata_async_notification);
6786 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6787 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6788 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6789 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6790 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6791 EXPORT_SYMBOL_GPL(ata_do_eh);
6792 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6793
6794 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6795 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6796 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6797 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6798 EXPORT_SYMBOL_GPL(ata_cable_sata);