]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/ata/libata-core.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727 }
1728
1729 /**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752 {
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765 }
1766
1767 /**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798 }
1799
1800 /**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821 }
1822
1823 /**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835 {
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839
1840 /**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863 {
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876 retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 /* fall through */
1883 case ATA_DEV_ATA:
1884 case ATA_DEV_ZAC:
1885 tf.command = ATA_CMD_ID_ATA;
1886 break;
1887 case ATA_DEV_ATAPI:
1888 tf.command = ATA_CMD_ID_ATAPI;
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1894 }
1895
1896 tf.protocol = ATA_PROT_PIO;
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1907
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913 if (err_mask) {
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 return -ENOENT;
1917 }
1918
1919 if (is_semb) {
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1949 return -ENOENT;
1950 }
1951
1952 rc = -EIO;
1953 reason = "I/O error";
1954 goto err_out;
1955 }
1956
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
1970 swap_buf_le16(id, ATA_ID_WORDS);
1971
1972 /* sanity check */
1973 rc = -EINVAL;
1974 reason = "device reports invalid type";
1975
1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
1988 }
1989
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
2035 flags &= ~ATA_READID_POSTRESET;
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
2041
2042 return 0;
2043
2044 err_out:
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
2048 return rc;
2049 }
2050
2051 /**
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2054 * @log: log to read
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2058 *
2059 * Read log page using READ_LOG_EXT command.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep).
2063 *
2064 * RETURNS:
2065 * 0 on success, AC_ERR_* mask otherwise.
2066 */
2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2069 {
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2073 bool dma = false;
2074
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077 /*
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2080 */
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 return AC_ERR_DEV;
2083
2084 retry:
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2090 dma = true;
2091 } else {
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2094 dma = false;
2095 }
2096 tf.lbal = log;
2097 tf.lbam = page;
2098 tf.nsect = sectors;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2104
2105 if (err_mask && dma) {
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 goto retry;
2109 }
2110
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 return err_mask;
2113 }
2114
2115 static bool ata_log_supported(struct ata_device *dev, u8 log)
2116 {
2117 struct ata_port *ap = dev->link->ap;
2118
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 return false;
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122 }
2123
2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125 {
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2128
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 return false;
2132 }
2133
2134 /*
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 * supported.
2137 */
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 1);
2140 if (err) {
2141 ata_dev_info(dev,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2143 err);
2144 return false;
2145 }
2146
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2149 return true;
2150 }
2151
2152 return false;
2153 }
2154
2155 static int ata_do_link_spd_horkage(struct ata_device *dev)
2156 {
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2159
2160 if (!sata_scr_valid(plink))
2161 return 0;
2162
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 target = 1;
2165 else
2166 return 0;
2167
2168 target_limit = (1 << target) - 1;
2169
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2172 return 0;
2173
2174 plink->sata_spd_limit = target_limit;
2175
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2179 */
2180 if (plink->sata_spd > target) {
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
2183 return -EAGAIN;
2184 }
2185 return 0;
2186 }
2187
2188 static inline u8 ata_dev_knobble(struct ata_device *dev)
2189 {
2190 struct ata_port *ap = dev->link->ap;
2191
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 return 0;
2194
2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196 }
2197
2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199 {
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 return;
2206 }
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2209 if (err_mask) {
2210 ata_dev_dbg(dev,
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 err_mask);
2213 } else {
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 }
2224 }
2225 }
2226
2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228 {
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
2231
2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 ata_dev_warn(dev,
2234 "NCQ Send/Recv Log not supported\n");
2235 return;
2236 }
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2239 if (err_mask) {
2240 ata_dev_dbg(dev,
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 err_mask);
2243 } else {
2244 u8 *cmds = dev->ncq_non_data_cmds;
2245
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 }
2248 }
2249
2250 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251 {
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2254
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 return;
2258 }
2259
2260 err_mask = ata_read_log_page(dev,
2261 ATA_LOG_IDENTIFY_DEVICE,
2262 ATA_LOG_SATA_SETTINGS,
2263 ap->sector_buf,
2264 1);
2265 if (err_mask) {
2266 ata_dev_dbg(dev,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2268 err_mask);
2269 return;
2270 }
2271
2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 } else {
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 }
2278
2279 }
2280
2281 static int ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2283 {
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 unsigned int err_mask;
2287 char *aa_desc = "";
2288
2289 if (!ata_id_has_ncq(dev->id)) {
2290 desc[0] = '\0';
2291 return 0;
2292 }
2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 snprintf(desc, desc_sz, "NCQ (not used)");
2295 return 0;
2296 }
2297 if (ap->flags & ATA_FLAG_NCQ) {
2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 dev->flags |= ATA_DFLAG_NCQ;
2300 }
2301
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 SATA_FPDMA_AA);
2307 if (err_mask) {
2308 ata_dev_err(dev,
2309 "failed to enable AA (error_mask=0x%x)\n",
2310 err_mask);
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 return -EIO;
2314 }
2315 } else
2316 aa_desc = ", AA";
2317 }
2318
2319 if (hdepth >= ddepth)
2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 else
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 ddepth, aa_desc);
2324
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
2332 }
2333
2334 return 0;
2335 }
2336
2337 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338 {
2339 unsigned int err_mask;
2340
2341 if (!ata_id_has_sense_reporting(dev->id))
2342 return;
2343
2344 if (ata_id_sense_reporting_enabled(dev->id))
2345 return;
2346
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 if (err_mask) {
2349 ata_dev_dbg(dev,
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 err_mask);
2352 }
2353 }
2354
2355 static void ata_dev_config_zac(struct ata_device *dev)
2356 {
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
2360
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2364
2365 /*
2366 * Always set the 'ZAC' flag for Host-managed devices.
2367 */
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 /*
2372 * Check for host-aware devices.
2373 */
2374 dev->flags |= ATA_DFLAG_ZAC;
2375
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2377 return;
2378
2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 ata_dev_warn(dev,
2381 "ATA Zoned Information Log not supported\n");
2382 return;
2383 }
2384
2385 /*
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 */
2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 ATA_LOG_ZONED_INFORMATION,
2390 identify_buf, 1);
2391 if (!err_mask) {
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2406 }
2407 }
2408
2409 static void ata_dev_config_trusted(struct ata_device *dev)
2410 {
2411 struct ata_port *ap = dev->link->ap;
2412 u64 trusted_cap;
2413 unsigned int err;
2414
2415 if (!ata_id_has_trusted(dev->id))
2416 return;
2417
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 ata_dev_warn(dev,
2420 "Security Log not supported\n");
2421 return;
2422 }
2423
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 ap->sector_buf, 1);
2426 if (err) {
2427 ata_dev_dbg(dev,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2429 return;
2430 }
2431
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2434 ata_dev_dbg(dev,
2435 "Trusted Computing capability qword not valid!\n");
2436 return;
2437 }
2438
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2441 }
2442
2443 /**
2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
2445 * @dev: Target device to configure
2446 *
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
2449 *
2450 * LOCKING:
2451 * Kernel thread context (may sleep)
2452 *
2453 * RETURNS:
2454 * 0 on success, -errno otherwise
2455 */
2456 int ata_dev_configure(struct ata_device *dev)
2457 {
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 const u16 *id = dev->id;
2462 unsigned long xfer_mask;
2463 unsigned int err_mask;
2464 char revbuf[7]; /* XYZ-99\0 */
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
2467 int rc;
2468
2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 return 0;
2472 }
2473
2474 if (ata_msg_probe(ap))
2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476
2477 /* set horkage */
2478 dev->horkage |= ata_dev_blacklisted(dev);
2479 ata_force_horkage(dev);
2480
2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 ata_dev_info(dev, "unsupported device, disabling\n");
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2491 : "disabled");
2492 ata_dev_disable(dev);
2493 return 0;
2494 }
2495
2496 rc = ata_do_link_spd_horkage(dev);
2497 if (rc)
2498 return rc;
2499
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2504
2505 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508 }
2509
2510 /* let ACPI work its magic */
2511 rc = ata_acpi_on_devcfg(dev);
2512 if (rc)
2513 return rc;
2514
2515 /* massage HPA, do it early as it might change IDENTIFY data */
2516 rc = ata_hpa_resize(dev);
2517 if (rc)
2518 return rc;
2519
2520 /* print device capabilities */
2521 if (ata_msg_probe(ap))
2522 ata_dev_dbg(dev,
2523 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525 __func__,
2526 id[49], id[82], id[83], id[84],
2527 id[85], id[86], id[87], id[88]);
2528
2529 /* initialize to-be-configured parameters */
2530 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 dev->max_sectors = 0;
2532 dev->cdb_len = 0;
2533 dev->n_sectors = 0;
2534 dev->cylinders = 0;
2535 dev->heads = 0;
2536 dev->sectors = 0;
2537 dev->multi_count = 0;
2538
2539 /*
2540 * common ATA, ATAPI feature tests
2541 */
2542
2543 /* find max transfer mode; for printk only */
2544 xfer_mask = ata_id_xfermask(id);
2545
2546 if (ata_msg_probe(ap))
2547 ata_dump_id(id);
2548
2549 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551 sizeof(fwrevbuf));
2552
2553 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554 sizeof(modelbuf));
2555
2556 /* ATA-specific feature tests */
2557 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 if (ata_id_is_cfa(id)) {
2559 /* CPRM may make this media unusable */
2560 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561 ata_dev_warn(dev,
2562 "supports DRM functions and may not be fully accessible\n");
2563 snprintf(revbuf, 7, "CFA");
2564 } else {
2565 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 /* Warn the user if the device has TPM extensions */
2567 if (ata_id_has_tpm(id))
2568 ata_dev_warn(dev,
2569 "supports DRM functions and may not be fully accessible\n");
2570 }
2571
2572 dev->n_sectors = ata_id_n_sectors(id);
2573
2574 /* get current R/W Multiple count setting */
2575 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 unsigned int max = dev->id[47] & 0xff;
2577 unsigned int cnt = dev->id[59] & 0xff;
2578 /* only recognize/allow powers of two here */
2579 if (is_power_of_2(max) && is_power_of_2(cnt))
2580 if (cnt <= max)
2581 dev->multi_count = cnt;
2582 }
2583
2584 if (ata_id_has_lba(id)) {
2585 const char *lba_desc;
2586 char ncq_desc[24];
2587
2588 lba_desc = "LBA";
2589 dev->flags |= ATA_DFLAG_LBA;
2590 if (ata_id_has_lba48(id)) {
2591 dev->flags |= ATA_DFLAG_LBA48;
2592 lba_desc = "LBA48";
2593
2594 if (dev->n_sectors >= (1UL << 28) &&
2595 ata_id_has_flush_ext(id))
2596 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597 }
2598
2599 /* config NCQ */
2600 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601 if (rc)
2602 return rc;
2603
2604 /* print device info to dmesg */
2605 if (ata_msg_drv(ap) && print_info) {
2606 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 revbuf, modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask));
2609 ata_dev_info(dev,
2610 "%llu sectors, multi %u: %s %s\n",
2611 (unsigned long long)dev->n_sectors,
2612 dev->multi_count, lba_desc, ncq_desc);
2613 }
2614 } else {
2615 /* CHS */
2616
2617 /* Default translation */
2618 dev->cylinders = id[1];
2619 dev->heads = id[3];
2620 dev->sectors = id[6];
2621
2622 if (ata_id_current_chs_valid(id)) {
2623 /* Current CHS translation is valid. */
2624 dev->cylinders = id[54];
2625 dev->heads = id[55];
2626 dev->sectors = id[56];
2627 }
2628
2629 /* print device info to dmesg */
2630 if (ata_msg_drv(ap) && print_info) {
2631 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 revbuf, modelbuf, fwrevbuf,
2633 ata_mode_string(xfer_mask));
2634 ata_dev_info(dev,
2635 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 (unsigned long long)dev->n_sectors,
2637 dev->multi_count, dev->cylinders,
2638 dev->heads, dev->sectors);
2639 }
2640 }
2641
2642 /* Check and mark DevSlp capability. Get DevSlp timing variables
2643 * from SATA Settings page of Identify Device Data Log.
2644 */
2645 if (ata_id_has_devslp(dev->id)) {
2646 u8 *sata_setting = ap->sector_buf;
2647 int i, j;
2648
2649 dev->flags |= ATA_DFLAG_DEVSLP;
2650 err_mask = ata_read_log_page(dev,
2651 ATA_LOG_IDENTIFY_DEVICE,
2652 ATA_LOG_SATA_SETTINGS,
2653 sata_setting,
2654 1);
2655 if (err_mask)
2656 ata_dev_dbg(dev,
2657 "failed to get Identify Device Data, Emask 0x%x\n",
2658 err_mask);
2659 else
2660 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 j = ATA_LOG_DEVSLP_OFFSET + i;
2662 dev->devslp_timing[i] = sata_setting[j];
2663 }
2664 }
2665 ata_dev_config_sense_reporting(dev);
2666 ata_dev_config_zac(dev);
2667 ata_dev_config_trusted(dev);
2668 dev->cdb_len = 32;
2669 }
2670
2671 /* ATAPI-specific feature tests */
2672 else if (dev->class == ATA_DEV_ATAPI) {
2673 const char *cdb_intr_string = "";
2674 const char *atapi_an_string = "";
2675 const char *dma_dir_string = "";
2676 u32 sntf;
2677
2678 rc = atapi_cdb_len(id);
2679 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 if (ata_msg_warn(ap))
2681 ata_dev_warn(dev, "unsupported CDB len\n");
2682 rc = -EINVAL;
2683 goto err_out_nosup;
2684 }
2685 dev->cdb_len = (unsigned int) rc;
2686
2687 /* Enable ATAPI AN if both the host and device have
2688 * the support. If PMP is attached, SNTF is required
2689 * to enable ATAPI AN to discern between PHY status
2690 * changed notifications and ATAPI ANs.
2691 */
2692 if (atapi_an &&
2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 (!sata_pmp_attached(ap) ||
2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 /* issue SET feature command to turn this on */
2697 err_mask = ata_dev_set_feature(dev,
2698 SETFEATURES_SATA_ENABLE, SATA_AN);
2699 if (err_mask)
2700 ata_dev_err(dev,
2701 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 err_mask);
2703 else {
2704 dev->flags |= ATA_DFLAG_AN;
2705 atapi_an_string = ", ATAPI AN";
2706 }
2707 }
2708
2709 if (ata_id_cdb_intr(dev->id)) {
2710 dev->flags |= ATA_DFLAG_CDB_INTR;
2711 cdb_intr_string = ", CDB intr";
2712 }
2713
2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 dev->flags |= ATA_DFLAG_DMADIR;
2716 dma_dir_string = ", DMADIR";
2717 }
2718
2719 if (ata_id_has_da(dev->id)) {
2720 dev->flags |= ATA_DFLAG_DA;
2721 zpodd_init(dev);
2722 }
2723
2724 /* print device info to dmesg */
2725 if (ata_msg_drv(ap) && print_info)
2726 ata_dev_info(dev,
2727 "ATAPI: %s, %s, max %s%s%s%s\n",
2728 modelbuf, fwrevbuf,
2729 ata_mode_string(xfer_mask),
2730 cdb_intr_string, atapi_an_string,
2731 dma_dir_string);
2732 }
2733
2734 /* determine max_sectors */
2735 dev->max_sectors = ATA_MAX_SECTORS;
2736 if (dev->flags & ATA_DFLAG_LBA48)
2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738
2739 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 200 sectors */
2741 if (ata_dev_knobble(dev)) {
2742 if (ata_msg_drv(ap) && print_info)
2743 ata_dev_info(dev, "applying bridge limits\n");
2744 dev->udma_mask &= ATA_UDMA5;
2745 dev->max_sectors = ATA_MAX_SECTORS;
2746 }
2747
2748 if ((dev->class == ATA_DEV_ATAPI) &&
2749 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 }
2753
2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 dev->max_sectors);
2757
2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 dev->max_sectors);
2761
2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764
2765 if (ap->ops->dev_config)
2766 ap->ops->dev_config(dev);
2767
2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 /* Let the user know. We don't want to disallow opens for
2770 rescue purposes, or in case the vendor is just a blithering
2771 idiot. Do this after the dev_config call as some controllers
2772 with buggy firmware may want to avoid reporting false device
2773 bugs */
2774
2775 if (print_info) {
2776 ata_dev_warn(dev,
2777 "Drive reports diagnostics failure. This may indicate a drive\n");
2778 ata_dev_warn(dev,
2779 "fault or invalid emulation. Contact drive vendor for information.\n");
2780 }
2781 }
2782
2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 }
2787
2788 return 0;
2789
2790 err_out_nosup:
2791 if (ata_msg_probe(ap))
2792 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793 return rc;
2794 }
2795
2796 /**
2797 * ata_cable_40wire - return 40 wire cable type
2798 * @ap: port
2799 *
2800 * Helper method for drivers which want to hardwire 40 wire cable
2801 * detection.
2802 */
2803
2804 int ata_cable_40wire(struct ata_port *ap)
2805 {
2806 return ATA_CBL_PATA40;
2807 }
2808
2809 /**
2810 * ata_cable_80wire - return 80 wire cable type
2811 * @ap: port
2812 *
2813 * Helper method for drivers which want to hardwire 80 wire cable
2814 * detection.
2815 */
2816
2817 int ata_cable_80wire(struct ata_port *ap)
2818 {
2819 return ATA_CBL_PATA80;
2820 }
2821
2822 /**
2823 * ata_cable_unknown - return unknown PATA cable.
2824 * @ap: port
2825 *
2826 * Helper method for drivers which have no PATA cable detection.
2827 */
2828
2829 int ata_cable_unknown(struct ata_port *ap)
2830 {
2831 return ATA_CBL_PATA_UNK;
2832 }
2833
2834 /**
2835 * ata_cable_ignore - return ignored PATA cable.
2836 * @ap: port
2837 *
2838 * Helper method for drivers which don't use cable type to limit
2839 * transfer mode.
2840 */
2841 int ata_cable_ignore(struct ata_port *ap)
2842 {
2843 return ATA_CBL_PATA_IGN;
2844 }
2845
2846 /**
2847 * ata_cable_sata - return SATA cable type
2848 * @ap: port
2849 *
2850 * Helper method for drivers which have SATA cables
2851 */
2852
2853 int ata_cable_sata(struct ata_port *ap)
2854 {
2855 return ATA_CBL_SATA;
2856 }
2857
2858 /**
2859 * ata_bus_probe - Reset and probe ATA bus
2860 * @ap: Bus to probe
2861 *
2862 * Master ATA bus probing function. Initiates a hardware-dependent
2863 * bus reset, then attempts to identify any devices found on
2864 * the bus.
2865 *
2866 * LOCKING:
2867 * PCI/etc. bus probe sem.
2868 *
2869 * RETURNS:
2870 * Zero on success, negative errno otherwise.
2871 */
2872
2873 int ata_bus_probe(struct ata_port *ap)
2874 {
2875 unsigned int classes[ATA_MAX_DEVICES];
2876 int tries[ATA_MAX_DEVICES];
2877 int rc;
2878 struct ata_device *dev;
2879
2880 ata_for_each_dev(dev, &ap->link, ALL)
2881 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882
2883 retry:
2884 ata_for_each_dev(dev, &ap->link, ALL) {
2885 /* If we issue an SRST then an ATA drive (not ATAPI)
2886 * may change configuration and be in PIO0 timing. If
2887 * we do a hard reset (or are coming from power on)
2888 * this is true for ATA or ATAPI. Until we've set a
2889 * suitable controller mode we should not touch the
2890 * bus as we may be talking too fast.
2891 */
2892 dev->pio_mode = XFER_PIO_0;
2893 dev->dma_mode = 0xff;
2894
2895 /* If the controller has a pio mode setup function
2896 * then use it to set the chipset to rights. Don't
2897 * touch the DMA setup as that will be dealt with when
2898 * configuring devices.
2899 */
2900 if (ap->ops->set_piomode)
2901 ap->ops->set_piomode(ap, dev);
2902 }
2903
2904 /* reset and determine device classes */
2905 ap->ops->phy_reset(ap);
2906
2907 ata_for_each_dev(dev, &ap->link, ALL) {
2908 if (dev->class != ATA_DEV_UNKNOWN)
2909 classes[dev->devno] = dev->class;
2910 else
2911 classes[dev->devno] = ATA_DEV_NONE;
2912
2913 dev->class = ATA_DEV_UNKNOWN;
2914 }
2915
2916 /* read IDENTIFY page and configure devices. We have to do the identify
2917 specific sequence bass-ackwards so that PDIAG- is released by
2918 the slave device */
2919
2920 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 if (tries[dev->devno])
2922 dev->class = classes[dev->devno];
2923
2924 if (!ata_dev_enabled(dev))
2925 continue;
2926
2927 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928 dev->id);
2929 if (rc)
2930 goto fail;
2931 }
2932
2933 /* Now ask for the cable type as PDIAG- should have been released */
2934 if (ap->ops->cable_detect)
2935 ap->cbl = ap->ops->cable_detect(ap);
2936
2937 /* We may have SATA bridge glue hiding here irrespective of
2938 * the reported cable types and sensed types. When SATA
2939 * drives indicate we have a bridge, we don't know which end
2940 * of the link the bridge is which is a problem.
2941 */
2942 ata_for_each_dev(dev, &ap->link, ENABLED)
2943 if (ata_id_is_sata(dev->id))
2944 ap->cbl = ATA_CBL_SATA;
2945
2946 /* After the identify sequence we can now set up the devices. We do
2947 this in the normal order so that the user doesn't get confused */
2948
2949 ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 rc = ata_dev_configure(dev);
2952 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953 if (rc)
2954 goto fail;
2955 }
2956
2957 /* configure transfer mode */
2958 rc = ata_set_mode(&ap->link, &dev);
2959 if (rc)
2960 goto fail;
2961
2962 ata_for_each_dev(dev, &ap->link, ENABLED)
2963 return 0;
2964
2965 return -ENODEV;
2966
2967 fail:
2968 tries[dev->devno]--;
2969
2970 switch (rc) {
2971 case -EINVAL:
2972 /* eeek, something went very wrong, give up */
2973 tries[dev->devno] = 0;
2974 break;
2975
2976 case -ENODEV:
2977 /* give it just one more chance */
2978 tries[dev->devno] = min(tries[dev->devno], 1);
2979 /* fall through */
2980 case -EIO:
2981 if (tries[dev->devno] == 1) {
2982 /* This is the last chance, better to slow
2983 * down than lose it.
2984 */
2985 sata_down_spd_limit(&ap->link, 0);
2986 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987 }
2988 }
2989
2990 if (!tries[dev->devno])
2991 ata_dev_disable(dev);
2992
2993 goto retry;
2994 }
2995
2996 /**
2997 * sata_print_link_status - Print SATA link status
2998 * @link: SATA link to printk link status about
2999 *
3000 * This function prints link speed and status of a SATA link.
3001 *
3002 * LOCKING:
3003 * None.
3004 */
3005 static void sata_print_link_status(struct ata_link *link)
3006 {
3007 u32 sstatus, scontrol, tmp;
3008
3009 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010 return;
3011 sata_scr_read(link, SCR_CONTROL, &scontrol);
3012
3013 if (ata_phys_link_online(link)) {
3014 tmp = (sstatus >> 4) & 0xf;
3015 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 sata_spd_string(tmp), sstatus, scontrol);
3017 } else {
3018 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019 sstatus, scontrol);
3020 }
3021 }
3022
3023 /**
3024 * ata_dev_pair - return other device on cable
3025 * @adev: device
3026 *
3027 * Obtain the other device on the same cable, or if none is
3028 * present NULL is returned
3029 */
3030
3031 struct ata_device *ata_dev_pair(struct ata_device *adev)
3032 {
3033 struct ata_link *link = adev->link;
3034 struct ata_device *pair = &link->device[1 - adev->devno];
3035 if (!ata_dev_enabled(pair))
3036 return NULL;
3037 return pair;
3038 }
3039
3040 /**
3041 * sata_down_spd_limit - adjust SATA spd limit downward
3042 * @link: Link to adjust SATA spd limit for
3043 * @spd_limit: Additional limit
3044 *
3045 * Adjust SATA spd limit of @link downward. Note that this
3046 * function only adjusts the limit. The change must be applied
3047 * using sata_set_spd().
3048 *
3049 * If @spd_limit is non-zero, the speed is limited to equal to or
3050 * lower than @spd_limit if such speed is supported. If
3051 * @spd_limit is slower than any supported speed, only the lowest
3052 * supported speed is allowed.
3053 *
3054 * LOCKING:
3055 * Inherited from caller.
3056 *
3057 * RETURNS:
3058 * 0 on success, negative errno on failure
3059 */
3060 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061 {
3062 u32 sstatus, spd, mask;
3063 int rc, bit;
3064
3065 if (!sata_scr_valid(link))
3066 return -EOPNOTSUPP;
3067
3068 /* If SCR can be read, use it to determine the current SPD.
3069 * If not, use cached value in link->sata_spd.
3070 */
3071 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 if (rc == 0 && ata_sstatus_online(sstatus))
3073 spd = (sstatus >> 4) & 0xf;
3074 else
3075 spd = link->sata_spd;
3076
3077 mask = link->sata_spd_limit;
3078 if (mask <= 1)
3079 return -EINVAL;
3080
3081 /* unconditionally mask off the highest bit */
3082 bit = fls(mask) - 1;
3083 mask &= ~(1 << bit);
3084
3085 /*
3086 * Mask off all speeds higher than or equal to the current one. At
3087 * this point, if current SPD is not available and we previously
3088 * recorded the link speed from SStatus, the driver has already
3089 * masked off the highest bit so mask should already be 1 or 0.
3090 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 * not previously recorded speed from SStatus. Just return in this
3092 * case.
3093 */
3094 if (spd > 1)
3095 mask &= (1 << (spd - 1)) - 1;
3096 else
3097 return -EINVAL;
3098
3099 /* were we already at the bottom? */
3100 if (!mask)
3101 return -EINVAL;
3102
3103 if (spd_limit) {
3104 if (mask & ((1 << spd_limit) - 1))
3105 mask &= (1 << spd_limit) - 1;
3106 else {
3107 bit = ffs(mask) - 1;
3108 mask = 1 << bit;
3109 }
3110 }
3111
3112 link->sata_spd_limit = mask;
3113
3114 ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 sata_spd_string(fls(mask)));
3116
3117 return 0;
3118 }
3119
3120 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121 {
3122 struct ata_link *host_link = &link->ap->link;
3123 u32 limit, target, spd;
3124
3125 limit = link->sata_spd_limit;
3126
3127 /* Don't configure downstream link faster than upstream link.
3128 * It doesn't speed up anything and some PMPs choke on such
3129 * configuration.
3130 */
3131 if (!ata_is_host_link(link) && host_link->sata_spd)
3132 limit &= (1 << host_link->sata_spd) - 1;
3133
3134 if (limit == UINT_MAX)
3135 target = 0;
3136 else
3137 target = fls(limit);
3138
3139 spd = (*scontrol >> 4) & 0xf;
3140 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141
3142 return spd != target;
3143 }
3144
3145 /**
3146 * sata_set_spd_needed - is SATA spd configuration needed
3147 * @link: Link in question
3148 *
3149 * Test whether the spd limit in SControl matches
3150 * @link->sata_spd_limit. This function is used to determine
3151 * whether hardreset is necessary to apply SATA spd
3152 * configuration.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 1 if SATA spd configuration is needed, 0 otherwise.
3159 */
3160 static int sata_set_spd_needed(struct ata_link *link)
3161 {
3162 u32 scontrol;
3163
3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 return 1;
3166
3167 return __sata_set_spd_needed(link, &scontrol);
3168 }
3169
3170 /**
3171 * sata_set_spd - set SATA spd according to spd limit
3172 * @link: Link to set SATA spd for
3173 *
3174 * Set SATA spd of @link according to sata_spd_limit.
3175 *
3176 * LOCKING:
3177 * Inherited from caller.
3178 *
3179 * RETURNS:
3180 * 0 if spd doesn't need to be changed, 1 if spd has been
3181 * changed. Negative errno if SCR registers are inaccessible.
3182 */
3183 int sata_set_spd(struct ata_link *link)
3184 {
3185 u32 scontrol;
3186 int rc;
3187
3188 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189 return rc;
3190
3191 if (!__sata_set_spd_needed(link, &scontrol))
3192 return 0;
3193
3194 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195 return rc;
3196
3197 return 1;
3198 }
3199
3200 /*
3201 * This mode timing computation functionality is ported over from
3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203 */
3204 /*
3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207 * for UDMA6, which is currently supported only by Maxtor drives.
3208 *
3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210 */
3211
3212 static const struct ata_timing ata_timing[] = {
3213 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3214 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3215 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3217 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3220 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3221
3222 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3224 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3225
3226 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3227 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3228 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3229 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3230 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3231
3232 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3233 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3234 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3235 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3236 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3237 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3238 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3239 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3240
3241 { 0xFF }
3242 };
3243
3244 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3245 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3246
3247 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248 {
3249 q->setup = EZ(t->setup, T);
3250 q->act8b = EZ(t->act8b, T);
3251 q->rec8b = EZ(t->rec8b, T);
3252 q->cyc8b = EZ(t->cyc8b, T);
3253 q->active = EZ(t->active, T);
3254 q->recover = EZ(t->recover, T);
3255 q->dmack_hold = EZ(t->dmack_hold, T);
3256 q->cycle = EZ(t->cycle, T);
3257 q->udma = EZ(t->udma, UT);
3258 }
3259
3260 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 struct ata_timing *m, unsigned int what)
3262 {
3263 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3264 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3265 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3266 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3267 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3268 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3271 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3272 }
3273
3274 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275 {
3276 const struct ata_timing *t = ata_timing;
3277
3278 while (xfer_mode > t->mode)
3279 t++;
3280
3281 if (xfer_mode == t->mode)
3282 return t;
3283
3284 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 __func__, xfer_mode);
3286
3287 return NULL;
3288 }
3289
3290 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 struct ata_timing *t, int T, int UT)
3292 {
3293 const u16 *id = adev->id;
3294 const struct ata_timing *s;
3295 struct ata_timing p;
3296
3297 /*
3298 * Find the mode.
3299 */
3300
3301 if (!(s = ata_timing_find_mode(speed)))
3302 return -EINVAL;
3303
3304 memcpy(t, s, sizeof(*s));
3305
3306 /*
3307 * If the drive is an EIDE drive, it can tell us it needs extended
3308 * PIO/MW_DMA cycle timing.
3309 */
3310
3311 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3312 memset(&p, 0, sizeof(p));
3313
3314 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 if (speed <= XFER_PIO_2)
3316 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 else if ((speed <= XFER_PIO_4) ||
3318 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322
3323 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324 }
3325
3326 /*
3327 * Convert the timing to bus clock counts.
3328 */
3329
3330 ata_timing_quantize(t, t, T, UT);
3331
3332 /*
3333 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336 */
3337
3338 if (speed > XFER_PIO_6) {
3339 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341 }
3342
3343 /*
3344 * Lengthen active & recovery time so that cycle time is correct.
3345 */
3346
3347 if (t->act8b + t->rec8b < t->cyc8b) {
3348 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349 t->rec8b = t->cyc8b - t->act8b;
3350 }
3351
3352 if (t->active + t->recover < t->cycle) {
3353 t->active += (t->cycle - (t->active + t->recover)) / 2;
3354 t->recover = t->cycle - t->active;
3355 }
3356
3357 /* In a few cases quantisation may produce enough errors to
3358 leave t->cycle too low for the sum of active and recovery
3359 if so we must correct this */
3360 if (t->active + t->recover > t->cycle)
3361 t->cycle = t->active + t->recover;
3362
3363 return 0;
3364 }
3365
3366 /**
3367 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369 * @cycle: cycle duration in ns
3370 *
3371 * Return matching xfer mode for @cycle. The returned mode is of
3372 * the transfer type specified by @xfer_shift. If @cycle is too
3373 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3374 * than the fastest known mode, the fasted mode is returned.
3375 *
3376 * LOCKING:
3377 * None.
3378 *
3379 * RETURNS:
3380 * Matching xfer_mode, 0xff if no match found.
3381 */
3382 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383 {
3384 u8 base_mode = 0xff, last_mode = 0xff;
3385 const struct ata_xfer_ent *ent;
3386 const struct ata_timing *t;
3387
3388 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389 if (ent->shift == xfer_shift)
3390 base_mode = ent->base;
3391
3392 for (t = ata_timing_find_mode(base_mode);
3393 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394 unsigned short this_cycle;
3395
3396 switch (xfer_shift) {
3397 case ATA_SHIFT_PIO:
3398 case ATA_SHIFT_MWDMA:
3399 this_cycle = t->cycle;
3400 break;
3401 case ATA_SHIFT_UDMA:
3402 this_cycle = t->udma;
3403 break;
3404 default:
3405 return 0xff;
3406 }
3407
3408 if (cycle > this_cycle)
3409 break;
3410
3411 last_mode = t->mode;
3412 }
3413
3414 return last_mode;
3415 }
3416
3417 /**
3418 * ata_down_xfermask_limit - adjust dev xfer masks downward
3419 * @dev: Device to adjust xfer masks
3420 * @sel: ATA_DNXFER_* selector
3421 *
3422 * Adjust xfer masks of @dev downward. Note that this function
3423 * does not apply the change. Invoking ata_set_mode() afterwards
3424 * will apply the limit.
3425 *
3426 * LOCKING:
3427 * Inherited from caller.
3428 *
3429 * RETURNS:
3430 * 0 on success, negative errno on failure
3431 */
3432 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433 {
3434 char buf[32];
3435 unsigned long orig_mask, xfer_mask;
3436 unsigned long pio_mask, mwdma_mask, udma_mask;
3437 int quiet, highbit;
3438
3439 quiet = !!(sel & ATA_DNXFER_QUIET);
3440 sel &= ~ATA_DNXFER_QUIET;
3441
3442 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443 dev->mwdma_mask,
3444 dev->udma_mask);
3445 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446
3447 switch (sel) {
3448 case ATA_DNXFER_PIO:
3449 highbit = fls(pio_mask) - 1;
3450 pio_mask &= ~(1 << highbit);
3451 break;
3452
3453 case ATA_DNXFER_DMA:
3454 if (udma_mask) {
3455 highbit = fls(udma_mask) - 1;
3456 udma_mask &= ~(1 << highbit);
3457 if (!udma_mask)
3458 return -ENOENT;
3459 } else if (mwdma_mask) {
3460 highbit = fls(mwdma_mask) - 1;
3461 mwdma_mask &= ~(1 << highbit);
3462 if (!mwdma_mask)
3463 return -ENOENT;
3464 }
3465 break;
3466
3467 case ATA_DNXFER_40C:
3468 udma_mask &= ATA_UDMA_MASK_40C;
3469 break;
3470
3471 case ATA_DNXFER_FORCE_PIO0:
3472 pio_mask &= 1;
3473 /* fall through */
3474 case ATA_DNXFER_FORCE_PIO:
3475 mwdma_mask = 0;
3476 udma_mask = 0;
3477 break;
3478
3479 default:
3480 BUG();
3481 }
3482
3483 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484
3485 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486 return -ENOENT;
3487
3488 if (!quiet) {
3489 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490 snprintf(buf, sizeof(buf), "%s:%s",
3491 ata_mode_string(xfer_mask),
3492 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493 else
3494 snprintf(buf, sizeof(buf), "%s",
3495 ata_mode_string(xfer_mask));
3496
3497 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498 }
3499
3500 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501 &dev->udma_mask);
3502
3503 return 0;
3504 }
3505
3506 static int ata_dev_set_mode(struct ata_device *dev)
3507 {
3508 struct ata_port *ap = dev->link->ap;
3509 struct ata_eh_context *ehc = &dev->link->eh_context;
3510 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511 const char *dev_err_whine = "";
3512 int ign_dev_err = 0;
3513 unsigned int err_mask = 0;
3514 int rc;
3515
3516 dev->flags &= ~ATA_DFLAG_PIO;
3517 if (dev->xfer_shift == ATA_SHIFT_PIO)
3518 dev->flags |= ATA_DFLAG_PIO;
3519
3520 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521 dev_err_whine = " (SET_XFERMODE skipped)";
3522 else {
3523 if (nosetxfer)
3524 ata_dev_warn(dev,
3525 "NOSETXFER but PATA detected - can't "
3526 "skip SETXFER, might malfunction\n");
3527 err_mask = ata_dev_set_xfermode(dev);
3528 }
3529
3530 if (err_mask & ~AC_ERR_DEV)
3531 goto fail;
3532
3533 /* revalidate */
3534 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537 if (rc)
3538 return rc;
3539
3540 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541 /* Old CFA may refuse this command, which is just fine */
3542 if (ata_id_is_cfa(dev->id))
3543 ign_dev_err = 1;
3544 /* Catch several broken garbage emulations plus some pre
3545 ATA devices */
3546 if (ata_id_major_version(dev->id) == 0 &&
3547 dev->pio_mode <= XFER_PIO_2)
3548 ign_dev_err = 1;
3549 /* Some very old devices and some bad newer ones fail
3550 any kind of SET_XFERMODE request but support PIO0-2
3551 timings and no IORDY */
3552 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553 ign_dev_err = 1;
3554 }
3555 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558 dev->dma_mode == XFER_MW_DMA_0 &&
3559 (dev->id[63] >> 8) & 1)
3560 ign_dev_err = 1;
3561
3562 /* if the device is actually configured correctly, ignore dev err */
3563 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564 ign_dev_err = 1;
3565
3566 if (err_mask & AC_ERR_DEV) {
3567 if (!ign_dev_err)
3568 goto fail;
3569 else
3570 dev_err_whine = " (device error ignored)";
3571 }
3572
3573 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574 dev->xfer_shift, (int)dev->xfer_mode);
3575
3576 ata_dev_info(dev, "configured for %s%s\n",
3577 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578 dev_err_whine);
3579
3580 return 0;
3581
3582 fail:
3583 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584 return -EIO;
3585 }
3586
3587 /**
3588 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589 * @link: link on which timings will be programmed
3590 * @r_failed_dev: out parameter for failed device
3591 *
3592 * Standard implementation of the function used to tune and set
3593 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3594 * ata_dev_set_mode() fails, pointer to the failing device is
3595 * returned in @r_failed_dev.
3596 *
3597 * LOCKING:
3598 * PCI/etc. bus probe sem.
3599 *
3600 * RETURNS:
3601 * 0 on success, negative errno otherwise
3602 */
3603
3604 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605 {
3606 struct ata_port *ap = link->ap;
3607 struct ata_device *dev;
3608 int rc = 0, used_dma = 0, found = 0;
3609
3610 /* step 1: calculate xfer_mask */
3611 ata_for_each_dev(dev, link, ENABLED) {
3612 unsigned long pio_mask, dma_mask;
3613 unsigned int mode_mask;
3614
3615 mode_mask = ATA_DMA_MASK_ATA;
3616 if (dev->class == ATA_DEV_ATAPI)
3617 mode_mask = ATA_DMA_MASK_ATAPI;
3618 else if (ata_id_is_cfa(dev->id))
3619 mode_mask = ATA_DMA_MASK_CFA;
3620
3621 ata_dev_xfermask(dev);
3622 ata_force_xfermask(dev);
3623
3624 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625
3626 if (libata_dma_mask & mode_mask)
3627 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628 dev->udma_mask);
3629 else
3630 dma_mask = 0;
3631
3632 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634
3635 found = 1;
3636 if (ata_dma_enabled(dev))
3637 used_dma = 1;
3638 }
3639 if (!found)
3640 goto out;
3641
3642 /* step 2: always set host PIO timings */
3643 ata_for_each_dev(dev, link, ENABLED) {
3644 if (dev->pio_mode == 0xff) {
3645 ata_dev_warn(dev, "no PIO support\n");
3646 rc = -EINVAL;
3647 goto out;
3648 }
3649
3650 dev->xfer_mode = dev->pio_mode;
3651 dev->xfer_shift = ATA_SHIFT_PIO;
3652 if (ap->ops->set_piomode)
3653 ap->ops->set_piomode(ap, dev);
3654 }
3655
3656 /* step 3: set host DMA timings */
3657 ata_for_each_dev(dev, link, ENABLED) {
3658 if (!ata_dma_enabled(dev))
3659 continue;
3660
3661 dev->xfer_mode = dev->dma_mode;
3662 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663 if (ap->ops->set_dmamode)
3664 ap->ops->set_dmamode(ap, dev);
3665 }
3666
3667 /* step 4: update devices' xfer mode */
3668 ata_for_each_dev(dev, link, ENABLED) {
3669 rc = ata_dev_set_mode(dev);
3670 if (rc)
3671 goto out;
3672 }
3673
3674 /* Record simplex status. If we selected DMA then the other
3675 * host channels are not permitted to do so.
3676 */
3677 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678 ap->host->simplex_claimed = ap;
3679
3680 out:
3681 if (rc)
3682 *r_failed_dev = dev;
3683 return rc;
3684 }
3685
3686 /**
3687 * ata_wait_ready - wait for link to become ready
3688 * @link: link to be waited on
3689 * @deadline: deadline jiffies for the operation
3690 * @check_ready: callback to check link readiness
3691 *
3692 * Wait for @link to become ready. @check_ready should return
3693 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3694 * link doesn't seem to be occupied, other errno for other error
3695 * conditions.
3696 *
3697 * Transient -ENODEV conditions are allowed for
3698 * ATA_TMOUT_FF_WAIT.
3699 *
3700 * LOCKING:
3701 * EH context.
3702 *
3703 * RETURNS:
3704 * 0 if @link is ready before @deadline; otherwise, -errno.
3705 */
3706 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707 int (*check_ready)(struct ata_link *link))
3708 {
3709 unsigned long start = jiffies;
3710 unsigned long nodev_deadline;
3711 int warned = 0;
3712
3713 /* choose which 0xff timeout to use, read comment in libata.h */
3714 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716 else
3717 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718
3719 /* Slave readiness can't be tested separately from master. On
3720 * M/S emulation configuration, this function should be called
3721 * only on the master and it will handle both master and slave.
3722 */
3723 WARN_ON(link == link->ap->slave_link);
3724
3725 if (time_after(nodev_deadline, deadline))
3726 nodev_deadline = deadline;
3727
3728 while (1) {
3729 unsigned long now = jiffies;
3730 int ready, tmp;
3731
3732 ready = tmp = check_ready(link);
3733 if (ready > 0)
3734 return 0;
3735
3736 /*
3737 * -ENODEV could be transient. Ignore -ENODEV if link
3738 * is online. Also, some SATA devices take a long
3739 * time to clear 0xff after reset. Wait for
3740 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741 * offline.
3742 *
3743 * Note that some PATA controllers (pata_ali) explode
3744 * if status register is read more than once when
3745 * there's no device attached.
3746 */
3747 if (ready == -ENODEV) {
3748 if (ata_link_online(link))
3749 ready = 0;
3750 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751 !ata_link_offline(link) &&
3752 time_before(now, nodev_deadline))
3753 ready = 0;
3754 }
3755
3756 if (ready)
3757 return ready;
3758 if (time_after(now, deadline))
3759 return -EBUSY;
3760
3761 if (!warned && time_after(now, start + 5 * HZ) &&
3762 (deadline - now > 3 * HZ)) {
3763 ata_link_warn(link,
3764 "link is slow to respond, please be patient "
3765 "(ready=%d)\n", tmp);
3766 warned = 1;
3767 }
3768
3769 ata_msleep(link->ap, 50);
3770 }
3771 }
3772
3773 /**
3774 * ata_wait_after_reset - wait for link to become ready after reset
3775 * @link: link to be waited on
3776 * @deadline: deadline jiffies for the operation
3777 * @check_ready: callback to check link readiness
3778 *
3779 * Wait for @link to become ready after reset.
3780 *
3781 * LOCKING:
3782 * EH context.
3783 *
3784 * RETURNS:
3785 * 0 if @link is ready before @deadline; otherwise, -errno.
3786 */
3787 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788 int (*check_ready)(struct ata_link *link))
3789 {
3790 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791
3792 return ata_wait_ready(link, deadline, check_ready);
3793 }
3794
3795 /**
3796 * sata_link_debounce - debounce SATA phy status
3797 * @link: ATA link to debounce SATA phy status for
3798 * @params: timing parameters { interval, duration, timeout } in msec
3799 * @deadline: deadline jiffies for the operation
3800 *
3801 * Make sure SStatus of @link reaches stable state, determined by
3802 * holding the same value where DET is not 1 for @duration polled
3803 * every @interval, before @timeout. Timeout constraints the
3804 * beginning of the stable state. Because DET gets stuck at 1 on
3805 * some controllers after hot unplugging, this functions waits
3806 * until timeout then returns 0 if DET is stable at 1.
3807 *
3808 * @timeout is further limited by @deadline. The sooner of the
3809 * two is used.
3810 *
3811 * LOCKING:
3812 * Kernel thread context (may sleep)
3813 *
3814 * RETURNS:
3815 * 0 on success, -errno on failure.
3816 */
3817 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818 unsigned long deadline)
3819 {
3820 unsigned long interval = params[0];
3821 unsigned long duration = params[1];
3822 unsigned long last_jiffies, t;
3823 u32 last, cur;
3824 int rc;
3825
3826 t = ata_deadline(jiffies, params[2]);
3827 if (time_before(t, deadline))
3828 deadline = t;
3829
3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 return rc;
3832 cur &= 0xf;
3833
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 while (1) {
3838 ata_msleep(link->ap, interval);
3839 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840 return rc;
3841 cur &= 0xf;
3842
3843 /* DET stable? */
3844 if (cur == last) {
3845 if (cur == 1 && time_before(jiffies, deadline))
3846 continue;
3847 if (time_after(jiffies,
3848 ata_deadline(last_jiffies, duration)))
3849 return 0;
3850 continue;
3851 }
3852
3853 /* unstable, start over */
3854 last = cur;
3855 last_jiffies = jiffies;
3856
3857 /* Check deadline. If debouncing failed, return
3858 * -EPIPE to tell upper layer to lower link speed.
3859 */
3860 if (time_after(jiffies, deadline))
3861 return -EPIPE;
3862 }
3863 }
3864
3865 /**
3866 * sata_link_resume - resume SATA link
3867 * @link: ATA link to resume SATA
3868 * @params: timing parameters { interval, duration, timeout } in msec
3869 * @deadline: deadline jiffies for the operation
3870 *
3871 * Resume SATA phy @link and debounce it.
3872 *
3873 * LOCKING:
3874 * Kernel thread context (may sleep)
3875 *
3876 * RETURNS:
3877 * 0 on success, -errno on failure.
3878 */
3879 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880 unsigned long deadline)
3881 {
3882 int tries = ATA_LINK_RESUME_TRIES;
3883 u32 scontrol, serror;
3884 int rc;
3885
3886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887 return rc;
3888
3889 /*
3890 * Writes to SControl sometimes get ignored under certain
3891 * controllers (ata_piix SIDPR). Make sure DET actually is
3892 * cleared.
3893 */
3894 do {
3895 scontrol = (scontrol & 0x0f0) | 0x300;
3896 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897 return rc;
3898 /*
3899 * Some PHYs react badly if SStatus is pounded
3900 * immediately after resuming. Delay 200ms before
3901 * debouncing.
3902 */
3903 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904 ata_msleep(link->ap, 200);
3905
3906 /* is SControl restored correctly? */
3907 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908 return rc;
3909 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3910
3911 if ((scontrol & 0xf0f) != 0x300) {
3912 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913 scontrol);
3914 return 0;
3915 }
3916
3917 if (tries < ATA_LINK_RESUME_TRIES)
3918 ata_link_warn(link, "link resume succeeded after %d retries\n",
3919 ATA_LINK_RESUME_TRIES - tries);
3920
3921 if ((rc = sata_link_debounce(link, params, deadline)))
3922 return rc;
3923
3924 /* clear SError, some PHYs require this even for SRST to work */
3925 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926 rc = sata_scr_write(link, SCR_ERROR, serror);
3927
3928 return rc != -EINVAL ? rc : 0;
3929 }
3930
3931 /**
3932 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933 * @link: ATA link to manipulate SControl for
3934 * @policy: LPM policy to configure
3935 * @spm_wakeup: initiate LPM transition to active state
3936 *
3937 * Manipulate the IPM field of the SControl register of @link
3938 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3939 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3940 * the link. This function also clears PHYRDY_CHG before
3941 * returning.
3942 *
3943 * LOCKING:
3944 * EH context.
3945 *
3946 * RETURNS:
3947 * 0 on success, -errno otherwise.
3948 */
3949 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950 bool spm_wakeup)
3951 {
3952 struct ata_eh_context *ehc = &link->eh_context;
3953 bool woken_up = false;
3954 u32 scontrol;
3955 int rc;
3956
3957 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958 if (rc)
3959 return rc;
3960
3961 switch (policy) {
3962 case ATA_LPM_MAX_POWER:
3963 /* disable all LPM transitions */
3964 scontrol |= (0x7 << 8);
3965 /* initiate transition to active state */
3966 if (spm_wakeup) {
3967 scontrol |= (0x4 << 12);
3968 woken_up = true;
3969 }
3970 break;
3971 case ATA_LPM_MED_POWER:
3972 /* allow LPM to PARTIAL */
3973 scontrol &= ~(0x1 << 8);
3974 scontrol |= (0x6 << 8);
3975 break;
3976 case ATA_LPM_MED_POWER_WITH_DIPM:
3977 case ATA_LPM_MIN_POWER:
3978 if (ata_link_nr_enabled(link) > 0)
3979 /* no restrictions on LPM transitions */
3980 scontrol &= ~(0x7 << 8);
3981 else {
3982 /* empty port, power off */
3983 scontrol &= ~0xf;
3984 scontrol |= (0x1 << 2);
3985 }
3986 break;
3987 default:
3988 WARN_ON(1);
3989 }
3990
3991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992 if (rc)
3993 return rc;
3994
3995 /* give the link time to transit out of LPM state */
3996 if (woken_up)
3997 msleep(10);
3998
3999 /* clear PHYRDY_CHG from SError */
4000 ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002 }
4003
4004 /**
4005 * ata_std_prereset - prepare for reset
4006 * @link: ATA link to be reset
4007 * @deadline: deadline jiffies for the operation
4008 *
4009 * @link is about to be reset. Initialize it. Failure from
4010 * prereset makes libata abort whole reset sequence and give up
4011 * that port, so prereset should be best-effort. It does its
4012 * best to prepare for reset sequence but if things go wrong, it
4013 * should just whine, not fail.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, -errno otherwise.
4020 */
4021 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022 {
4023 struct ata_port *ap = link->ap;
4024 struct ata_eh_context *ehc = &link->eh_context;
4025 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026 int rc;
4027
4028 /* if we're about to do hardreset, nothing more to do */
4029 if (ehc->i.action & ATA_EH_HARDRESET)
4030 return 0;
4031
4032 /* if SATA, resume link */
4033 if (ap->flags & ATA_FLAG_SATA) {
4034 rc = sata_link_resume(link, timing, deadline);
4035 /* whine about phy resume failure but proceed */
4036 if (rc && rc != -EOPNOTSUPP)
4037 ata_link_warn(link,
4038 "failed to resume link for reset (errno=%d)\n",
4039 rc);
4040 }
4041
4042 /* no point in trying softreset on offline link */
4043 if (ata_phys_link_offline(link))
4044 ehc->i.action &= ~ATA_EH_SOFTRESET;
4045
4046 return 0;
4047 }
4048
4049 /**
4050 * sata_link_hardreset - reset link via SATA phy reset
4051 * @link: link to reset
4052 * @timing: timing parameters { interval, duration, timeout } in msec
4053 * @deadline: deadline jiffies for the operation
4054 * @online: optional out parameter indicating link onlineness
4055 * @check_ready: optional callback to check link readiness
4056 *
4057 * SATA phy-reset @link using DET bits of SControl register.
4058 * After hardreset, link readiness is waited upon using
4059 * ata_wait_ready() if @check_ready is specified. LLDs are
4060 * allowed to not specify @check_ready and wait itself after this
4061 * function returns. Device classification is LLD's
4062 * responsibility.
4063 *
4064 * *@online is set to one iff reset succeeded and @link is online
4065 * after reset.
4066 *
4067 * LOCKING:
4068 * Kernel thread context (may sleep)
4069 *
4070 * RETURNS:
4071 * 0 on success, -errno otherwise.
4072 */
4073 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074 unsigned long deadline,
4075 bool *online, int (*check_ready)(struct ata_link *))
4076 {
4077 u32 scontrol;
4078 int rc;
4079
4080 DPRINTK("ENTER\n");
4081
4082 if (online)
4083 *online = false;
4084
4085 if (sata_set_spd_needed(link)) {
4086 /* SATA spec says nothing about how to reconfigure
4087 * spd. To be on the safe side, turn off phy during
4088 * reconfiguration. This works for at least ICH7 AHCI
4089 * and Sil3124.
4090 */
4091 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092 goto out;
4093
4094 scontrol = (scontrol & 0x0f0) | 0x304;
4095
4096 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097 goto out;
4098
4099 sata_set_spd(link);
4100 }
4101
4102 /* issue phy wake/reset */
4103 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104 goto out;
4105
4106 scontrol = (scontrol & 0x0f0) | 0x301;
4107
4108 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109 goto out;
4110
4111 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112 * 10.4.2 says at least 1 ms.
4113 */
4114 ata_msleep(link->ap, 1);
4115
4116 /* bring link back */
4117 rc = sata_link_resume(link, timing, deadline);
4118 if (rc)
4119 goto out;
4120 /* if link is offline nothing more to do */
4121 if (ata_phys_link_offline(link))
4122 goto out;
4123
4124 /* Link is online. From this point, -ENODEV too is an error. */
4125 if (online)
4126 *online = true;
4127
4128 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129 /* If PMP is supported, we have to do follow-up SRST.
4130 * Some PMPs don't send D2H Reg FIS after hardreset if
4131 * the first port is empty. Wait only for
4132 * ATA_TMOUT_PMP_SRST_WAIT.
4133 */
4134 if (check_ready) {
4135 unsigned long pmp_deadline;
4136
4137 pmp_deadline = ata_deadline(jiffies,
4138 ATA_TMOUT_PMP_SRST_WAIT);
4139 if (time_after(pmp_deadline, deadline))
4140 pmp_deadline = deadline;
4141 ata_wait_ready(link, pmp_deadline, check_ready);
4142 }
4143 rc = -EAGAIN;
4144 goto out;
4145 }
4146
4147 rc = 0;
4148 if (check_ready)
4149 rc = ata_wait_ready(link, deadline, check_ready);
4150 out:
4151 if (rc && rc != -EAGAIN) {
4152 /* online is set iff link is online && reset succeeded */
4153 if (online)
4154 *online = false;
4155 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156 }
4157 DPRINTK("EXIT, rc=%d\n", rc);
4158 return rc;
4159 }
4160
4161 /**
4162 * sata_std_hardreset - COMRESET w/o waiting or classification
4163 * @link: link to reset
4164 * @class: resulting class of attached device
4165 * @deadline: deadline jiffies for the operation
4166 *
4167 * Standard SATA COMRESET w/o waiting or classification.
4168 *
4169 * LOCKING:
4170 * Kernel thread context (may sleep)
4171 *
4172 * RETURNS:
4173 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4174 */
4175 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176 unsigned long deadline)
4177 {
4178 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179 bool online;
4180 int rc;
4181
4182 /* do hardreset */
4183 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184 return online ? -EAGAIN : rc;
4185 }
4186
4187 /**
4188 * ata_std_postreset - standard postreset callback
4189 * @link: the target ata_link
4190 * @classes: classes of attached devices
4191 *
4192 * This function is invoked after a successful reset. Note that
4193 * the device might have been reset more than once using
4194 * different reset methods before postreset is invoked.
4195 *
4196 * LOCKING:
4197 * Kernel thread context (may sleep)
4198 */
4199 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200 {
4201 u32 serror;
4202
4203 DPRINTK("ENTER\n");
4204
4205 /* reset complete, clear SError */
4206 if (!sata_scr_read(link, SCR_ERROR, &serror))
4207 sata_scr_write(link, SCR_ERROR, serror);
4208
4209 /* print link status */
4210 sata_print_link_status(link);
4211
4212 DPRINTK("EXIT\n");
4213 }
4214
4215 /**
4216 * ata_dev_same_device - Determine whether new ID matches configured device
4217 * @dev: device to compare against
4218 * @new_class: class of the new device
4219 * @new_id: IDENTIFY page of the new device
4220 *
4221 * Compare @new_class and @new_id against @dev and determine
4222 * whether @dev is the device indicated by @new_class and
4223 * @new_id.
4224 *
4225 * LOCKING:
4226 * None.
4227 *
4228 * RETURNS:
4229 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4230 */
4231 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232 const u16 *new_id)
4233 {
4234 const u16 *old_id = dev->id;
4235 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237
4238 if (dev->class != new_class) {
4239 ata_dev_info(dev, "class mismatch %d != %d\n",
4240 dev->class, new_class);
4241 return 0;
4242 }
4243
4244 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248
4249 if (strcmp(model[0], model[1])) {
4250 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251 model[0], model[1]);
4252 return 0;
4253 }
4254
4255 if (strcmp(serial[0], serial[1])) {
4256 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257 serial[0], serial[1]);
4258 return 0;
4259 }
4260
4261 return 1;
4262 }
4263
4264 /**
4265 * ata_dev_reread_id - Re-read IDENTIFY data
4266 * @dev: target ATA device
4267 * @readid_flags: read ID flags
4268 *
4269 * Re-read IDENTIFY page and make sure @dev is still attached to
4270 * the port.
4271 *
4272 * LOCKING:
4273 * Kernel thread context (may sleep)
4274 *
4275 * RETURNS:
4276 * 0 on success, negative errno otherwise
4277 */
4278 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279 {
4280 unsigned int class = dev->class;
4281 u16 *id = (void *)dev->link->ap->sector_buf;
4282 int rc;
4283
4284 /* read ID data */
4285 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286 if (rc)
4287 return rc;
4288
4289 /* is the device still there? */
4290 if (!ata_dev_same_device(dev, class, id))
4291 return -ENODEV;
4292
4293 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294 return 0;
4295 }
4296
4297 /**
4298 * ata_dev_revalidate - Revalidate ATA device
4299 * @dev: device to revalidate
4300 * @new_class: new class code
4301 * @readid_flags: read ID flags
4302 *
4303 * Re-read IDENTIFY page, make sure @dev is still attached to the
4304 * port and reconfigure it according to the new IDENTIFY page.
4305 *
4306 * LOCKING:
4307 * Kernel thread context (may sleep)
4308 *
4309 * RETURNS:
4310 * 0 on success, negative errno otherwise
4311 */
4312 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313 unsigned int readid_flags)
4314 {
4315 u64 n_sectors = dev->n_sectors;
4316 u64 n_native_sectors = dev->n_native_sectors;
4317 int rc;
4318
4319 if (!ata_dev_enabled(dev))
4320 return -ENODEV;
4321
4322 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323 if (ata_class_enabled(new_class) &&
4324 new_class != ATA_DEV_ATA &&
4325 new_class != ATA_DEV_ATAPI &&
4326 new_class != ATA_DEV_ZAC &&
4327 new_class != ATA_DEV_SEMB) {
4328 ata_dev_info(dev, "class mismatch %u != %u\n",
4329 dev->class, new_class);
4330 rc = -ENODEV;
4331 goto fail;
4332 }
4333
4334 /* re-read ID */
4335 rc = ata_dev_reread_id(dev, readid_flags);
4336 if (rc)
4337 goto fail;
4338
4339 /* configure device according to the new ID */
4340 rc = ata_dev_configure(dev);
4341 if (rc)
4342 goto fail;
4343
4344 /* verify n_sectors hasn't changed */
4345 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346 dev->n_sectors == n_sectors)
4347 return 0;
4348
4349 /* n_sectors has changed */
4350 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351 (unsigned long long)n_sectors,
4352 (unsigned long long)dev->n_sectors);
4353
4354 /*
4355 * Something could have caused HPA to be unlocked
4356 * involuntarily. If n_native_sectors hasn't changed and the
4357 * new size matches it, keep the device.
4358 */
4359 if (dev->n_native_sectors == n_native_sectors &&
4360 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361 ata_dev_warn(dev,
4362 "new n_sectors matches native, probably "
4363 "late HPA unlock, n_sectors updated\n");
4364 /* use the larger n_sectors */
4365 return 0;
4366 }
4367
4368 /*
4369 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4370 * unlocking HPA in those cases.
4371 *
4372 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373 */
4374 if (dev->n_native_sectors == n_native_sectors &&
4375 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377 ata_dev_warn(dev,
4378 "old n_sectors matches native, probably "
4379 "late HPA lock, will try to unlock HPA\n");
4380 /* try unlocking HPA */
4381 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382 rc = -EIO;
4383 } else
4384 rc = -ENODEV;
4385
4386 /* restore original n_[native_]sectors and fail */
4387 dev->n_native_sectors = n_native_sectors;
4388 dev->n_sectors = n_sectors;
4389 fail:
4390 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391 return rc;
4392 }
4393
4394 struct ata_blacklist_entry {
4395 const char *model_num;
4396 const char *model_rev;
4397 unsigned long horkage;
4398 };
4399
4400 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401 /* Devices with DMA related problems under Linux */
4402 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4404 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4405 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4406 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4407 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4408 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4409 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4410 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4411 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4412 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4413 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4414 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4415 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4416 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4417 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4418 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4419 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4420 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4421 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4422 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4423 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4424 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4425 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4426 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4428 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4429 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4430 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4431 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4432 /* Odd clown on sil3726/4726 PMPs */
4433 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4434
4435 /* Weird ATAPI devices */
4436 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4437 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4438 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4439 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4440
4441 /*
4442 * Causes silent data corruption with higher max sects.
4443 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444 */
4445 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4446
4447 /*
4448 * These devices time out with higher max sects.
4449 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450 */
4451 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4452 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4453
4454 /* Devices we expect to fail diagnostics */
4455
4456 /* Devices where NCQ should be avoided */
4457 /* NCQ is slow */
4458 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4459 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4460 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4461 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4462 /* NCQ is broken */
4463 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4464 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4465 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4466 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4467 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4468
4469 /* Seagate NCQ + FLUSH CACHE firmware bug */
4470 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4471 ATA_HORKAGE_FIRMWARE_WARN },
4472
4473 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4474 ATA_HORKAGE_FIRMWARE_WARN },
4475
4476 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4477 ATA_HORKAGE_FIRMWARE_WARN },
4478
4479 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4480 ATA_HORKAGE_FIRMWARE_WARN },
4481
4482 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4484 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4485 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4486
4487 /* Blacklist entries taken from Silicon Image 3124/3132
4488 Windows driver .inf file - also several Linux problem reports */
4489 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4490 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4491 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4492
4493 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4495
4496 /* devices which puke on READ_NATIVE_MAX */
4497 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4498 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4499 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4500 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4501
4502 /* this one allows HPA unlocking but fails IOs on the area */
4503 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4504
4505 /* Devices which report 1 sector over size HPA */
4506 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4507 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4508 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4509
4510 /* Devices which get the IVB wrong */
4511 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4512 /* Maybe we should just blacklist TSSTcorp... */
4513 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4514
4515 /* Devices that do not need bridging limits applied */
4516 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4517 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4518
4519 /* Devices which aren't very happy with higher link speeds */
4520 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4521 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4522
4523 /*
4524 * Devices which choke on SETXFER. Applies only if both the
4525 * device and controller are SATA.
4526 */
4527 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4528 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4529 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4530 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4531 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4532
4533 /* devices that don't properly handle queued TRIM commands */
4534 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4535 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4536 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4537 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4538 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4539 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4540 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4541 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4542 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4543 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4544 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4545 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4546 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4547 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4548
4549 /* devices that don't properly handle TRIM commands */
4550 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4551
4552 /*
4553 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4554 * (Return Zero After Trim) flags in the ATA Command Set are
4555 * unreliable in the sense that they only define what happens if
4556 * the device successfully executed the DSM TRIM command. TRIM
4557 * is only advisory, however, and the device is free to silently
4558 * ignore all or parts of the request.
4559 *
4560 * Whitelist drives that are known to reliably return zeroes
4561 * after TRIM.
4562 */
4563
4564 /*
4565 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4566 * that model before whitelisting all other intel SSDs.
4567 */
4568 { "INTEL*SSDSC2MH*", NULL, 0, },
4569
4570 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4573 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4575 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4577
4578 /*
4579 * Some WD SATA-I drives spin up and down erratically when the link
4580 * is put into the slumber mode. We don't have full list of the
4581 * affected devices. Disable LPM if the device matches one of the
4582 * known prefixes and is SATA-1. As a side effect LPM partial is
4583 * lost too.
4584 *
4585 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4586 */
4587 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4588 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4589 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4590 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4591 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4592 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4593 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4594
4595 /* End Marker */
4596 { }
4597 };
4598
4599 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4600 {
4601 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4602 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4603 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4604
4605 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4606 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4607
4608 while (ad->model_num) {
4609 if (glob_match(ad->model_num, model_num)) {
4610 if (ad->model_rev == NULL)
4611 return ad->horkage;
4612 if (glob_match(ad->model_rev, model_rev))
4613 return ad->horkage;
4614 }
4615 ad++;
4616 }
4617 return 0;
4618 }
4619
4620 static int ata_dma_blacklisted(const struct ata_device *dev)
4621 {
4622 /* We don't support polling DMA.
4623 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4624 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4625 */
4626 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4627 (dev->flags & ATA_DFLAG_CDB_INTR))
4628 return 1;
4629 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4630 }
4631
4632 /**
4633 * ata_is_40wire - check drive side detection
4634 * @dev: device
4635 *
4636 * Perform drive side detection decoding, allowing for device vendors
4637 * who can't follow the documentation.
4638 */
4639
4640 static int ata_is_40wire(struct ata_device *dev)
4641 {
4642 if (dev->horkage & ATA_HORKAGE_IVB)
4643 return ata_drive_40wire_relaxed(dev->id);
4644 return ata_drive_40wire(dev->id);
4645 }
4646
4647 /**
4648 * cable_is_40wire - 40/80/SATA decider
4649 * @ap: port to consider
4650 *
4651 * This function encapsulates the policy for speed management
4652 * in one place. At the moment we don't cache the result but
4653 * there is a good case for setting ap->cbl to the result when
4654 * we are called with unknown cables (and figuring out if it
4655 * impacts hotplug at all).
4656 *
4657 * Return 1 if the cable appears to be 40 wire.
4658 */
4659
4660 static int cable_is_40wire(struct ata_port *ap)
4661 {
4662 struct ata_link *link;
4663 struct ata_device *dev;
4664
4665 /* If the controller thinks we are 40 wire, we are. */
4666 if (ap->cbl == ATA_CBL_PATA40)
4667 return 1;
4668
4669 /* If the controller thinks we are 80 wire, we are. */
4670 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4671 return 0;
4672
4673 /* If the system is known to be 40 wire short cable (eg
4674 * laptop), then we allow 80 wire modes even if the drive
4675 * isn't sure.
4676 */
4677 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4678 return 0;
4679
4680 /* If the controller doesn't know, we scan.
4681 *
4682 * Note: We look for all 40 wire detects at this point. Any
4683 * 80 wire detect is taken to be 80 wire cable because
4684 * - in many setups only the one drive (slave if present) will
4685 * give a valid detect
4686 * - if you have a non detect capable drive you don't want it
4687 * to colour the choice
4688 */
4689 ata_for_each_link(link, ap, EDGE) {
4690 ata_for_each_dev(dev, link, ENABLED) {
4691 if (!ata_is_40wire(dev))
4692 return 0;
4693 }
4694 }
4695 return 1;
4696 }
4697
4698 /**
4699 * ata_dev_xfermask - Compute supported xfermask of the given device
4700 * @dev: Device to compute xfermask for
4701 *
4702 * Compute supported xfermask of @dev and store it in
4703 * dev->*_mask. This function is responsible for applying all
4704 * known limits including host controller limits, device
4705 * blacklist, etc...
4706 *
4707 * LOCKING:
4708 * None.
4709 */
4710 static void ata_dev_xfermask(struct ata_device *dev)
4711 {
4712 struct ata_link *link = dev->link;
4713 struct ata_port *ap = link->ap;
4714 struct ata_host *host = ap->host;
4715 unsigned long xfer_mask;
4716
4717 /* controller modes available */
4718 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4719 ap->mwdma_mask, ap->udma_mask);
4720
4721 /* drive modes available */
4722 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4723 dev->mwdma_mask, dev->udma_mask);
4724 xfer_mask &= ata_id_xfermask(dev->id);
4725
4726 /*
4727 * CFA Advanced TrueIDE timings are not allowed on a shared
4728 * cable
4729 */
4730 if (ata_dev_pair(dev)) {
4731 /* No PIO5 or PIO6 */
4732 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4733 /* No MWDMA3 or MWDMA 4 */
4734 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4735 }
4736
4737 if (ata_dma_blacklisted(dev)) {
4738 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4739 ata_dev_warn(dev,
4740 "device is on DMA blacklist, disabling DMA\n");
4741 }
4742
4743 if ((host->flags & ATA_HOST_SIMPLEX) &&
4744 host->simplex_claimed && host->simplex_claimed != ap) {
4745 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4746 ata_dev_warn(dev,
4747 "simplex DMA is claimed by other device, disabling DMA\n");
4748 }
4749
4750 if (ap->flags & ATA_FLAG_NO_IORDY)
4751 xfer_mask &= ata_pio_mask_no_iordy(dev);
4752
4753 if (ap->ops->mode_filter)
4754 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4755
4756 /* Apply cable rule here. Don't apply it early because when
4757 * we handle hot plug the cable type can itself change.
4758 * Check this last so that we know if the transfer rate was
4759 * solely limited by the cable.
4760 * Unknown or 80 wire cables reported host side are checked
4761 * drive side as well. Cases where we know a 40wire cable
4762 * is used safely for 80 are not checked here.
4763 */
4764 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4765 /* UDMA/44 or higher would be available */
4766 if (cable_is_40wire(ap)) {
4767 ata_dev_warn(dev,
4768 "limited to UDMA/33 due to 40-wire cable\n");
4769 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4770 }
4771
4772 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4773 &dev->mwdma_mask, &dev->udma_mask);
4774 }
4775
4776 /**
4777 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4778 * @dev: Device to which command will be sent
4779 *
4780 * Issue SET FEATURES - XFER MODE command to device @dev
4781 * on port @ap.
4782 *
4783 * LOCKING:
4784 * PCI/etc. bus probe sem.
4785 *
4786 * RETURNS:
4787 * 0 on success, AC_ERR_* mask otherwise.
4788 */
4789
4790 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4791 {
4792 struct ata_taskfile tf;
4793 unsigned int err_mask;
4794
4795 /* set up set-features taskfile */
4796 DPRINTK("set features - xfer mode\n");
4797
4798 /* Some controllers and ATAPI devices show flaky interrupt
4799 * behavior after setting xfer mode. Use polling instead.
4800 */
4801 ata_tf_init(dev, &tf);
4802 tf.command = ATA_CMD_SET_FEATURES;
4803 tf.feature = SETFEATURES_XFER;
4804 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4805 tf.protocol = ATA_PROT_NODATA;
4806 /* If we are using IORDY we must send the mode setting command */
4807 if (ata_pio_need_iordy(dev))
4808 tf.nsect = dev->xfer_mode;
4809 /* If the device has IORDY and the controller does not - turn it off */
4810 else if (ata_id_has_iordy(dev->id))
4811 tf.nsect = 0x01;
4812 else /* In the ancient relic department - skip all of this */
4813 return 0;
4814
4815 /* On some disks, this command causes spin-up, so we need longer timeout */
4816 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4817
4818 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4819 return err_mask;
4820 }
4821
4822 /**
4823 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4824 * @dev: Device to which command will be sent
4825 * @enable: Whether to enable or disable the feature
4826 * @feature: The sector count represents the feature to set
4827 *
4828 * Issue SET FEATURES - SATA FEATURES command to device @dev
4829 * on port @ap with sector count
4830 *
4831 * LOCKING:
4832 * PCI/etc. bus probe sem.
4833 *
4834 * RETURNS:
4835 * 0 on success, AC_ERR_* mask otherwise.
4836 */
4837 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4838 {
4839 struct ata_taskfile tf;
4840 unsigned int err_mask;
4841 unsigned long timeout = 0;
4842
4843 /* set up set-features taskfile */
4844 DPRINTK("set features - SATA features\n");
4845
4846 ata_tf_init(dev, &tf);
4847 tf.command = ATA_CMD_SET_FEATURES;
4848 tf.feature = enable;
4849 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4850 tf.protocol = ATA_PROT_NODATA;
4851 tf.nsect = feature;
4852
4853 if (enable == SETFEATURES_SPINUP)
4854 timeout = ata_probe_timeout ?
4855 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4856 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4857
4858 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4859 return err_mask;
4860 }
4861 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4862
4863 /**
4864 * ata_dev_init_params - Issue INIT DEV PARAMS command
4865 * @dev: Device to which command will be sent
4866 * @heads: Number of heads (taskfile parameter)
4867 * @sectors: Number of sectors (taskfile parameter)
4868 *
4869 * LOCKING:
4870 * Kernel thread context (may sleep)
4871 *
4872 * RETURNS:
4873 * 0 on success, AC_ERR_* mask otherwise.
4874 */
4875 static unsigned int ata_dev_init_params(struct ata_device *dev,
4876 u16 heads, u16 sectors)
4877 {
4878 struct ata_taskfile tf;
4879 unsigned int err_mask;
4880
4881 /* Number of sectors per track 1-255. Number of heads 1-16 */
4882 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4883 return AC_ERR_INVALID;
4884
4885 /* set up init dev params taskfile */
4886 DPRINTK("init dev params \n");
4887
4888 ata_tf_init(dev, &tf);
4889 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4890 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4891 tf.protocol = ATA_PROT_NODATA;
4892 tf.nsect = sectors;
4893 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4894
4895 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4896 /* A clean abort indicates an original or just out of spec drive
4897 and we should continue as we issue the setup based on the
4898 drive reported working geometry */
4899 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4900 err_mask = 0;
4901
4902 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4903 return err_mask;
4904 }
4905
4906 /**
4907 * atapi_check_dma - Check whether ATAPI DMA can be supported
4908 * @qc: Metadata associated with taskfile to check
4909 *
4910 * Allow low-level driver to filter ATA PACKET commands, returning
4911 * a status indicating whether or not it is OK to use DMA for the
4912 * supplied PACKET command.
4913 *
4914 * LOCKING:
4915 * spin_lock_irqsave(host lock)
4916 *
4917 * RETURNS: 0 when ATAPI DMA can be used
4918 * nonzero otherwise
4919 */
4920 int atapi_check_dma(struct ata_queued_cmd *qc)
4921 {
4922 struct ata_port *ap = qc->ap;
4923
4924 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4925 * few ATAPI devices choke on such DMA requests.
4926 */
4927 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4928 unlikely(qc->nbytes & 15))
4929 return 1;
4930
4931 if (ap->ops->check_atapi_dma)
4932 return ap->ops->check_atapi_dma(qc);
4933
4934 return 0;
4935 }
4936
4937 /**
4938 * ata_std_qc_defer - Check whether a qc needs to be deferred
4939 * @qc: ATA command in question
4940 *
4941 * Non-NCQ commands cannot run with any other command, NCQ or
4942 * not. As upper layer only knows the queue depth, we are
4943 * responsible for maintaining exclusion. This function checks
4944 * whether a new command @qc can be issued.
4945 *
4946 * LOCKING:
4947 * spin_lock_irqsave(host lock)
4948 *
4949 * RETURNS:
4950 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4951 */
4952 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4953 {
4954 struct ata_link *link = qc->dev->link;
4955
4956 if (ata_is_ncq(qc->tf.protocol)) {
4957 if (!ata_tag_valid(link->active_tag))
4958 return 0;
4959 } else {
4960 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4961 return 0;
4962 }
4963
4964 return ATA_DEFER_LINK;
4965 }
4966
4967 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4968
4969 /**
4970 * ata_sg_init - Associate command with scatter-gather table.
4971 * @qc: Command to be associated
4972 * @sg: Scatter-gather table.
4973 * @n_elem: Number of elements in s/g table.
4974 *
4975 * Initialize the data-related elements of queued_cmd @qc
4976 * to point to a scatter-gather table @sg, containing @n_elem
4977 * elements.
4978 *
4979 * LOCKING:
4980 * spin_lock_irqsave(host lock)
4981 */
4982 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4983 unsigned int n_elem)
4984 {
4985 qc->sg = sg;
4986 qc->n_elem = n_elem;
4987 qc->cursg = qc->sg;
4988 }
4989
4990 #ifdef CONFIG_HAS_DMA
4991
4992 /**
4993 * ata_sg_clean - Unmap DMA memory associated with command
4994 * @qc: Command containing DMA memory to be released
4995 *
4996 * Unmap all mapped DMA memory associated with this command.
4997 *
4998 * LOCKING:
4999 * spin_lock_irqsave(host lock)
5000 */
5001 static void ata_sg_clean(struct ata_queued_cmd *qc)
5002 {
5003 struct ata_port *ap = qc->ap;
5004 struct scatterlist *sg = qc->sg;
5005 int dir = qc->dma_dir;
5006
5007 WARN_ON_ONCE(sg == NULL);
5008
5009 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5010
5011 if (qc->n_elem)
5012 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5013
5014 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5015 qc->sg = NULL;
5016 }
5017
5018 /**
5019 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5020 * @qc: Command with scatter-gather table to be mapped.
5021 *
5022 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5023 *
5024 * LOCKING:
5025 * spin_lock_irqsave(host lock)
5026 *
5027 * RETURNS:
5028 * Zero on success, negative on error.
5029 *
5030 */
5031 static int ata_sg_setup(struct ata_queued_cmd *qc)
5032 {
5033 struct ata_port *ap = qc->ap;
5034 unsigned int n_elem;
5035
5036 VPRINTK("ENTER, ata%u\n", ap->print_id);
5037
5038 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5039 if (n_elem < 1)
5040 return -1;
5041
5042 DPRINTK("%d sg elements mapped\n", n_elem);
5043 qc->orig_n_elem = qc->n_elem;
5044 qc->n_elem = n_elem;
5045 qc->flags |= ATA_QCFLAG_DMAMAP;
5046
5047 return 0;
5048 }
5049
5050 #else /* !CONFIG_HAS_DMA */
5051
5052 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5053 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5054
5055 #endif /* !CONFIG_HAS_DMA */
5056
5057 /**
5058 * swap_buf_le16 - swap halves of 16-bit words in place
5059 * @buf: Buffer to swap
5060 * @buf_words: Number of 16-bit words in buffer.
5061 *
5062 * Swap halves of 16-bit words if needed to convert from
5063 * little-endian byte order to native cpu byte order, or
5064 * vice-versa.
5065 *
5066 * LOCKING:
5067 * Inherited from caller.
5068 */
5069 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5070 {
5071 #ifdef __BIG_ENDIAN
5072 unsigned int i;
5073
5074 for (i = 0; i < buf_words; i++)
5075 buf[i] = le16_to_cpu(buf[i]);
5076 #endif /* __BIG_ENDIAN */
5077 }
5078
5079 /**
5080 * ata_qc_new_init - Request an available ATA command, and initialize it
5081 * @dev: Device from whom we request an available command structure
5082 * @tag: tag
5083 *
5084 * LOCKING:
5085 * None.
5086 */
5087
5088 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5089 {
5090 struct ata_port *ap = dev->link->ap;
5091 struct ata_queued_cmd *qc;
5092
5093 /* no command while frozen */
5094 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5095 return NULL;
5096
5097 /* libsas case */
5098 if (ap->flags & ATA_FLAG_SAS_HOST) {
5099 tag = ata_sas_allocate_tag(ap);
5100 if (tag < 0)
5101 return NULL;
5102 }
5103
5104 qc = __ata_qc_from_tag(ap, tag);
5105 qc->tag = tag;
5106 qc->scsicmd = NULL;
5107 qc->ap = ap;
5108 qc->dev = dev;
5109
5110 ata_qc_reinit(qc);
5111
5112 return qc;
5113 }
5114
5115 /**
5116 * ata_qc_free - free unused ata_queued_cmd
5117 * @qc: Command to complete
5118 *
5119 * Designed to free unused ata_queued_cmd object
5120 * in case something prevents using it.
5121 *
5122 * LOCKING:
5123 * spin_lock_irqsave(host lock)
5124 */
5125 void ata_qc_free(struct ata_queued_cmd *qc)
5126 {
5127 struct ata_port *ap;
5128 unsigned int tag;
5129
5130 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5131 ap = qc->ap;
5132
5133 qc->flags = 0;
5134 tag = qc->tag;
5135 if (likely(ata_tag_valid(tag))) {
5136 qc->tag = ATA_TAG_POISON;
5137 if (ap->flags & ATA_FLAG_SAS_HOST)
5138 ata_sas_free_tag(tag, ap);
5139 }
5140 }
5141
5142 void __ata_qc_complete(struct ata_queued_cmd *qc)
5143 {
5144 struct ata_port *ap;
5145 struct ata_link *link;
5146
5147 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5148 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5149 ap = qc->ap;
5150 link = qc->dev->link;
5151
5152 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5153 ata_sg_clean(qc);
5154
5155 /* command should be marked inactive atomically with qc completion */
5156 if (ata_is_ncq(qc->tf.protocol)) {
5157 link->sactive &= ~(1 << qc->tag);
5158 if (!link->sactive)
5159 ap->nr_active_links--;
5160 } else {
5161 link->active_tag = ATA_TAG_POISON;
5162 ap->nr_active_links--;
5163 }
5164
5165 /* clear exclusive status */
5166 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5167 ap->excl_link == link))
5168 ap->excl_link = NULL;
5169
5170 /* atapi: mark qc as inactive to prevent the interrupt handler
5171 * from completing the command twice later, before the error handler
5172 * is called. (when rc != 0 and atapi request sense is needed)
5173 */
5174 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5175 ap->qc_active &= ~(1 << qc->tag);
5176
5177 /* call completion callback */
5178 qc->complete_fn(qc);
5179 }
5180
5181 static void fill_result_tf(struct ata_queued_cmd *qc)
5182 {
5183 struct ata_port *ap = qc->ap;
5184
5185 qc->result_tf.flags = qc->tf.flags;
5186 ap->ops->qc_fill_rtf(qc);
5187 }
5188
5189 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5190 {
5191 struct ata_device *dev = qc->dev;
5192
5193 if (!ata_is_data(qc->tf.protocol))
5194 return;
5195
5196 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5197 return;
5198
5199 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5200 }
5201
5202 /**
5203 * ata_qc_complete - Complete an active ATA command
5204 * @qc: Command to complete
5205 *
5206 * Indicate to the mid and upper layers that an ATA command has
5207 * completed, with either an ok or not-ok status.
5208 *
5209 * Refrain from calling this function multiple times when
5210 * successfully completing multiple NCQ commands.
5211 * ata_qc_complete_multiple() should be used instead, which will
5212 * properly update IRQ expect state.
5213 *
5214 * LOCKING:
5215 * spin_lock_irqsave(host lock)
5216 */
5217 void ata_qc_complete(struct ata_queued_cmd *qc)
5218 {
5219 struct ata_port *ap = qc->ap;
5220
5221 /* Trigger the LED (if available) */
5222 ledtrig_disk_activity();
5223
5224 /* XXX: New EH and old EH use different mechanisms to
5225 * synchronize EH with regular execution path.
5226 *
5227 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5228 * Normal execution path is responsible for not accessing a
5229 * failed qc. libata core enforces the rule by returning NULL
5230 * from ata_qc_from_tag() for failed qcs.
5231 *
5232 * Old EH depends on ata_qc_complete() nullifying completion
5233 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5234 * not synchronize with interrupt handler. Only PIO task is
5235 * taken care of.
5236 */
5237 if (ap->ops->error_handler) {
5238 struct ata_device *dev = qc->dev;
5239 struct ata_eh_info *ehi = &dev->link->eh_info;
5240
5241 if (unlikely(qc->err_mask))
5242 qc->flags |= ATA_QCFLAG_FAILED;
5243
5244 /*
5245 * Finish internal commands without any further processing
5246 * and always with the result TF filled.
5247 */
5248 if (unlikely(ata_tag_internal(qc->tag))) {
5249 fill_result_tf(qc);
5250 trace_ata_qc_complete_internal(qc);
5251 __ata_qc_complete(qc);
5252 return;
5253 }
5254
5255 /*
5256 * Non-internal qc has failed. Fill the result TF and
5257 * summon EH.
5258 */
5259 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5260 fill_result_tf(qc);
5261 trace_ata_qc_complete_failed(qc);
5262 ata_qc_schedule_eh(qc);
5263 return;
5264 }
5265
5266 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5267
5268 /* read result TF if requested */
5269 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5270 fill_result_tf(qc);
5271
5272 trace_ata_qc_complete_done(qc);
5273 /* Some commands need post-processing after successful
5274 * completion.
5275 */
5276 switch (qc->tf.command) {
5277 case ATA_CMD_SET_FEATURES:
5278 if (qc->tf.feature != SETFEATURES_WC_ON &&
5279 qc->tf.feature != SETFEATURES_WC_OFF &&
5280 qc->tf.feature != SETFEATURES_RA_ON &&
5281 qc->tf.feature != SETFEATURES_RA_OFF)
5282 break;
5283 /* fall through */
5284 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5285 case ATA_CMD_SET_MULTI: /* multi_count changed */
5286 /* revalidate device */
5287 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5288 ata_port_schedule_eh(ap);
5289 break;
5290
5291 case ATA_CMD_SLEEP:
5292 dev->flags |= ATA_DFLAG_SLEEPING;
5293 break;
5294 }
5295
5296 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5297 ata_verify_xfer(qc);
5298
5299 __ata_qc_complete(qc);
5300 } else {
5301 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5302 return;
5303
5304 /* read result TF if failed or requested */
5305 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5306 fill_result_tf(qc);
5307
5308 __ata_qc_complete(qc);
5309 }
5310 }
5311
5312 /**
5313 * ata_qc_complete_multiple - Complete multiple qcs successfully
5314 * @ap: port in question
5315 * @qc_active: new qc_active mask
5316 *
5317 * Complete in-flight commands. This functions is meant to be
5318 * called from low-level driver's interrupt routine to complete
5319 * requests normally. ap->qc_active and @qc_active is compared
5320 * and commands are completed accordingly.
5321 *
5322 * Always use this function when completing multiple NCQ commands
5323 * from IRQ handlers instead of calling ata_qc_complete()
5324 * multiple times to keep IRQ expect status properly in sync.
5325 *
5326 * LOCKING:
5327 * spin_lock_irqsave(host lock)
5328 *
5329 * RETURNS:
5330 * Number of completed commands on success, -errno otherwise.
5331 */
5332 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5333 {
5334 int nr_done = 0;
5335 u32 done_mask;
5336
5337 done_mask = ap->qc_active ^ qc_active;
5338
5339 if (unlikely(done_mask & qc_active)) {
5340 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5341 ap->qc_active, qc_active);
5342 return -EINVAL;
5343 }
5344
5345 while (done_mask) {
5346 struct ata_queued_cmd *qc;
5347 unsigned int tag = __ffs(done_mask);
5348
5349 qc = ata_qc_from_tag(ap, tag);
5350 if (qc) {
5351 ata_qc_complete(qc);
5352 nr_done++;
5353 }
5354 done_mask &= ~(1 << tag);
5355 }
5356
5357 return nr_done;
5358 }
5359
5360 /**
5361 * ata_qc_issue - issue taskfile to device
5362 * @qc: command to issue to device
5363 *
5364 * Prepare an ATA command to submission to device.
5365 * This includes mapping the data into a DMA-able
5366 * area, filling in the S/G table, and finally
5367 * writing the taskfile to hardware, starting the command.
5368 *
5369 * LOCKING:
5370 * spin_lock_irqsave(host lock)
5371 */
5372 void ata_qc_issue(struct ata_queued_cmd *qc)
5373 {
5374 struct ata_port *ap = qc->ap;
5375 struct ata_link *link = qc->dev->link;
5376 u8 prot = qc->tf.protocol;
5377
5378 /* Make sure only one non-NCQ command is outstanding. The
5379 * check is skipped for old EH because it reuses active qc to
5380 * request ATAPI sense.
5381 */
5382 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5383
5384 if (ata_is_ncq(prot)) {
5385 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5386
5387 if (!link->sactive)
5388 ap->nr_active_links++;
5389 link->sactive |= 1 << qc->tag;
5390 } else {
5391 WARN_ON_ONCE(link->sactive);
5392
5393 ap->nr_active_links++;
5394 link->active_tag = qc->tag;
5395 }
5396
5397 qc->flags |= ATA_QCFLAG_ACTIVE;
5398 ap->qc_active |= 1 << qc->tag;
5399
5400 /*
5401 * We guarantee to LLDs that they will have at least one
5402 * non-zero sg if the command is a data command.
5403 */
5404 if (WARN_ON_ONCE(ata_is_data(prot) &&
5405 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5406 goto sys_err;
5407
5408 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5409 (ap->flags & ATA_FLAG_PIO_DMA)))
5410 if (ata_sg_setup(qc))
5411 goto sys_err;
5412
5413 /* if device is sleeping, schedule reset and abort the link */
5414 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5415 link->eh_info.action |= ATA_EH_RESET;
5416 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5417 ata_link_abort(link);
5418 return;
5419 }
5420
5421 ap->ops->qc_prep(qc);
5422 trace_ata_qc_issue(qc);
5423 qc->err_mask |= ap->ops->qc_issue(qc);
5424 if (unlikely(qc->err_mask))
5425 goto err;
5426 return;
5427
5428 sys_err:
5429 qc->err_mask |= AC_ERR_SYSTEM;
5430 err:
5431 ata_qc_complete(qc);
5432 }
5433
5434 /**
5435 * sata_scr_valid - test whether SCRs are accessible
5436 * @link: ATA link to test SCR accessibility for
5437 *
5438 * Test whether SCRs are accessible for @link.
5439 *
5440 * LOCKING:
5441 * None.
5442 *
5443 * RETURNS:
5444 * 1 if SCRs are accessible, 0 otherwise.
5445 */
5446 int sata_scr_valid(struct ata_link *link)
5447 {
5448 struct ata_port *ap = link->ap;
5449
5450 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5451 }
5452
5453 /**
5454 * sata_scr_read - read SCR register of the specified port
5455 * @link: ATA link to read SCR for
5456 * @reg: SCR to read
5457 * @val: Place to store read value
5458 *
5459 * Read SCR register @reg of @link into *@val. This function is
5460 * guaranteed to succeed if @link is ap->link, the cable type of
5461 * the port is SATA and the port implements ->scr_read.
5462 *
5463 * LOCKING:
5464 * None if @link is ap->link. Kernel thread context otherwise.
5465 *
5466 * RETURNS:
5467 * 0 on success, negative errno on failure.
5468 */
5469 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5470 {
5471 if (ata_is_host_link(link)) {
5472 if (sata_scr_valid(link))
5473 return link->ap->ops->scr_read(link, reg, val);
5474 return -EOPNOTSUPP;
5475 }
5476
5477 return sata_pmp_scr_read(link, reg, val);
5478 }
5479
5480 /**
5481 * sata_scr_write - write SCR register of the specified port
5482 * @link: ATA link to write SCR for
5483 * @reg: SCR to write
5484 * @val: value to write
5485 *
5486 * Write @val to SCR register @reg of @link. This function is
5487 * guaranteed to succeed if @link is ap->link, the cable type of
5488 * the port is SATA and the port implements ->scr_read.
5489 *
5490 * LOCKING:
5491 * None if @link is ap->link. Kernel thread context otherwise.
5492 *
5493 * RETURNS:
5494 * 0 on success, negative errno on failure.
5495 */
5496 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5497 {
5498 if (ata_is_host_link(link)) {
5499 if (sata_scr_valid(link))
5500 return link->ap->ops->scr_write(link, reg, val);
5501 return -EOPNOTSUPP;
5502 }
5503
5504 return sata_pmp_scr_write(link, reg, val);
5505 }
5506
5507 /**
5508 * sata_scr_write_flush - write SCR register of the specified port and flush
5509 * @link: ATA link to write SCR for
5510 * @reg: SCR to write
5511 * @val: value to write
5512 *
5513 * This function is identical to sata_scr_write() except that this
5514 * function performs flush after writing to the register.
5515 *
5516 * LOCKING:
5517 * None if @link is ap->link. Kernel thread context otherwise.
5518 *
5519 * RETURNS:
5520 * 0 on success, negative errno on failure.
5521 */
5522 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5523 {
5524 if (ata_is_host_link(link)) {
5525 int rc;
5526
5527 if (sata_scr_valid(link)) {
5528 rc = link->ap->ops->scr_write(link, reg, val);
5529 if (rc == 0)
5530 rc = link->ap->ops->scr_read(link, reg, &val);
5531 return rc;
5532 }
5533 return -EOPNOTSUPP;
5534 }
5535
5536 return sata_pmp_scr_write(link, reg, val);
5537 }
5538
5539 /**
5540 * ata_phys_link_online - test whether the given link is online
5541 * @link: ATA link to test
5542 *
5543 * Test whether @link is online. Note that this function returns
5544 * 0 if online status of @link cannot be obtained, so
5545 * ata_link_online(link) != !ata_link_offline(link).
5546 *
5547 * LOCKING:
5548 * None.
5549 *
5550 * RETURNS:
5551 * True if the port online status is available and online.
5552 */
5553 bool ata_phys_link_online(struct ata_link *link)
5554 {
5555 u32 sstatus;
5556
5557 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5558 ata_sstatus_online(sstatus))
5559 return true;
5560 return false;
5561 }
5562
5563 /**
5564 * ata_phys_link_offline - test whether the given link is offline
5565 * @link: ATA link to test
5566 *
5567 * Test whether @link is offline. Note that this function
5568 * returns 0 if offline status of @link cannot be obtained, so
5569 * ata_link_online(link) != !ata_link_offline(link).
5570 *
5571 * LOCKING:
5572 * None.
5573 *
5574 * RETURNS:
5575 * True if the port offline status is available and offline.
5576 */
5577 bool ata_phys_link_offline(struct ata_link *link)
5578 {
5579 u32 sstatus;
5580
5581 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5582 !ata_sstatus_online(sstatus))
5583 return true;
5584 return false;
5585 }
5586
5587 /**
5588 * ata_link_online - test whether the given link is online
5589 * @link: ATA link to test
5590 *
5591 * Test whether @link is online. This is identical to
5592 * ata_phys_link_online() when there's no slave link. When
5593 * there's a slave link, this function should only be called on
5594 * the master link and will return true if any of M/S links is
5595 * online.
5596 *
5597 * LOCKING:
5598 * None.
5599 *
5600 * RETURNS:
5601 * True if the port online status is available and online.
5602 */
5603 bool ata_link_online(struct ata_link *link)
5604 {
5605 struct ata_link *slave = link->ap->slave_link;
5606
5607 WARN_ON(link == slave); /* shouldn't be called on slave link */
5608
5609 return ata_phys_link_online(link) ||
5610 (slave && ata_phys_link_online(slave));
5611 }
5612
5613 /**
5614 * ata_link_offline - test whether the given link is offline
5615 * @link: ATA link to test
5616 *
5617 * Test whether @link is offline. This is identical to
5618 * ata_phys_link_offline() when there's no slave link. When
5619 * there's a slave link, this function should only be called on
5620 * the master link and will return true if both M/S links are
5621 * offline.
5622 *
5623 * LOCKING:
5624 * None.
5625 *
5626 * RETURNS:
5627 * True if the port offline status is available and offline.
5628 */
5629 bool ata_link_offline(struct ata_link *link)
5630 {
5631 struct ata_link *slave = link->ap->slave_link;
5632
5633 WARN_ON(link == slave); /* shouldn't be called on slave link */
5634
5635 return ata_phys_link_offline(link) &&
5636 (!slave || ata_phys_link_offline(slave));
5637 }
5638
5639 #ifdef CONFIG_PM
5640 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5641 unsigned int action, unsigned int ehi_flags,
5642 bool async)
5643 {
5644 struct ata_link *link;
5645 unsigned long flags;
5646
5647 /* Previous resume operation might still be in
5648 * progress. Wait for PM_PENDING to clear.
5649 */
5650 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5651 ata_port_wait_eh(ap);
5652 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5653 }
5654
5655 /* request PM ops to EH */
5656 spin_lock_irqsave(ap->lock, flags);
5657
5658 ap->pm_mesg = mesg;
5659 ap->pflags |= ATA_PFLAG_PM_PENDING;
5660 ata_for_each_link(link, ap, HOST_FIRST) {
5661 link->eh_info.action |= action;
5662 link->eh_info.flags |= ehi_flags;
5663 }
5664
5665 ata_port_schedule_eh(ap);
5666
5667 spin_unlock_irqrestore(ap->lock, flags);
5668
5669 if (!async) {
5670 ata_port_wait_eh(ap);
5671 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5672 }
5673 }
5674
5675 /*
5676 * On some hardware, device fails to respond after spun down for suspend. As
5677 * the device won't be used before being resumed, we don't need to touch the
5678 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5679 *
5680 * http://thread.gmane.org/gmane.linux.ide/46764
5681 */
5682 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5683 | ATA_EHI_NO_AUTOPSY
5684 | ATA_EHI_NO_RECOVERY;
5685
5686 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5687 {
5688 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5689 }
5690
5691 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5692 {
5693 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5694 }
5695
5696 static int ata_port_pm_suspend(struct device *dev)
5697 {
5698 struct ata_port *ap = to_ata_port(dev);
5699
5700 if (pm_runtime_suspended(dev))
5701 return 0;
5702
5703 ata_port_suspend(ap, PMSG_SUSPEND);
5704 return 0;
5705 }
5706
5707 static int ata_port_pm_freeze(struct device *dev)
5708 {
5709 struct ata_port *ap = to_ata_port(dev);
5710
5711 if (pm_runtime_suspended(dev))
5712 return 0;
5713
5714 ata_port_suspend(ap, PMSG_FREEZE);
5715 return 0;
5716 }
5717
5718 static int ata_port_pm_poweroff(struct device *dev)
5719 {
5720 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5721 return 0;
5722 }
5723
5724 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5725 | ATA_EHI_QUIET;
5726
5727 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5728 {
5729 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5730 }
5731
5732 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5733 {
5734 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5735 }
5736
5737 static int ata_port_pm_resume(struct device *dev)
5738 {
5739 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5740 pm_runtime_disable(dev);
5741 pm_runtime_set_active(dev);
5742 pm_runtime_enable(dev);
5743 return 0;
5744 }
5745
5746 /*
5747 * For ODDs, the upper layer will poll for media change every few seconds,
5748 * which will make it enter and leave suspend state every few seconds. And
5749 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5750 * is very little and the ODD may malfunction after constantly being reset.
5751 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5752 * ODD is attached to the port.
5753 */
5754 static int ata_port_runtime_idle(struct device *dev)
5755 {
5756 struct ata_port *ap = to_ata_port(dev);
5757 struct ata_link *link;
5758 struct ata_device *adev;
5759
5760 ata_for_each_link(link, ap, HOST_FIRST) {
5761 ata_for_each_dev(adev, link, ENABLED)
5762 if (adev->class == ATA_DEV_ATAPI &&
5763 !zpodd_dev_enabled(adev))
5764 return -EBUSY;
5765 }
5766
5767 return 0;
5768 }
5769
5770 static int ata_port_runtime_suspend(struct device *dev)
5771 {
5772 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5773 return 0;
5774 }
5775
5776 static int ata_port_runtime_resume(struct device *dev)
5777 {
5778 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5779 return 0;
5780 }
5781
5782 static const struct dev_pm_ops ata_port_pm_ops = {
5783 .suspend = ata_port_pm_suspend,
5784 .resume = ata_port_pm_resume,
5785 .freeze = ata_port_pm_freeze,
5786 .thaw = ata_port_pm_resume,
5787 .poweroff = ata_port_pm_poweroff,
5788 .restore = ata_port_pm_resume,
5789
5790 .runtime_suspend = ata_port_runtime_suspend,
5791 .runtime_resume = ata_port_runtime_resume,
5792 .runtime_idle = ata_port_runtime_idle,
5793 };
5794
5795 /* sas ports don't participate in pm runtime management of ata_ports,
5796 * and need to resume ata devices at the domain level, not the per-port
5797 * level. sas suspend/resume is async to allow parallel port recovery
5798 * since sas has multiple ata_port instances per Scsi_Host.
5799 */
5800 void ata_sas_port_suspend(struct ata_port *ap)
5801 {
5802 ata_port_suspend_async(ap, PMSG_SUSPEND);
5803 }
5804 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5805
5806 void ata_sas_port_resume(struct ata_port *ap)
5807 {
5808 ata_port_resume_async(ap, PMSG_RESUME);
5809 }
5810 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5811
5812 /**
5813 * ata_host_suspend - suspend host
5814 * @host: host to suspend
5815 * @mesg: PM message
5816 *
5817 * Suspend @host. Actual operation is performed by port suspend.
5818 */
5819 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5820 {
5821 host->dev->power.power_state = mesg;
5822 return 0;
5823 }
5824
5825 /**
5826 * ata_host_resume - resume host
5827 * @host: host to resume
5828 *
5829 * Resume @host. Actual operation is performed by port resume.
5830 */
5831 void ata_host_resume(struct ata_host *host)
5832 {
5833 host->dev->power.power_state = PMSG_ON;
5834 }
5835 #endif
5836
5837 const struct device_type ata_port_type = {
5838 .name = "ata_port",
5839 #ifdef CONFIG_PM
5840 .pm = &ata_port_pm_ops,
5841 #endif
5842 };
5843
5844 /**
5845 * ata_dev_init - Initialize an ata_device structure
5846 * @dev: Device structure to initialize
5847 *
5848 * Initialize @dev in preparation for probing.
5849 *
5850 * LOCKING:
5851 * Inherited from caller.
5852 */
5853 void ata_dev_init(struct ata_device *dev)
5854 {
5855 struct ata_link *link = ata_dev_phys_link(dev);
5856 struct ata_port *ap = link->ap;
5857 unsigned long flags;
5858
5859 /* SATA spd limit is bound to the attached device, reset together */
5860 link->sata_spd_limit = link->hw_sata_spd_limit;
5861 link->sata_spd = 0;
5862
5863 /* High bits of dev->flags are used to record warm plug
5864 * requests which occur asynchronously. Synchronize using
5865 * host lock.
5866 */
5867 spin_lock_irqsave(ap->lock, flags);
5868 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5869 dev->horkage = 0;
5870 spin_unlock_irqrestore(ap->lock, flags);
5871
5872 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5873 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5874 dev->pio_mask = UINT_MAX;
5875 dev->mwdma_mask = UINT_MAX;
5876 dev->udma_mask = UINT_MAX;
5877 }
5878
5879 /**
5880 * ata_link_init - Initialize an ata_link structure
5881 * @ap: ATA port link is attached to
5882 * @link: Link structure to initialize
5883 * @pmp: Port multiplier port number
5884 *
5885 * Initialize @link.
5886 *
5887 * LOCKING:
5888 * Kernel thread context (may sleep)
5889 */
5890 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5891 {
5892 int i;
5893
5894 /* clear everything except for devices */
5895 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5896 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5897
5898 link->ap = ap;
5899 link->pmp = pmp;
5900 link->active_tag = ATA_TAG_POISON;
5901 link->hw_sata_spd_limit = UINT_MAX;
5902
5903 /* can't use iterator, ap isn't initialized yet */
5904 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5905 struct ata_device *dev = &link->device[i];
5906
5907 dev->link = link;
5908 dev->devno = dev - link->device;
5909 #ifdef CONFIG_ATA_ACPI
5910 dev->gtf_filter = ata_acpi_gtf_filter;
5911 #endif
5912 ata_dev_init(dev);
5913 }
5914 }
5915
5916 /**
5917 * sata_link_init_spd - Initialize link->sata_spd_limit
5918 * @link: Link to configure sata_spd_limit for
5919 *
5920 * Initialize @link->[hw_]sata_spd_limit to the currently
5921 * configured value.
5922 *
5923 * LOCKING:
5924 * Kernel thread context (may sleep).
5925 *
5926 * RETURNS:
5927 * 0 on success, -errno on failure.
5928 */
5929 int sata_link_init_spd(struct ata_link *link)
5930 {
5931 u8 spd;
5932 int rc;
5933
5934 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5935 if (rc)
5936 return rc;
5937
5938 spd = (link->saved_scontrol >> 4) & 0xf;
5939 if (spd)
5940 link->hw_sata_spd_limit &= (1 << spd) - 1;
5941
5942 ata_force_link_limits(link);
5943
5944 link->sata_spd_limit = link->hw_sata_spd_limit;
5945
5946 return 0;
5947 }
5948
5949 /**
5950 * ata_port_alloc - allocate and initialize basic ATA port resources
5951 * @host: ATA host this allocated port belongs to
5952 *
5953 * Allocate and initialize basic ATA port resources.
5954 *
5955 * RETURNS:
5956 * Allocate ATA port on success, NULL on failure.
5957 *
5958 * LOCKING:
5959 * Inherited from calling layer (may sleep).
5960 */
5961 struct ata_port *ata_port_alloc(struct ata_host *host)
5962 {
5963 struct ata_port *ap;
5964
5965 DPRINTK("ENTER\n");
5966
5967 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5968 if (!ap)
5969 return NULL;
5970
5971 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5972 ap->lock = &host->lock;
5973 ap->print_id = -1;
5974 ap->local_port_no = -1;
5975 ap->host = host;
5976 ap->dev = host->dev;
5977
5978 #if defined(ATA_VERBOSE_DEBUG)
5979 /* turn on all debugging levels */
5980 ap->msg_enable = 0x00FF;
5981 #elif defined(ATA_DEBUG)
5982 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5983 #else
5984 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5985 #endif
5986
5987 mutex_init(&ap->scsi_scan_mutex);
5988 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5989 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5990 INIT_LIST_HEAD(&ap->eh_done_q);
5991 init_waitqueue_head(&ap->eh_wait_q);
5992 init_completion(&ap->park_req_pending);
5993 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5994 TIMER_DEFERRABLE);
5995
5996 ap->cbl = ATA_CBL_NONE;
5997
5998 ata_link_init(ap, &ap->link, 0);
5999
6000 #ifdef ATA_IRQ_TRAP
6001 ap->stats.unhandled_irq = 1;
6002 ap->stats.idle_irq = 1;
6003 #endif
6004 ata_sff_port_init(ap);
6005
6006 return ap;
6007 }
6008
6009 static void ata_host_release(struct device *gendev, void *res)
6010 {
6011 struct ata_host *host = dev_get_drvdata(gendev);
6012 int i;
6013
6014 for (i = 0; i < host->n_ports; i++) {
6015 struct ata_port *ap = host->ports[i];
6016
6017 if (!ap)
6018 continue;
6019
6020 if (ap->scsi_host)
6021 scsi_host_put(ap->scsi_host);
6022
6023 kfree(ap->pmp_link);
6024 kfree(ap->slave_link);
6025 kfree(ap);
6026 host->ports[i] = NULL;
6027 }
6028
6029 dev_set_drvdata(gendev, NULL);
6030 }
6031
6032 /**
6033 * ata_host_alloc - allocate and init basic ATA host resources
6034 * @dev: generic device this host is associated with
6035 * @max_ports: maximum number of ATA ports associated with this host
6036 *
6037 * Allocate and initialize basic ATA host resources. LLD calls
6038 * this function to allocate a host, initializes it fully and
6039 * attaches it using ata_host_register().
6040 *
6041 * @max_ports ports are allocated and host->n_ports is
6042 * initialized to @max_ports. The caller is allowed to decrease
6043 * host->n_ports before calling ata_host_register(). The unused
6044 * ports will be automatically freed on registration.
6045 *
6046 * RETURNS:
6047 * Allocate ATA host on success, NULL on failure.
6048 *
6049 * LOCKING:
6050 * Inherited from calling layer (may sleep).
6051 */
6052 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6053 {
6054 struct ata_host *host;
6055 size_t sz;
6056 int i;
6057
6058 DPRINTK("ENTER\n");
6059
6060 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6061 return NULL;
6062
6063 /* alloc a container for our list of ATA ports (buses) */
6064 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6065 /* alloc a container for our list of ATA ports (buses) */
6066 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6067 if (!host)
6068 goto err_out;
6069
6070 devres_add(dev, host);
6071 dev_set_drvdata(dev, host);
6072
6073 spin_lock_init(&host->lock);
6074 mutex_init(&host->eh_mutex);
6075 host->dev = dev;
6076 host->n_ports = max_ports;
6077
6078 /* allocate ports bound to this host */
6079 for (i = 0; i < max_ports; i++) {
6080 struct ata_port *ap;
6081
6082 ap = ata_port_alloc(host);
6083 if (!ap)
6084 goto err_out;
6085
6086 ap->port_no = i;
6087 host->ports[i] = ap;
6088 }
6089
6090 devres_remove_group(dev, NULL);
6091 return host;
6092
6093 err_out:
6094 devres_release_group(dev, NULL);
6095 return NULL;
6096 }
6097
6098 /**
6099 * ata_host_alloc_pinfo - alloc host and init with port_info array
6100 * @dev: generic device this host is associated with
6101 * @ppi: array of ATA port_info to initialize host with
6102 * @n_ports: number of ATA ports attached to this host
6103 *
6104 * Allocate ATA host and initialize with info from @ppi. If NULL
6105 * terminated, @ppi may contain fewer entries than @n_ports. The
6106 * last entry will be used for the remaining ports.
6107 *
6108 * RETURNS:
6109 * Allocate ATA host on success, NULL on failure.
6110 *
6111 * LOCKING:
6112 * Inherited from calling layer (may sleep).
6113 */
6114 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6115 const struct ata_port_info * const * ppi,
6116 int n_ports)
6117 {
6118 const struct ata_port_info *pi;
6119 struct ata_host *host;
6120 int i, j;
6121
6122 host = ata_host_alloc(dev, n_ports);
6123 if (!host)
6124 return NULL;
6125
6126 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6127 struct ata_port *ap = host->ports[i];
6128
6129 if (ppi[j])
6130 pi = ppi[j++];
6131
6132 ap->pio_mask = pi->pio_mask;
6133 ap->mwdma_mask = pi->mwdma_mask;
6134 ap->udma_mask = pi->udma_mask;
6135 ap->flags |= pi->flags;
6136 ap->link.flags |= pi->link_flags;
6137 ap->ops = pi->port_ops;
6138
6139 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6140 host->ops = pi->port_ops;
6141 }
6142
6143 return host;
6144 }
6145
6146 /**
6147 * ata_slave_link_init - initialize slave link
6148 * @ap: port to initialize slave link for
6149 *
6150 * Create and initialize slave link for @ap. This enables slave
6151 * link handling on the port.
6152 *
6153 * In libata, a port contains links and a link contains devices.
6154 * There is single host link but if a PMP is attached to it,
6155 * there can be multiple fan-out links. On SATA, there's usually
6156 * a single device connected to a link but PATA and SATA
6157 * controllers emulating TF based interface can have two - master
6158 * and slave.
6159 *
6160 * However, there are a few controllers which don't fit into this
6161 * abstraction too well - SATA controllers which emulate TF
6162 * interface with both master and slave devices but also have
6163 * separate SCR register sets for each device. These controllers
6164 * need separate links for physical link handling
6165 * (e.g. onlineness, link speed) but should be treated like a
6166 * traditional M/S controller for everything else (e.g. command
6167 * issue, softreset).
6168 *
6169 * slave_link is libata's way of handling this class of
6170 * controllers without impacting core layer too much. For
6171 * anything other than physical link handling, the default host
6172 * link is used for both master and slave. For physical link
6173 * handling, separate @ap->slave_link is used. All dirty details
6174 * are implemented inside libata core layer. From LLD's POV, the
6175 * only difference is that prereset, hardreset and postreset are
6176 * called once more for the slave link, so the reset sequence
6177 * looks like the following.
6178 *
6179 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6180 * softreset(M) -> postreset(M) -> postreset(S)
6181 *
6182 * Note that softreset is called only for the master. Softreset
6183 * resets both M/S by definition, so SRST on master should handle
6184 * both (the standard method will work just fine).
6185 *
6186 * LOCKING:
6187 * Should be called before host is registered.
6188 *
6189 * RETURNS:
6190 * 0 on success, -errno on failure.
6191 */
6192 int ata_slave_link_init(struct ata_port *ap)
6193 {
6194 struct ata_link *link;
6195
6196 WARN_ON(ap->slave_link);
6197 WARN_ON(ap->flags & ATA_FLAG_PMP);
6198
6199 link = kzalloc(sizeof(*link), GFP_KERNEL);
6200 if (!link)
6201 return -ENOMEM;
6202
6203 ata_link_init(ap, link, 1);
6204 ap->slave_link = link;
6205 return 0;
6206 }
6207
6208 static void ata_host_stop(struct device *gendev, void *res)
6209 {
6210 struct ata_host *host = dev_get_drvdata(gendev);
6211 int i;
6212
6213 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6214
6215 for (i = 0; i < host->n_ports; i++) {
6216 struct ata_port *ap = host->ports[i];
6217
6218 if (ap->ops->port_stop)
6219 ap->ops->port_stop(ap);
6220 }
6221
6222 if (host->ops->host_stop)
6223 host->ops->host_stop(host);
6224 }
6225
6226 /**
6227 * ata_finalize_port_ops - finalize ata_port_operations
6228 * @ops: ata_port_operations to finalize
6229 *
6230 * An ata_port_operations can inherit from another ops and that
6231 * ops can again inherit from another. This can go on as many
6232 * times as necessary as long as there is no loop in the
6233 * inheritance chain.
6234 *
6235 * Ops tables are finalized when the host is started. NULL or
6236 * unspecified entries are inherited from the closet ancestor
6237 * which has the method and the entry is populated with it.
6238 * After finalization, the ops table directly points to all the
6239 * methods and ->inherits is no longer necessary and cleared.
6240 *
6241 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6242 *
6243 * LOCKING:
6244 * None.
6245 */
6246 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6247 {
6248 static DEFINE_SPINLOCK(lock);
6249 const struct ata_port_operations *cur;
6250 void **begin = (void **)ops;
6251 void **end = (void **)&ops->inherits;
6252 void **pp;
6253
6254 if (!ops || !ops->inherits)
6255 return;
6256
6257 spin_lock(&lock);
6258
6259 for (cur = ops->inherits; cur; cur = cur->inherits) {
6260 void **inherit = (void **)cur;
6261
6262 for (pp = begin; pp < end; pp++, inherit++)
6263 if (!*pp)
6264 *pp = *inherit;
6265 }
6266
6267 for (pp = begin; pp < end; pp++)
6268 if (IS_ERR(*pp))
6269 *pp = NULL;
6270
6271 ops->inherits = NULL;
6272
6273 spin_unlock(&lock);
6274 }
6275
6276 /**
6277 * ata_host_start - start and freeze ports of an ATA host
6278 * @host: ATA host to start ports for
6279 *
6280 * Start and then freeze ports of @host. Started status is
6281 * recorded in host->flags, so this function can be called
6282 * multiple times. Ports are guaranteed to get started only
6283 * once. If host->ops isn't initialized yet, its set to the
6284 * first non-dummy port ops.
6285 *
6286 * LOCKING:
6287 * Inherited from calling layer (may sleep).
6288 *
6289 * RETURNS:
6290 * 0 if all ports are started successfully, -errno otherwise.
6291 */
6292 int ata_host_start(struct ata_host *host)
6293 {
6294 int have_stop = 0;
6295 void *start_dr = NULL;
6296 int i, rc;
6297
6298 if (host->flags & ATA_HOST_STARTED)
6299 return 0;
6300
6301 ata_finalize_port_ops(host->ops);
6302
6303 for (i = 0; i < host->n_ports; i++) {
6304 struct ata_port *ap = host->ports[i];
6305
6306 ata_finalize_port_ops(ap->ops);
6307
6308 if (!host->ops && !ata_port_is_dummy(ap))
6309 host->ops = ap->ops;
6310
6311 if (ap->ops->port_stop)
6312 have_stop = 1;
6313 }
6314
6315 if (host->ops->host_stop)
6316 have_stop = 1;
6317
6318 if (have_stop) {
6319 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6320 if (!start_dr)
6321 return -ENOMEM;
6322 }
6323
6324 for (i = 0; i < host->n_ports; i++) {
6325 struct ata_port *ap = host->ports[i];
6326
6327 if (ap->ops->port_start) {
6328 rc = ap->ops->port_start(ap);
6329 if (rc) {
6330 if (rc != -ENODEV)
6331 dev_err(host->dev,
6332 "failed to start port %d (errno=%d)\n",
6333 i, rc);
6334 goto err_out;
6335 }
6336 }
6337 ata_eh_freeze_port(ap);
6338 }
6339
6340 if (start_dr)
6341 devres_add(host->dev, start_dr);
6342 host->flags |= ATA_HOST_STARTED;
6343 return 0;
6344
6345 err_out:
6346 while (--i >= 0) {
6347 struct ata_port *ap = host->ports[i];
6348
6349 if (ap->ops->port_stop)
6350 ap->ops->port_stop(ap);
6351 }
6352 devres_free(start_dr);
6353 return rc;
6354 }
6355
6356 /**
6357 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6358 * @host: host to initialize
6359 * @dev: device host is attached to
6360 * @ops: port_ops
6361 *
6362 */
6363 void ata_host_init(struct ata_host *host, struct device *dev,
6364 struct ata_port_operations *ops)
6365 {
6366 spin_lock_init(&host->lock);
6367 mutex_init(&host->eh_mutex);
6368 host->n_tags = ATA_MAX_QUEUE - 1;
6369 host->dev = dev;
6370 host->ops = ops;
6371 }
6372
6373 void __ata_port_probe(struct ata_port *ap)
6374 {
6375 struct ata_eh_info *ehi = &ap->link.eh_info;
6376 unsigned long flags;
6377
6378 /* kick EH for boot probing */
6379 spin_lock_irqsave(ap->lock, flags);
6380
6381 ehi->probe_mask |= ATA_ALL_DEVICES;
6382 ehi->action |= ATA_EH_RESET;
6383 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6384
6385 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6386 ap->pflags |= ATA_PFLAG_LOADING;
6387 ata_port_schedule_eh(ap);
6388
6389 spin_unlock_irqrestore(ap->lock, flags);
6390 }
6391
6392 int ata_port_probe(struct ata_port *ap)
6393 {
6394 int rc = 0;
6395
6396 if (ap->ops->error_handler) {
6397 __ata_port_probe(ap);
6398 ata_port_wait_eh(ap);
6399 } else {
6400 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6401 rc = ata_bus_probe(ap);
6402 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6403 }
6404 return rc;
6405 }
6406
6407
6408 static void async_port_probe(void *data, async_cookie_t cookie)
6409 {
6410 struct ata_port *ap = data;
6411
6412 /*
6413 * If we're not allowed to scan this host in parallel,
6414 * we need to wait until all previous scans have completed
6415 * before going further.
6416 * Jeff Garzik says this is only within a controller, so we
6417 * don't need to wait for port 0, only for later ports.
6418 */
6419 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6420 async_synchronize_cookie(cookie);
6421
6422 (void)ata_port_probe(ap);
6423
6424 /* in order to keep device order, we need to synchronize at this point */
6425 async_synchronize_cookie(cookie);
6426
6427 ata_scsi_scan_host(ap, 1);
6428 }
6429
6430 /**
6431 * ata_host_register - register initialized ATA host
6432 * @host: ATA host to register
6433 * @sht: template for SCSI host
6434 *
6435 * Register initialized ATA host. @host is allocated using
6436 * ata_host_alloc() and fully initialized by LLD. This function
6437 * starts ports, registers @host with ATA and SCSI layers and
6438 * probe registered devices.
6439 *
6440 * LOCKING:
6441 * Inherited from calling layer (may sleep).
6442 *
6443 * RETURNS:
6444 * 0 on success, -errno otherwise.
6445 */
6446 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6447 {
6448 int i, rc;
6449
6450 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6451
6452 /* host must have been started */
6453 if (!(host->flags & ATA_HOST_STARTED)) {
6454 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6455 WARN_ON(1);
6456 return -EINVAL;
6457 }
6458
6459 /* Blow away unused ports. This happens when LLD can't
6460 * determine the exact number of ports to allocate at
6461 * allocation time.
6462 */
6463 for (i = host->n_ports; host->ports[i]; i++)
6464 kfree(host->ports[i]);
6465
6466 /* give ports names and add SCSI hosts */
6467 for (i = 0; i < host->n_ports; i++) {
6468 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6469 host->ports[i]->local_port_no = i + 1;
6470 }
6471
6472 /* Create associated sysfs transport objects */
6473 for (i = 0; i < host->n_ports; i++) {
6474 rc = ata_tport_add(host->dev,host->ports[i]);
6475 if (rc) {
6476 goto err_tadd;
6477 }
6478 }
6479
6480 rc = ata_scsi_add_hosts(host, sht);
6481 if (rc)
6482 goto err_tadd;
6483
6484 /* set cable, sata_spd_limit and report */
6485 for (i = 0; i < host->n_ports; i++) {
6486 struct ata_port *ap = host->ports[i];
6487 unsigned long xfer_mask;
6488
6489 /* set SATA cable type if still unset */
6490 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6491 ap->cbl = ATA_CBL_SATA;
6492
6493 /* init sata_spd_limit to the current value */
6494 sata_link_init_spd(&ap->link);
6495 if (ap->slave_link)
6496 sata_link_init_spd(ap->slave_link);
6497
6498 /* print per-port info to dmesg */
6499 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6500 ap->udma_mask);
6501
6502 if (!ata_port_is_dummy(ap)) {
6503 ata_port_info(ap, "%cATA max %s %s\n",
6504 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6505 ata_mode_string(xfer_mask),
6506 ap->link.eh_info.desc);
6507 ata_ehi_clear_desc(&ap->link.eh_info);
6508 } else
6509 ata_port_info(ap, "DUMMY\n");
6510 }
6511
6512 /* perform each probe asynchronously */
6513 for (i = 0; i < host->n_ports; i++) {
6514 struct ata_port *ap = host->ports[i];
6515 async_schedule(async_port_probe, ap);
6516 }
6517
6518 return 0;
6519
6520 err_tadd:
6521 while (--i >= 0) {
6522 ata_tport_delete(host->ports[i]);
6523 }
6524 return rc;
6525
6526 }
6527
6528 /**
6529 * ata_host_activate - start host, request IRQ and register it
6530 * @host: target ATA host
6531 * @irq: IRQ to request
6532 * @irq_handler: irq_handler used when requesting IRQ
6533 * @irq_flags: irq_flags used when requesting IRQ
6534 * @sht: scsi_host_template to use when registering the host
6535 *
6536 * After allocating an ATA host and initializing it, most libata
6537 * LLDs perform three steps to activate the host - start host,
6538 * request IRQ and register it. This helper takes necessary
6539 * arguments and performs the three steps in one go.
6540 *
6541 * An invalid IRQ skips the IRQ registration and expects the host to
6542 * have set polling mode on the port. In this case, @irq_handler
6543 * should be NULL.
6544 *
6545 * LOCKING:
6546 * Inherited from calling layer (may sleep).
6547 *
6548 * RETURNS:
6549 * 0 on success, -errno otherwise.
6550 */
6551 int ata_host_activate(struct ata_host *host, int irq,
6552 irq_handler_t irq_handler, unsigned long irq_flags,
6553 struct scsi_host_template *sht)
6554 {
6555 int i, rc;
6556 char *irq_desc;
6557
6558 rc = ata_host_start(host);
6559 if (rc)
6560 return rc;
6561
6562 /* Special case for polling mode */
6563 if (!irq) {
6564 WARN_ON(irq_handler);
6565 return ata_host_register(host, sht);
6566 }
6567
6568 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6569 dev_driver_string(host->dev),
6570 dev_name(host->dev));
6571 if (!irq_desc)
6572 return -ENOMEM;
6573
6574 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6575 irq_desc, host);
6576 if (rc)
6577 return rc;
6578
6579 for (i = 0; i < host->n_ports; i++)
6580 ata_port_desc(host->ports[i], "irq %d", irq);
6581
6582 rc = ata_host_register(host, sht);
6583 /* if failed, just free the IRQ and leave ports alone */
6584 if (rc)
6585 devm_free_irq(host->dev, irq, host);
6586
6587 return rc;
6588 }
6589
6590 /**
6591 * ata_port_detach - Detach ATA port in preparation of device removal
6592 * @ap: ATA port to be detached
6593 *
6594 * Detach all ATA devices and the associated SCSI devices of @ap;
6595 * then, remove the associated SCSI host. @ap is guaranteed to
6596 * be quiescent on return from this function.
6597 *
6598 * LOCKING:
6599 * Kernel thread context (may sleep).
6600 */
6601 static void ata_port_detach(struct ata_port *ap)
6602 {
6603 unsigned long flags;
6604 struct ata_link *link;
6605 struct ata_device *dev;
6606
6607 if (!ap->ops->error_handler)
6608 goto skip_eh;
6609
6610 /* tell EH we're leaving & flush EH */
6611 spin_lock_irqsave(ap->lock, flags);
6612 ap->pflags |= ATA_PFLAG_UNLOADING;
6613 ata_port_schedule_eh(ap);
6614 spin_unlock_irqrestore(ap->lock, flags);
6615
6616 /* wait till EH commits suicide */
6617 ata_port_wait_eh(ap);
6618
6619 /* it better be dead now */
6620 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6621
6622 cancel_delayed_work_sync(&ap->hotplug_task);
6623
6624 skip_eh:
6625 /* clean up zpodd on port removal */
6626 ata_for_each_link(link, ap, HOST_FIRST) {
6627 ata_for_each_dev(dev, link, ALL) {
6628 if (zpodd_dev_enabled(dev))
6629 zpodd_exit(dev);
6630 }
6631 }
6632 if (ap->pmp_link) {
6633 int i;
6634 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6635 ata_tlink_delete(&ap->pmp_link[i]);
6636 }
6637 /* remove the associated SCSI host */
6638 scsi_remove_host(ap->scsi_host);
6639 ata_tport_delete(ap);
6640 }
6641
6642 /**
6643 * ata_host_detach - Detach all ports of an ATA host
6644 * @host: Host to detach
6645 *
6646 * Detach all ports of @host.
6647 *
6648 * LOCKING:
6649 * Kernel thread context (may sleep).
6650 */
6651 void ata_host_detach(struct ata_host *host)
6652 {
6653 int i;
6654
6655 for (i = 0; i < host->n_ports; i++)
6656 ata_port_detach(host->ports[i]);
6657
6658 /* the host is dead now, dissociate ACPI */
6659 ata_acpi_dissociate(host);
6660 }
6661
6662 #ifdef CONFIG_PCI
6663
6664 /**
6665 * ata_pci_remove_one - PCI layer callback for device removal
6666 * @pdev: PCI device that was removed
6667 *
6668 * PCI layer indicates to libata via this hook that hot-unplug or
6669 * module unload event has occurred. Detach all ports. Resource
6670 * release is handled via devres.
6671 *
6672 * LOCKING:
6673 * Inherited from PCI layer (may sleep).
6674 */
6675 void ata_pci_remove_one(struct pci_dev *pdev)
6676 {
6677 struct ata_host *host = pci_get_drvdata(pdev);
6678
6679 ata_host_detach(host);
6680 }
6681
6682 /* move to PCI subsystem */
6683 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6684 {
6685 unsigned long tmp = 0;
6686
6687 switch (bits->width) {
6688 case 1: {
6689 u8 tmp8 = 0;
6690 pci_read_config_byte(pdev, bits->reg, &tmp8);
6691 tmp = tmp8;
6692 break;
6693 }
6694 case 2: {
6695 u16 tmp16 = 0;
6696 pci_read_config_word(pdev, bits->reg, &tmp16);
6697 tmp = tmp16;
6698 break;
6699 }
6700 case 4: {
6701 u32 tmp32 = 0;
6702 pci_read_config_dword(pdev, bits->reg, &tmp32);
6703 tmp = tmp32;
6704 break;
6705 }
6706
6707 default:
6708 return -EINVAL;
6709 }
6710
6711 tmp &= bits->mask;
6712
6713 return (tmp == bits->val) ? 1 : 0;
6714 }
6715
6716 #ifdef CONFIG_PM
6717 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6718 {
6719 pci_save_state(pdev);
6720 pci_disable_device(pdev);
6721
6722 if (mesg.event & PM_EVENT_SLEEP)
6723 pci_set_power_state(pdev, PCI_D3hot);
6724 }
6725
6726 int ata_pci_device_do_resume(struct pci_dev *pdev)
6727 {
6728 int rc;
6729
6730 pci_set_power_state(pdev, PCI_D0);
6731 pci_restore_state(pdev);
6732
6733 rc = pcim_enable_device(pdev);
6734 if (rc) {
6735 dev_err(&pdev->dev,
6736 "failed to enable device after resume (%d)\n", rc);
6737 return rc;
6738 }
6739
6740 pci_set_master(pdev);
6741 return 0;
6742 }
6743
6744 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6745 {
6746 struct ata_host *host = pci_get_drvdata(pdev);
6747 int rc = 0;
6748
6749 rc = ata_host_suspend(host, mesg);
6750 if (rc)
6751 return rc;
6752
6753 ata_pci_device_do_suspend(pdev, mesg);
6754
6755 return 0;
6756 }
6757
6758 int ata_pci_device_resume(struct pci_dev *pdev)
6759 {
6760 struct ata_host *host = pci_get_drvdata(pdev);
6761 int rc;
6762
6763 rc = ata_pci_device_do_resume(pdev);
6764 if (rc == 0)
6765 ata_host_resume(host);
6766 return rc;
6767 }
6768 #endif /* CONFIG_PM */
6769
6770 #endif /* CONFIG_PCI */
6771
6772 /**
6773 * ata_platform_remove_one - Platform layer callback for device removal
6774 * @pdev: Platform device that was removed
6775 *
6776 * Platform layer indicates to libata via this hook that hot-unplug or
6777 * module unload event has occurred. Detach all ports. Resource
6778 * release is handled via devres.
6779 *
6780 * LOCKING:
6781 * Inherited from platform layer (may sleep).
6782 */
6783 int ata_platform_remove_one(struct platform_device *pdev)
6784 {
6785 struct ata_host *host = platform_get_drvdata(pdev);
6786
6787 ata_host_detach(host);
6788
6789 return 0;
6790 }
6791
6792 static int __init ata_parse_force_one(char **cur,
6793 struct ata_force_ent *force_ent,
6794 const char **reason)
6795 {
6796 static const struct ata_force_param force_tbl[] __initconst = {
6797 { "40c", .cbl = ATA_CBL_PATA40 },
6798 { "80c", .cbl = ATA_CBL_PATA80 },
6799 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6800 { "unk", .cbl = ATA_CBL_PATA_UNK },
6801 { "ign", .cbl = ATA_CBL_PATA_IGN },
6802 { "sata", .cbl = ATA_CBL_SATA },
6803 { "1.5Gbps", .spd_limit = 1 },
6804 { "3.0Gbps", .spd_limit = 2 },
6805 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6806 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6807 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6808 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6809 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6810 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6811 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6812 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6813 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6814 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6815 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6816 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6817 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6818 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6819 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6820 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6821 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6822 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6823 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6824 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6825 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6826 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6827 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6828 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6829 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6830 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6831 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6832 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6833 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6834 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6835 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6836 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6837 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6838 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6839 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6840 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6841 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6842 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6843 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6844 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6845 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6846 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6847 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6848 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6849 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6850 };
6851 char *start = *cur, *p = *cur;
6852 char *id, *val, *endp;
6853 const struct ata_force_param *match_fp = NULL;
6854 int nr_matches = 0, i;
6855
6856 /* find where this param ends and update *cur */
6857 while (*p != '\0' && *p != ',')
6858 p++;
6859
6860 if (*p == '\0')
6861 *cur = p;
6862 else
6863 *cur = p + 1;
6864
6865 *p = '\0';
6866
6867 /* parse */
6868 p = strchr(start, ':');
6869 if (!p) {
6870 val = strstrip(start);
6871 goto parse_val;
6872 }
6873 *p = '\0';
6874
6875 id = strstrip(start);
6876 val = strstrip(p + 1);
6877
6878 /* parse id */
6879 p = strchr(id, '.');
6880 if (p) {
6881 *p++ = '\0';
6882 force_ent->device = simple_strtoul(p, &endp, 10);
6883 if (p == endp || *endp != '\0') {
6884 *reason = "invalid device";
6885 return -EINVAL;
6886 }
6887 }
6888
6889 force_ent->port = simple_strtoul(id, &endp, 10);
6890 if (id == endp || *endp != '\0') {
6891 *reason = "invalid port/link";
6892 return -EINVAL;
6893 }
6894
6895 parse_val:
6896 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6897 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6898 const struct ata_force_param *fp = &force_tbl[i];
6899
6900 if (strncasecmp(val, fp->name, strlen(val)))
6901 continue;
6902
6903 nr_matches++;
6904 match_fp = fp;
6905
6906 if (strcasecmp(val, fp->name) == 0) {
6907 nr_matches = 1;
6908 break;
6909 }
6910 }
6911
6912 if (!nr_matches) {
6913 *reason = "unknown value";
6914 return -EINVAL;
6915 }
6916 if (nr_matches > 1) {
6917 *reason = "ambiguous value";
6918 return -EINVAL;
6919 }
6920
6921 force_ent->param = *match_fp;
6922
6923 return 0;
6924 }
6925
6926 static void __init ata_parse_force_param(void)
6927 {
6928 int idx = 0, size = 1;
6929 int last_port = -1, last_device = -1;
6930 char *p, *cur, *next;
6931
6932 /* calculate maximum number of params and allocate force_tbl */
6933 for (p = ata_force_param_buf; *p; p++)
6934 if (*p == ',')
6935 size++;
6936
6937 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6938 if (!ata_force_tbl) {
6939 printk(KERN_WARNING "ata: failed to extend force table, "
6940 "libata.force ignored\n");
6941 return;
6942 }
6943
6944 /* parse and populate the table */
6945 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6946 const char *reason = "";
6947 struct ata_force_ent te = { .port = -1, .device = -1 };
6948
6949 next = cur;
6950 if (ata_parse_force_one(&next, &te, &reason)) {
6951 printk(KERN_WARNING "ata: failed to parse force "
6952 "parameter \"%s\" (%s)\n",
6953 cur, reason);
6954 continue;
6955 }
6956
6957 if (te.port == -1) {
6958 te.port = last_port;
6959 te.device = last_device;
6960 }
6961
6962 ata_force_tbl[idx++] = te;
6963
6964 last_port = te.port;
6965 last_device = te.device;
6966 }
6967
6968 ata_force_tbl_size = idx;
6969 }
6970
6971 static int __init ata_init(void)
6972 {
6973 int rc;
6974
6975 ata_parse_force_param();
6976
6977 rc = ata_sff_init();
6978 if (rc) {
6979 kfree(ata_force_tbl);
6980 return rc;
6981 }
6982
6983 libata_transport_init();
6984 ata_scsi_transport_template = ata_attach_transport();
6985 if (!ata_scsi_transport_template) {
6986 ata_sff_exit();
6987 rc = -ENOMEM;
6988 goto err_out;
6989 }
6990
6991 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6992 return 0;
6993
6994 err_out:
6995 return rc;
6996 }
6997
6998 static void __exit ata_exit(void)
6999 {
7000 ata_release_transport(ata_scsi_transport_template);
7001 libata_transport_exit();
7002 ata_sff_exit();
7003 kfree(ata_force_tbl);
7004 }
7005
7006 subsys_initcall(ata_init);
7007 module_exit(ata_exit);
7008
7009 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7010
7011 int ata_ratelimit(void)
7012 {
7013 return __ratelimit(&ratelimit);
7014 }
7015
7016 /**
7017 * ata_msleep - ATA EH owner aware msleep
7018 * @ap: ATA port to attribute the sleep to
7019 * @msecs: duration to sleep in milliseconds
7020 *
7021 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7022 * ownership is released before going to sleep and reacquired
7023 * after the sleep is complete. IOW, other ports sharing the
7024 * @ap->host will be allowed to own the EH while this task is
7025 * sleeping.
7026 *
7027 * LOCKING:
7028 * Might sleep.
7029 */
7030 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7031 {
7032 bool owns_eh = ap && ap->host->eh_owner == current;
7033
7034 if (owns_eh)
7035 ata_eh_release(ap);
7036
7037 if (msecs < 20) {
7038 unsigned long usecs = msecs * USEC_PER_MSEC;
7039 usleep_range(usecs, usecs + 50);
7040 } else {
7041 msleep(msecs);
7042 }
7043
7044 if (owns_eh)
7045 ata_eh_acquire(ap);
7046 }
7047
7048 /**
7049 * ata_wait_register - wait until register value changes
7050 * @ap: ATA port to wait register for, can be NULL
7051 * @reg: IO-mapped register
7052 * @mask: Mask to apply to read register value
7053 * @val: Wait condition
7054 * @interval: polling interval in milliseconds
7055 * @timeout: timeout in milliseconds
7056 *
7057 * Waiting for some bits of register to change is a common
7058 * operation for ATA controllers. This function reads 32bit LE
7059 * IO-mapped register @reg and tests for the following condition.
7060 *
7061 * (*@reg & mask) != val
7062 *
7063 * If the condition is met, it returns; otherwise, the process is
7064 * repeated after @interval_msec until timeout.
7065 *
7066 * LOCKING:
7067 * Kernel thread context (may sleep)
7068 *
7069 * RETURNS:
7070 * The final register value.
7071 */
7072 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7073 unsigned long interval, unsigned long timeout)
7074 {
7075 unsigned long deadline;
7076 u32 tmp;
7077
7078 tmp = ioread32(reg);
7079
7080 /* Calculate timeout _after_ the first read to make sure
7081 * preceding writes reach the controller before starting to
7082 * eat away the timeout.
7083 */
7084 deadline = ata_deadline(jiffies, timeout);
7085
7086 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7087 ata_msleep(ap, interval);
7088 tmp = ioread32(reg);
7089 }
7090
7091 return tmp;
7092 }
7093
7094 /**
7095 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7096 * @link: Link receiving the event
7097 *
7098 * Test whether the received PHY event has to be ignored or not.
7099 *
7100 * LOCKING:
7101 * None:
7102 *
7103 * RETURNS:
7104 * True if the event has to be ignored.
7105 */
7106 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7107 {
7108 unsigned long lpm_timeout = link->last_lpm_change +
7109 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7110
7111 /* if LPM is enabled, PHYRDY doesn't mean anything */
7112 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7113 return true;
7114
7115 /* ignore the first PHY event after the LPM policy changed
7116 * as it is might be spurious
7117 */
7118 if ((link->flags & ATA_LFLAG_CHANGED) &&
7119 time_before(jiffies, lpm_timeout))
7120 return true;
7121
7122 return false;
7123 }
7124 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7125
7126 /*
7127 * Dummy port_ops
7128 */
7129 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7130 {
7131 return AC_ERR_SYSTEM;
7132 }
7133
7134 static void ata_dummy_error_handler(struct ata_port *ap)
7135 {
7136 /* truly dummy */
7137 }
7138
7139 struct ata_port_operations ata_dummy_port_ops = {
7140 .qc_prep = ata_noop_qc_prep,
7141 .qc_issue = ata_dummy_qc_issue,
7142 .error_handler = ata_dummy_error_handler,
7143 .sched_eh = ata_std_sched_eh,
7144 .end_eh = ata_std_end_eh,
7145 };
7146
7147 const struct ata_port_info ata_dummy_port_info = {
7148 .port_ops = &ata_dummy_port_ops,
7149 };
7150
7151 /*
7152 * Utility print functions
7153 */
7154 void ata_port_printk(const struct ata_port *ap, const char *level,
7155 const char *fmt, ...)
7156 {
7157 struct va_format vaf;
7158 va_list args;
7159
7160 va_start(args, fmt);
7161
7162 vaf.fmt = fmt;
7163 vaf.va = &args;
7164
7165 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7166
7167 va_end(args);
7168 }
7169 EXPORT_SYMBOL(ata_port_printk);
7170
7171 void ata_link_printk(const struct ata_link *link, const char *level,
7172 const char *fmt, ...)
7173 {
7174 struct va_format vaf;
7175 va_list args;
7176
7177 va_start(args, fmt);
7178
7179 vaf.fmt = fmt;
7180 vaf.va = &args;
7181
7182 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7183 printk("%sata%u.%02u: %pV",
7184 level, link->ap->print_id, link->pmp, &vaf);
7185 else
7186 printk("%sata%u: %pV",
7187 level, link->ap->print_id, &vaf);
7188
7189 va_end(args);
7190 }
7191 EXPORT_SYMBOL(ata_link_printk);
7192
7193 void ata_dev_printk(const struct ata_device *dev, const char *level,
7194 const char *fmt, ...)
7195 {
7196 struct va_format vaf;
7197 va_list args;
7198
7199 va_start(args, fmt);
7200
7201 vaf.fmt = fmt;
7202 vaf.va = &args;
7203
7204 printk("%sata%u.%02u: %pV",
7205 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7206 &vaf);
7207
7208 va_end(args);
7209 }
7210 EXPORT_SYMBOL(ata_dev_printk);
7211
7212 void ata_print_version(const struct device *dev, const char *version)
7213 {
7214 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7215 }
7216 EXPORT_SYMBOL(ata_print_version);
7217
7218 /*
7219 * libata is essentially a library of internal helper functions for
7220 * low-level ATA host controller drivers. As such, the API/ABI is
7221 * likely to change as new drivers are added and updated.
7222 * Do not depend on ABI/API stability.
7223 */
7224 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7225 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7226 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7227 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7228 EXPORT_SYMBOL_GPL(sata_port_ops);
7229 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7230 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7231 EXPORT_SYMBOL_GPL(ata_link_next);
7232 EXPORT_SYMBOL_GPL(ata_dev_next);
7233 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7234 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7235 EXPORT_SYMBOL_GPL(ata_host_init);
7236 EXPORT_SYMBOL_GPL(ata_host_alloc);
7237 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7238 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7239 EXPORT_SYMBOL_GPL(ata_host_start);
7240 EXPORT_SYMBOL_GPL(ata_host_register);
7241 EXPORT_SYMBOL_GPL(ata_host_activate);
7242 EXPORT_SYMBOL_GPL(ata_host_detach);
7243 EXPORT_SYMBOL_GPL(ata_sg_init);
7244 EXPORT_SYMBOL_GPL(ata_qc_complete);
7245 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7246 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7247 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7248 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7249 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7250 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7251 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7252 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7253 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7254 EXPORT_SYMBOL_GPL(ata_mode_string);
7255 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7256 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7257 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7258 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7259 EXPORT_SYMBOL_GPL(ata_dev_disable);
7260 EXPORT_SYMBOL_GPL(sata_set_spd);
7261 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7262 EXPORT_SYMBOL_GPL(sata_link_debounce);
7263 EXPORT_SYMBOL_GPL(sata_link_resume);
7264 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7265 EXPORT_SYMBOL_GPL(ata_std_prereset);
7266 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7267 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7268 EXPORT_SYMBOL_GPL(ata_std_postreset);
7269 EXPORT_SYMBOL_GPL(ata_dev_classify);
7270 EXPORT_SYMBOL_GPL(ata_dev_pair);
7271 EXPORT_SYMBOL_GPL(ata_ratelimit);
7272 EXPORT_SYMBOL_GPL(ata_msleep);
7273 EXPORT_SYMBOL_GPL(ata_wait_register);
7274 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7275 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7276 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7277 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7278 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7279 EXPORT_SYMBOL_GPL(sata_scr_valid);
7280 EXPORT_SYMBOL_GPL(sata_scr_read);
7281 EXPORT_SYMBOL_GPL(sata_scr_write);
7282 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7283 EXPORT_SYMBOL_GPL(ata_link_online);
7284 EXPORT_SYMBOL_GPL(ata_link_offline);
7285 #ifdef CONFIG_PM
7286 EXPORT_SYMBOL_GPL(ata_host_suspend);
7287 EXPORT_SYMBOL_GPL(ata_host_resume);
7288 #endif /* CONFIG_PM */
7289 EXPORT_SYMBOL_GPL(ata_id_string);
7290 EXPORT_SYMBOL_GPL(ata_id_c_string);
7291 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7292 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7293
7294 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7295 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7296 EXPORT_SYMBOL_GPL(ata_timing_compute);
7297 EXPORT_SYMBOL_GPL(ata_timing_merge);
7298 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7299
7300 #ifdef CONFIG_PCI
7301 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7302 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7303 #ifdef CONFIG_PM
7304 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7305 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7306 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7307 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7308 #endif /* CONFIG_PM */
7309 #endif /* CONFIG_PCI */
7310
7311 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7312
7313 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7314 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7315 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7316 EXPORT_SYMBOL_GPL(ata_port_desc);
7317 #ifdef CONFIG_PCI
7318 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7319 #endif /* CONFIG_PCI */
7320 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7321 EXPORT_SYMBOL_GPL(ata_link_abort);
7322 EXPORT_SYMBOL_GPL(ata_port_abort);
7323 EXPORT_SYMBOL_GPL(ata_port_freeze);
7324 EXPORT_SYMBOL_GPL(sata_async_notification);
7325 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7326 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7327 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7328 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7329 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7330 EXPORT_SYMBOL_GPL(ata_do_eh);
7331 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7332
7333 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7334 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7335 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7336 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7337 EXPORT_SYMBOL_GPL(ata_cable_sata);